MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rrx Structured version   Visualization version   GIF version

Definition df-rrx 24893
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
df-rrx ℝ^ = (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))

Detailed syntax breakdown of Definition df-rrx
StepHypRef Expression
1 crrx 24891 . 2 class ℝ^
2 vi . . 3 setvar 𝑖
3 cvv 3474 . . 3 class V
4 crefld 21148 . . . . 5 class ℝfld
52cv 1540 . . . . 5 class 𝑖
6 cfrlm 21292 . . . . 5 class freeLMod
74, 5, 6co 7405 . . . 4 class (ℝfld freeLMod 𝑖)
8 ctcph 24675 . . . 4 class toβ„‚PreHil
97, 8cfv 6540 . . 3 class (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖))
102, 3, 9cmpt 5230 . 2 class (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))
111, 10wceq 1541 1 wff ℝ^ = (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))
Colors of variables: wff setvar class
This definition is referenced by:  rrxval  24895
  Copyright terms: Public domain W3C validator