Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version |
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | ⊢ 𝐻 = (ℝ^‘𝐼) |
Ref | Expression |
---|---|
rrxval | ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . 2 ⊢ 𝐻 = (ℝ^‘𝐼) | |
2 | elex 3440 | . . 3 ⊢ (𝐼 ∈ 𝑉 → 𝐼 ∈ V) | |
3 | oveq2 7263 | . . . . 5 ⊢ (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼)) | |
4 | 3 | fveq2d 6760 | . . . 4 ⊢ (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
5 | df-rrx 24454 | . . . 4 ⊢ ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖))) | |
6 | fvex 6769 | . . . 4 ⊢ (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V | |
7 | 4, 5, 6 | fvmpt 6857 | . . 3 ⊢ (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
8 | 2, 7 | syl 17 | . 2 ⊢ (𝐼 ∈ 𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
9 | 1, 8 | eqtrid 2790 | 1 ⊢ (𝐼 ∈ 𝑉 → 𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ‘cfv 6418 (class class class)co 7255 ℝfldcrefld 20721 freeLMod cfrlm 20863 toℂPreHilctcph 24236 ℝ^crrx 24452 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-rrx 24454 |
This theorem is referenced by: rrxbase 24457 rrxprds 24458 rrxnm 24460 rrxcph 24461 rrxds 24462 rrxvsca 24463 rrxplusgvscavalb 24464 rrx0 24466 rrxdim 31599 rrxtopn 43715 opnvonmbllem2 44061 |
Copyright terms: Public domain | W3C validator |