MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-rrx Structured version   Visualization version   GIF version

Definition df-rrx 24454
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.)
Assertion
Ref Expression
df-rrx ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))

Detailed syntax breakdown of Definition df-rrx
StepHypRef Expression
1 crrx 24452 . 2 class ℝ^
2 vi . . 3 setvar 𝑖
3 cvv 3422 . . 3 class V
4 crefld 20721 . . . . 5 class fld
52cv 1538 . . . . 5 class 𝑖
6 cfrlm 20863 . . . . 5 class freeLMod
74, 5, 6co 7255 . . . 4 class (ℝfld freeLMod 𝑖)
8 ctcph 24236 . . . 4 class toℂPreHil
97, 8cfv 6418 . . 3 class (toℂPreHil‘(ℝfld freeLMod 𝑖))
102, 3, 9cmpt 5153 . 2 class (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
111, 10wceq 1539 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
Colors of variables: wff setvar class
This definition is referenced by:  rrxval  24456
  Copyright terms: Public domain W3C validator