| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| Ref | Expression |
|---|---|
| rrxval | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | . 2 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | elex 3468 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 3 | oveq2 7395 | . . . . 5 ⊢ (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼)) | |
| 4 | 3 | fveq2d 6862 | . . . 4 ⊢ (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | df-rrx 25285 | . . . 4 ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | |
| 6 | fvex 6871 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6968 | . . 3 ⊢ (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 9 | 1, 8 | eqtrid 2776 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ‘cfv 6511 (class class class)co 7387 ℝfldcrefld 21513 freeLMod cfrlm 21655 toℂPreHilctcph 25067 ℝ^crrx 25283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-rrx 25285 |
| This theorem is referenced by: rrxbase 25288 rrxprds 25289 rrxnm 25291 rrxcph 25292 rrxds 25293 rrxvsca 25294 rrxplusgvscavalb 25295 rrx0 25297 rrxdim 33610 rrxtopn 46282 opnvonmbllem2 46631 |
| Copyright terms: Public domain | W3C validator |