| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version | ||
| Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
| Ref | Expression |
|---|---|
| rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
| Ref | Expression |
|---|---|
| rrxval | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | . 2 ⊢ 𝐻 = (ℝ^‘𝐼) | |
| 2 | elex 3465 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
| 3 | oveq2 7377 | . . . . 5 ⊢ (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼)) | |
| 4 | 3 | fveq2d 6844 | . . . 4 ⊢ (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 5 | df-rrx 25261 | . . . 4 ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | |
| 6 | fvex 6853 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V | |
| 7 | 4, 5, 6 | fvmpt 6950 | . . 3 ⊢ (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| 9 | 1, 8 | eqtrid 2776 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ‘cfv 6499 (class class class)co 7369 ℝfldcrefld 21489 freeLMod cfrlm 21631 toℂPreHilctcph 25043 ℝ^crrx 25259 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-rrx 25261 |
| This theorem is referenced by: rrxbase 25264 rrxprds 25265 rrxnm 25267 rrxcph 25268 rrxds 25269 rrxvsca 25270 rrxplusgvscavalb 25271 rrx0 25273 rrxdim 33583 rrxtopn 46255 opnvonmbllem2 46604 |
| Copyright terms: Public domain | W3C validator |