| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| Ref | Expression |
|---|---|
| rrxval | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | . 2 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | elex 3457 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 3 | oveq2 7354 | . . . . 5 ⊢ (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼)) | |
| 4 | 3 | fveq2d 6826 | . . . 4 ⊢ (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | df-rrx 25312 | . . . 4 ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | |
| 6 | fvex 6835 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6929 | . . 3 ⊢ (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 9 | 1, 8 | eqtrid 2778 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ‘cfv 6481 (class class class)co 7346 ℝfldcrefld 21541 freeLMod cfrlm 21683 toℂPreHilctcph 25094 ℝ^crrx 25310 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-rrx 25312 |
| This theorem is referenced by: rrxbase 25315 rrxprds 25316 rrxnm 25318 rrxcph 25319 rrxds 25320 rrxvsca 25321 rrxplusgvscavalb 25322 rrx0 25324 rrxdim 33627 rrxtopn 46330 opnvonmbllem2 46679 |
| Copyright terms: Public domain | W3C validator |