MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rrxval Structured version   Visualization version   GIF version

Theorem rrxval 25266
Description: Value of the generalized Euclidean space. (Contributed by Thierry Arnoux, 16-Jun-2019.)
Hypothesis
Ref Expression
rrxval.r 𝐻 = (ℝ^β€˜πΌ)
Assertion
Ref Expression
rrxval (𝐼 ∈ 𝑉 β†’ 𝐻 = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))

Proof of Theorem rrxval
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 rrxval.r . 2 𝐻 = (ℝ^β€˜πΌ)
2 elex 3487 . . 3 (𝐼 ∈ 𝑉 β†’ 𝐼 ∈ V)
3 oveq2 7412 . . . . 5 (𝑖 = 𝐼 β†’ (ℝfld freeLMod 𝑖) = (ℝfld freeLMod 𝐼))
43fveq2d 6888 . . . 4 (𝑖 = 𝐼 β†’ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
5 df-rrx 25264 . . . 4 ℝ^ = (𝑖 ∈ V ↦ (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝑖)))
6 fvex 6897 . . . 4 (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)) ∈ V
74, 5, 6fvmpt 6991 . . 3 (𝐼 ∈ V β†’ (ℝ^β€˜πΌ) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
82, 7syl 17 . 2 (𝐼 ∈ 𝑉 β†’ (ℝ^β€˜πΌ) = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
91, 8eqtrid 2778 1 (𝐼 ∈ 𝑉 β†’ 𝐻 = (toβ„‚PreHilβ€˜(ℝfld freeLMod 𝐼)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3468  β€˜cfv 6536  (class class class)co 7404  β„fldcrefld 21493   freeLMod cfrlm 21637  toβ„‚PreHilctcph 25046  β„^crrx 25262
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6488  df-fun 6538  df-fv 6544  df-ov 7407  df-rrx 25264
This theorem is referenced by:  rrxbase  25267  rrxprds  25268  rrxnm  25270  rrxcph  25271  rrxds  25272  rrxvsca  25273  rrxplusgvscavalb  25274  rrx0  25276  rrxdim  33217  rrxtopn  45553  opnvonmbllem2  45902
  Copyright terms: Public domain W3C validator