MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxval Structured version   Visualization version   GIF version

Theorem rrxval 25440
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxval (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))

Proof of Theorem rrxval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . 2 𝐻 = (ℝ^‘𝐼)
2 elex 3509 . . 3 (𝐼𝑉𝐼 ∈ V)
3 oveq2 7456 . . . . 5 (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼))
43fveq2d 6924 . . . 4 (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
5 df-rrx 25438 . . . 4 ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
6 fvex 6933 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V
74, 5, 6fvmpt 7029 . . 3 (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
82, 7syl 17 . 2 (𝐼𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
91, 8eqtrid 2792 1 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  cfv 6573  (class class class)co 7448  fldcrefld 21645   freeLMod cfrlm 21789  toℂPreHilctcph 25220  ℝ^crrx 25436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-rrx 25438
This theorem is referenced by:  rrxbase  25441  rrxprds  25442  rrxnm  25444  rrxcph  25445  rrxds  25446  rrxvsca  25447  rrxplusgvscavalb  25448  rrx0  25450  rrxdim  33627  rrxtopn  46205  opnvonmbllem2  46554
  Copyright terms: Public domain W3C validator