![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version |
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
Ref | Expression |
---|---|
rrxval | β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . 2 β’ π» = (β^βπΌ) | |
2 | elex 3487 | . . 3 β’ (πΌ β π β πΌ β V) | |
3 | oveq2 7412 | . . . . 5 β’ (π = πΌ β (βfld freeLMod π) = (βfld freeLMod πΌ)) | |
4 | 3 | fveq2d 6888 | . . . 4 β’ (π = πΌ β (toβPreHilβ(βfld freeLMod π)) = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | df-rrx 25264 | . . . 4 β’ β^ = (π β V β¦ (toβPreHilβ(βfld freeLMod π))) | |
6 | fvex 6897 | . . . 4 β’ (toβPreHilβ(βfld freeLMod πΌ)) β V | |
7 | 4, 5, 6 | fvmpt 6991 | . . 3 β’ (πΌ β V β (β^βπΌ) = (toβPreHilβ(βfld freeLMod πΌ))) |
8 | 2, 7 | syl 17 | . 2 β’ (πΌ β π β (β^βπΌ) = (toβPreHilβ(βfld freeLMod πΌ))) |
9 | 1, 8 | eqtrid 2778 | 1 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 Vcvv 3468 βcfv 6536 (class class class)co 7404 βfldcrefld 21493 freeLMod cfrlm 21637 toβPreHilctcph 25046 β^crrx 25262 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pr 5420 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-iota 6488 df-fun 6538 df-fv 6544 df-ov 7407 df-rrx 25264 |
This theorem is referenced by: rrxbase 25267 rrxprds 25268 rrxnm 25270 rrxcph 25271 rrxds 25272 rrxvsca 25273 rrxplusgvscavalb 25274 rrx0 25276 rrxdim 33217 rrxtopn 45553 opnvonmbllem2 45902 |
Copyright terms: Public domain | W3C validator |