![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version GIF version |
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
df-rrx | ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrx 24829 | . 2 class ℝ^ | |
2 | vi | . . 3 setvar 𝑖 | |
3 | cvv 3473 | . . 3 class V | |
4 | crefld 21090 | . . . . 5 class ℝfld | |
5 | 2 | cv 1540 | . . . . 5 class 𝑖 |
6 | cfrlm 21234 | . . . . 5 class freeLMod | |
7 | 4, 5, 6 | co 7393 | . . . 4 class (ℝfld freeLMod 𝑖) |
8 | ctcph 24613 | . . . 4 class toℂPreHil | |
9 | 7, 8 | cfv 6532 | . . 3 class (toℂPreHil‘(ℝfld freeLMod 𝑖)) |
10 | 2, 3, 9 | cmpt 5224 | . 2 class (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
11 | 1, 10 | wceq 1541 | 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Colors of variables: wff setvar class |
This definition is referenced by: rrxval 24833 |
Copyright terms: Public domain | W3C validator |