Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-rrx | Structured version Visualization version GIF version |
Description: Define the function associating with a set the free real vector space on that set, equipped with the natural inner product and norm. This is the direct sum of copies of the field of real numbers indexed by that set. We call it here a "generalized real Euclidean space", but note that it need not be complete (for instance if the given set is infinite countable). (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
df-rrx | ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crrx 24452 | . 2 class ℝ^ | |
2 | vi | . . 3 setvar 𝑖 | |
3 | cvv 3422 | . . 3 class V | |
4 | crefld 20721 | . . . . 5 class ℝfld | |
5 | 2 | cv 1538 | . . . . 5 class 𝑖 |
6 | cfrlm 20863 | . . . . 5 class freeLMod | |
7 | 4, 5, 6 | co 7255 | . . . 4 class (ℝfld freeLMod 𝑖) |
8 | ctcph 24236 | . . . 4 class toℂPreHil | |
9 | 7, 8 | cfv 6418 | . . 3 class (toℂPreHil‘(ℝfld freeLMod 𝑖)) |
10 | 2, 3, 9 | cmpt 5153 | . 2 class (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
11 | 1, 10 | wceq 1539 | 1 wff ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) |
Colors of variables: wff setvar class |
This definition is referenced by: rrxval 24456 |
Copyright terms: Public domain | W3C validator |