| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version GIF version | ||
| Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| df-rrx | ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crrx 25316 | . 2 class ℝ^ | |
| 2 | vi | . . 3 setvar 𝑖 | |
| 3 | cvv 3444 | . . 3 class V | |
| 4 | crefld 21546 | . . . . 5 class ℝfld | |
| 5 | 2 | cv 1539 | . . . . 5 class 𝑖 |
| 6 | cfrlm 21688 | . . . . 5 class freeLMod | |
| 7 | 4, 5, 6 | co 7369 | . . . 4 class (ℝfld freeLMod 𝑖) |
| 8 | ctcph 25100 | . . . 4 class toℂPreHil | |
| 9 | 7, 8 | cfv 6499 | . . 3 class (toℂPreHil‘(ℝfld freeLMod 𝑖)) |
| 10 | 2, 3, 9 | cmpt 5183 | . 2 class (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
| 11 | 1, 10 | wceq 1540 | 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
| Colors of variables: wff setvar class |
| This definition is referenced by: rrxval 25320 |
| Copyright terms: Public domain | W3C validator |