![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rrxval | Structured version Visualization version GIF version |
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.) |
Ref | Expression |
---|---|
rrxval.r | β’ π» = (β^βπΌ) |
Ref | Expression |
---|---|
rrxval | β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rrxval.r | . 2 β’ π» = (β^βπΌ) | |
2 | elex 3492 | . . 3 β’ (πΌ β π β πΌ β V) | |
3 | oveq2 7413 | . . . . 5 β’ (π = πΌ β (βfld freeLMod π) = (βfld freeLMod πΌ)) | |
4 | 3 | fveq2d 6892 | . . . 4 β’ (π = πΌ β (toβPreHilβ(βfld freeLMod π)) = (toβPreHilβ(βfld freeLMod πΌ))) |
5 | df-rrx 24893 | . . . 4 β’ β^ = (π β V β¦ (toβPreHilβ(βfld freeLMod π))) | |
6 | fvex 6901 | . . . 4 β’ (toβPreHilβ(βfld freeLMod πΌ)) β V | |
7 | 4, 5, 6 | fvmpt 6995 | . . 3 β’ (πΌ β V β (β^βπΌ) = (toβPreHilβ(βfld freeLMod πΌ))) |
8 | 2, 7 | syl 17 | . 2 β’ (πΌ β π β (β^βπΌ) = (toβPreHilβ(βfld freeLMod πΌ))) |
9 | 1, 8 | eqtrid 2784 | 1 β’ (πΌ β π β π» = (toβPreHilβ(βfld freeLMod πΌ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 βcfv 6540 (class class class)co 7405 βfldcrefld 21148 freeLMod cfrlm 21292 toβPreHilctcph 24675 β^crrx 24891 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-ov 7408 df-rrx 24893 |
This theorem is referenced by: rrxbase 24896 rrxprds 24897 rrxnm 24899 rrxcph 24900 rrxds 24901 rrxvsca 24902 rrxplusgvscavalb 24903 rrx0 24905 rrxdim 32687 rrxtopn 44986 opnvonmbllem2 45335 |
Copyright terms: Public domain | W3C validator |