MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxval Structured version   Visualization version   GIF version

Theorem rrxval 24895
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
rrxval.r 𝐻 = (ℝ^β€˜πΌ)
Assertion
Ref Expression
rrxval (𝐼 ∈ 𝑉 β†’ 𝐻 = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))

Proof of Theorem rrxval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . 2 𝐻 = (ℝ^β€˜πΌ)
2 elex 3492 . . 3 (𝐼 ∈ 𝑉 β†’ 𝐼 ∈ V)
3 oveq2 7413 . . . . 5 (𝑖 = 𝐼 β†’ (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼))
43fveq2d 6892 . . . 4 (𝑖 = 𝐼 β†’ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
5 df-rrx 24893 . . . 4 ℝ^ = (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))
6 fvex 6901 . . . 4 (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)) ∈ V
74, 5, 6fvmpt 6995 . . 3 (𝐼 ∈ V β†’ (ℝ^β€˜πΌ) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
82, 7syl 17 . 2 (𝐼 ∈ 𝑉 β†’ (ℝ^β€˜πΌ) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
91, 8eqtrid 2784 1 (𝐼 ∈ 𝑉 β†’ 𝐻 = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  Vcvv 3474  β€˜cfv 6540  (class class class)co 7405  β„fldcrefld 21148   freeLMod cfrlm 21292  toβ„‚PreHilctcph 24675  β„^crrx 24891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-rrx 24893
This theorem is referenced by:  rrxbase  24896  rrxprds  24897  rrxnm  24899  rrxcph  24900  rrxds  24901  rrxvsca  24902  rrxplusgvscavalb  24903  rrx0  24905  rrxdim  32687  rrxtopn  44986  opnvonmbllem2  45335
  Copyright terms: Public domain W3C validator