![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version |
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
Ref | Expression |
---|---|
rrxval | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . 2 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | elex 3498 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | oveq2 7438 | . . . . 5 ⊢ (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼)) | |
4 | 3 | fveq2d 6910 | . . . 4 ⊢ (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
5 | df-rrx 25432 | . . . 4 ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | |
6 | fvex 6919 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V | |
7 | 4, 5, 6 | fvmpt 7015 | . . 3 ⊢ (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
9 | 1, 8 | eqtrid 2786 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1536 ∈ wcel 2105 Vcvv 3477 ‘cfv 6562 (class class class)co 7430 ℝfldcrefld 21639 freeLMod cfrlm 21783 toℂPreHilctcph 25214 ℝ^crrx 25430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-iota 6515 df-fun 6564 df-fv 6570 df-ov 7433 df-rrx 25432 |
This theorem is referenced by: rrxbase 25435 rrxprds 25436 rrxnm 25438 rrxcph 25439 rrxds 25440 rrxvsca 25441 rrxplusgvscavalb 25442 rrx0 25444 rrxdim 33641 rrxtopn 46239 opnvonmbllem2 46588 |
Copyright terms: Public domain | W3C validator |