MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxval Structured version   Visualization version   GIF version

Theorem rrxval 25434
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
rrxval.r 𝐻 = (ℝ^‘𝐼)
Assertion
Ref Expression
rrxval (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))

Proof of Theorem rrxval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . 2 𝐻 = (ℝ^‘𝐼)
2 elex 3498 . . 3 (𝐼𝑉𝐼 ∈ V)
3 oveq2 7438 . . . . 5 (𝑖 = 𝐼 → (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼))
43fveq2d 6910 . . . 4 (𝑖 = 𝐼 → (toℂPreHil‘(ℝfld freeLMod 𝑖)) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
5 df-rrx 25432 . . . 4 ℝ^ = (𝑖 ∈ V ↦ (toℂPreHil‘(ℝfld freeLMod 𝑖)))
6 fvex 6919 . . . 4 (toℂPreHil‘(ℝfld freeLMod 𝐼)) ∈ V
74, 5, 6fvmpt 7015 . . 3 (𝐼 ∈ V → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
82, 7syl 17 . 2 (𝐼𝑉 → (ℝ^‘𝐼) = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
91, 8eqtrid 2786 1 (𝐼𝑉𝐻 = (toℂPreHil‘(ℝfld freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1536  wcel 2105  Vcvv 3477  cfv 6562  (class class class)co 7430  fldcrefld 21639   freeLMod cfrlm 21783  toℂPreHilctcph 25214  ℝ^crrx 25430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pr 5437
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3433  df-v 3479  df-dif 3965  df-un 3967  df-ss 3979  df-nul 4339  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5582  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-iota 6515  df-fun 6564  df-fv 6570  df-ov 7433  df-rrx 25432
This theorem is referenced by:  rrxbase  25435  rrxprds  25436  rrxnm  25438  rrxcph  25439  rrxds  25440  rrxvsca  25441  rrxplusgvscavalb  25442  rrx0  25444  rrxdim  33641  rrxtopn  46239  opnvonmbllem2  46588
  Copyright terms: Public domain W3C validator