Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version GIF version |
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
df-rrx | ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrx 24556 | . 2 class ℝ^ | |
2 | vi | . . 3 setvar 𝑖 | |
3 | cvv 3433 | . . 3 class V | |
4 | crefld 20818 | . . . . 5 class ℝfld | |
5 | 2 | cv 1538 | . . . . 5 class 𝑖 |
6 | cfrlm 20962 | . . . . 5 class freeLMod | |
7 | 4, 5, 6 | co 7284 | . . . 4 class (ℝfld freeLMod 𝑖) |
8 | ctcph 24340 | . . . 4 class toℂPreHil | |
9 | 7, 8 | cfv 6437 | . . 3 class (toℂPreHil‘(ℝfld freeLMod 𝑖)) |
10 | 2, 3, 9 | cmpt 5158 | . 2 class (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
11 | 1, 10 | wceq 1539 | 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Colors of variables: wff setvar class |
This definition is referenced by: rrxval 24560 |
Copyright terms: Public domain | W3C validator |