![]() |
Metamath
Proof Explorer Theorem List (p. 250 of 473) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29860) |
![]() (29861-31383) |
![]() (31384-47242) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | unmbl 24901 | A union of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∪ 𝐵) ∈ dom vol) | ||
Theorem | shftmbl 24902* | A shift of a measurable set is measurable. (Contributed by Mario Carneiro, 22-Mar-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → {𝑥 ∈ ℝ ∣ (𝑥 − 𝐵) ∈ 𝐴} ∈ dom vol) | ||
Theorem | 0mbl 24903 | The empty set is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ∅ ∈ dom vol | ||
Theorem | rembl 24904 | The set of all real numbers is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ℝ ∈ dom vol | ||
Theorem | unidmvol 24905 | The union of the Lebesgue measurable sets is ℝ. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
⊢ ∪ dom vol = ℝ | ||
Theorem | inmbl 24906 | An intersection of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∩ 𝐵) ∈ dom vol) | ||
Theorem | difmbl 24907 | A difference of measurable sets is measurable. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) → (𝐴 ∖ 𝐵) ∈ dom vol) | ||
Theorem | finiunmbl 24908* | A finite union of measurable sets is measurable. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ dom vol) | ||
Theorem | volun 24909 | The Lebesgue measure function is finitely additive. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol ∧ (𝐴 ∩ 𝐵) = ∅) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → (vol‘(𝐴 ∪ 𝐵)) = ((vol‘𝐴) + (vol‘𝐵))) | ||
Theorem | volinun 24910 | Addition of non-disjoint sets. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ (((𝐴 ∈ dom vol ∧ 𝐵 ∈ dom vol) ∧ ((vol‘𝐴) ∈ ℝ ∧ (vol‘𝐵) ∈ ℝ)) → ((vol‘𝐴) + (vol‘𝐵)) = ((vol‘(𝐴 ∩ 𝐵)) + (vol‘(𝐴 ∪ 𝐵)))) | ||
Theorem | volfiniun 24911* | The volume of a disjoint finite union of measurable sets is the sum of the measures. (Contributed by Mario Carneiro, 25-Jun-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ((𝐴 ∈ Fin ∧ ∀𝑘 ∈ 𝐴 (𝐵 ∈ dom vol ∧ (vol‘𝐵) ∈ ℝ) ∧ Disj 𝑘 ∈ 𝐴 𝐵) → (vol‘∪ 𝑘 ∈ 𝐴 𝐵) = Σ𝑘 ∈ 𝐴 (vol‘𝐵)) | ||
Theorem | iundisj 24912* | Rewrite a countable union as a disjoint union. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ ∪ 𝑛 ∈ ℕ 𝐴 = ∪ 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | iundisj2 24913* | A disjoint union is disjoint. (Contributed by Mario Carneiro, 4-Jul-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ (𝑛 = 𝑘 → 𝐴 = 𝐵) ⇒ ⊢ Disj 𝑛 ∈ ℕ (𝐴 ∖ ∪ 𝑘 ∈ (1..^𝑛)𝐵) | ||
Theorem | voliunlem1 24914* | Lemma for voliun 24918. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝐸 ∩ (𝐹‘𝑛)))) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑘 ∈ ℕ) → ((seq1( + , 𝐻)‘𝑘) + (vol*‘(𝐸 ∖ ∪ ran 𝐹))) ≤ (vol*‘𝐸)) | ||
Theorem | voliunlem2 24915* | Lemma for voliun 24918. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ dom vol) | ||
Theorem | voliunlem3 24916* | Lemma for voliun 24918. (Contributed by Mario Carneiro, 20-Mar-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑖 ∈ ℕ (𝐹‘𝑖)) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ (vol*‘(𝑥 ∩ (𝐹‘𝑛)))) & ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐹‘𝑛))) & ⊢ (𝜑 → ∀𝑖 ∈ ℕ (vol‘(𝐹‘𝑖)) ∈ ℝ) ⇒ ⊢ (𝜑 → (vol‘∪ ran 𝐹) = sup(ran 𝑆, ℝ*, < )) | ||
Theorem | iunmbl 24917 | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ (∀𝑛 ∈ ℕ 𝐴 ∈ dom vol → ∪ 𝑛 ∈ ℕ 𝐴 ∈ dom vol) | ||
Theorem | voliun 24918 | The Lebesgue measure function is countably additive. (Contributed by Mario Carneiro, 18-Mar-2014.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘𝐴)) ⇒ ⊢ ((∀𝑛 ∈ ℕ (𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) ∧ Disj 𝑛 ∈ ℕ 𝐴) → (vol‘∪ 𝑛 ∈ ℕ 𝐴) = sup(ran 𝑆, ℝ*, < )) | ||
Theorem | volsuplem 24919* | Lemma for volsup 24920. (Contributed by Mario Carneiro, 4-Jul-2014.) |
⊢ ((∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1)) ∧ (𝐴 ∈ ℕ ∧ 𝐵 ∈ (ℤ≥‘𝐴))) → (𝐹‘𝐴) ⊆ (𝐹‘𝐵)) | ||
Theorem | volsup 24920* | The volume of the limit of an increasing sequence of measurable sets is the limit of the volumes. (Contributed by Mario Carneiro, 14-Aug-2014.) (Revised by Mario Carneiro, 11-Dec-2016.) |
⊢ ((𝐹:ℕ⟶dom vol ∧ ∀𝑛 ∈ ℕ (𝐹‘𝑛) ⊆ (𝐹‘(𝑛 + 1))) → (vol‘∪ ran 𝐹) = sup((vol “ ran 𝐹), ℝ*, < )) | ||
Theorem | iunmbl2 24921* | The measurable sets are closed under countable union. (Contributed by Mario Carneiro, 18-Mar-2014.) |
⊢ ((𝐴 ≼ ℕ ∧ ∀𝑛 ∈ 𝐴 𝐵 ∈ dom vol) → ∪ 𝑛 ∈ 𝐴 𝐵 ∈ dom vol) | ||
Theorem | ioombl1lem1 24922* | Lemma for ioombl1 24926. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → (𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝐻:ℕ⟶( ≤ ∩ (ℝ × ℝ)))) | ||
Theorem | ioombl1lem2 24923* | Lemma for ioombl1 24926. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ∈ ℝ) | ||
Theorem | ioombl1lem3 24924* | Lemma for ioombl1 24926. (Contributed by Mario Carneiro, 18-Aug-2014.) |
⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ ((𝜑 ∧ 𝑛 ∈ ℕ) → ((((abs ∘ − ) ∘ 𝐺)‘𝑛) + (((abs ∘ − ) ∘ 𝐻)‘𝑛)) = (((abs ∘ − ) ∘ 𝐹)‘𝑛)) | ||
Theorem | ioombl1lem4 24925* | Lemma for ioombl1 24926. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ 𝐵 = (𝐴(,)+∞) & ⊢ (𝜑 → 𝐴 ∈ ℝ) & ⊢ (𝜑 → 𝐸 ⊆ ℝ) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ 𝑈 = seq1( + , ((abs ∘ − ) ∘ 𝐻)) & ⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐹)) & ⊢ (𝜑 → sup(ran 𝑆, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝑃 = (1st ‘(𝐹‘𝑛)) & ⊢ 𝑄 = (2nd ‘(𝐹‘𝑛)) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ 〈if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄), 𝑄〉) & ⊢ 𝐻 = (𝑛 ∈ ℕ ↦ 〈𝑃, if(if(𝑃 ≤ 𝐴, 𝐴, 𝑃) ≤ 𝑄, if(𝑃 ≤ 𝐴, 𝐴, 𝑃), 𝑄)〉) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐵)) + (vol*‘(𝐸 ∖ 𝐵))) ≤ ((vol*‘𝐸) + 𝐶)) | ||
Theorem | ioombl1 24926 | An open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by Mario Carneiro, 25-Mar-2015.) |
⊢ (𝐴 ∈ ℝ* → (𝐴(,)+∞) ∈ dom vol) | ||
Theorem | icombl1 24927 | A closed unbounded-above interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ (𝐴 ∈ ℝ → (𝐴[,)+∞) ∈ dom vol) | ||
Theorem | icombl 24928 | A closed-below, open-above real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ*) → (𝐴[,)𝐵) ∈ dom vol) | ||
Theorem | ioombl 24929 | An open real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ (𝐴(,)𝐵) ∈ dom vol | ||
Theorem | iccmbl 24930 | A closed real interval is measurable. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ∈ dom vol) | ||
Theorem | iccvolcl 24931 | A closed real interval has finite volume. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴[,]𝐵)) ∈ ℝ) | ||
Theorem | ovolioo 24932 | The measure of an open interval. (Contributed by Mario Carneiro, 2-Sep-2014.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol*‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | volioo 24933 | The measure of an open interval. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵) → (vol‘(𝐴(,)𝐵)) = (𝐵 − 𝐴)) | ||
Theorem | ioovolcl 24934 | An open real interval has finite volume. (Contributed by Glauco Siliprandi, 29-Jun-2017.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (vol‘(𝐴(,)𝐵)) ∈ ℝ) | ||
Theorem | ovolfs2 24935 | Alternative expression for the interval length function. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐺 = ((abs ∘ − ) ∘ 𝐹) ⇒ ⊢ (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐺 = ((vol* ∘ (,)) ∘ 𝐹)) | ||
Theorem | ioorcl2 24936 | An open interval with finite volume has real endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (((𝐴(,)𝐵) ≠ ∅ ∧ (vol*‘(𝐴(,)𝐵)) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)) | ||
Theorem | ioorf 24937 | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ 𝐹:ran (,)⟶( ≤ ∩ (ℝ* × ℝ*)) | ||
Theorem | ioorval 24938* | Define a function from open intervals to their endpoints. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → (𝐹‘𝐴) = if(𝐴 = ∅, 〈0, 0〉, 〈inf(𝐴, ℝ*, < ), sup(𝐴, ℝ*, < )〉)) | ||
Theorem | ioorinv2 24939* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴(,)𝐵) ≠ ∅ → (𝐹‘(𝐴(,)𝐵)) = 〈𝐴, 𝐵〉) | ||
Theorem | ioorinv 24940* | The function 𝐹 is an "inverse" of sorts to the open interval function. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ (𝐴 ∈ ran (,) → ((,)‘(𝐹‘𝐴)) = 𝐴) | ||
Theorem | ioorcl 24941* | The function 𝐹 does not always return real numbers, but it does on intervals of finite volume. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by AV, 13-Sep-2020.) |
⊢ 𝐹 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝐴 ∈ ran (,) ∧ (vol*‘𝐴) ∈ ℝ) → (𝐹‘𝐴) ∈ ( ≤ ∩ (ℝ × ℝ))) | ||
Theorem | uniiccdif 24942 | A union of closed intervals differs from the equivalent union of open intervals by a nullset. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) ⇒ ⊢ (𝜑 → (∪ ran ((,) ∘ 𝐹) ⊆ ∪ ran ([,] ∘ 𝐹) ∧ (vol*‘(∪ ran ([,] ∘ 𝐹) ∖ ∪ ran ((,) ∘ 𝐹))) = 0)) | ||
Theorem | uniioovol 24943* | A disjoint union of open intervals has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 24918.) Lemma 565Ca of [Fremlin5] p. 213. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ((,) ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
Theorem | uniiccvol 24944* | An almost-disjoint union of closed intervals (disjoint interiors) has volume equal to the sum of the volume of the intervals. (This proof does not use countable choice, unlike voliun 24918.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → (vol*‘∪ ran ([,] ∘ 𝐹)) = sup(ran 𝑆, ℝ*, < )) | ||
Theorem | uniioombllem1 24945* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ∈ ℝ) | ||
Theorem | uniioombllem2a 24946* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 7-May-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (((𝜑 ∧ 𝐽 ∈ ℕ) ∧ 𝑧 ∈ ℕ) → (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽))) ∈ ran (,)) | ||
Theorem | uniioombllem2 24947* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 26-Mar-2015.) (Revised by Mario Carneiro, 11-Dec-2016.) (Revised by AV, 13-Sep-2020.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ 𝐻 = (𝑧 ∈ ℕ ↦ (((,)‘(𝐹‘𝑧)) ∩ ((,)‘(𝐺‘𝐽)))) & ⊢ 𝐾 = (𝑥 ∈ ran (,) ↦ if(𝑥 = ∅, 〈0, 0〉, 〈inf(𝑥, ℝ*, < ), sup(𝑥, ℝ*, < )〉)) ⇒ ⊢ ((𝜑 ∧ 𝐽 ∈ ℕ) → seq1( + , (vol* ∘ 𝐻)) ⇝ (vol*‘(((,)‘(𝐺‘𝐽)) ∩ 𝐴))) | ||
Theorem | uniioombllem3a 24948* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 8-May-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) ⇒ ⊢ (𝜑 → (𝐾 = ∪ 𝑗 ∈ (1...𝑀)((,)‘(𝐺‘𝑗)) ∧ (vol*‘𝐾) ∈ ℝ)) | ||
Theorem | uniioombllem3 24949* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) < (((vol*‘(𝐾 ∩ 𝐴)) + (vol*‘(𝐾 ∖ 𝐴))) + (𝐶 + 𝐶))) | ||
Theorem | uniioombllem4 24950* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹‘𝑖)) ∩ ((,)‘(𝐺‘𝑗)))) − (vol*‘(((,)‘(𝐺‘𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀)) & ⊢ 𝐿 = ∪ (((,) ∘ 𝐹) “ (1...𝑁)) ⇒ ⊢ (𝜑 → (vol*‘(𝐾 ∩ 𝐴)) ≤ ((vol*‘(𝐾 ∩ 𝐿)) + 𝐶)) | ||
Theorem | uniioombllem5 24951* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 25-Aug-2014.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) & ⊢ (𝜑 → 𝑀 ∈ ℕ) & ⊢ (𝜑 → (abs‘((𝑇‘𝑀) − sup(ran 𝑇, ℝ*, < ))) < 𝐶) & ⊢ 𝐾 = ∪ (((,) ∘ 𝐺) “ (1...𝑀)) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → ∀𝑗 ∈ (1...𝑀)(abs‘(Σ𝑖 ∈ (1...𝑁)(vol*‘(((,)‘(𝐹‘𝑖)) ∩ ((,)‘(𝐺‘𝑗)))) − (vol*‘(((,)‘(𝐺‘𝑗)) ∩ 𝐴)))) < (𝐶 / 𝑀)) & ⊢ 𝐿 = ∪ (((,) ∘ 𝐹) “ (1...𝑁)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶))) | ||
Theorem | uniioombllem6 24952* | Lemma for uniioombl 24953. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) & ⊢ 𝐴 = ∪ ran ((,) ∘ 𝐹) & ⊢ (𝜑 → (vol*‘𝐸) ∈ ℝ) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝐺:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → 𝐸 ⊆ ∪ ran ((,) ∘ 𝐺)) & ⊢ 𝑇 = seq1( + , ((abs ∘ − ) ∘ 𝐺)) & ⊢ (𝜑 → sup(ran 𝑇, ℝ*, < ) ≤ ((vol*‘𝐸) + 𝐶)) ⇒ ⊢ (𝜑 → ((vol*‘(𝐸 ∩ 𝐴)) + (vol*‘(𝐸 ∖ 𝐴))) ≤ ((vol*‘𝐸) + (4 · 𝐶))) | ||
Theorem | uniioombl 24953* | A disjoint union of open intervals is measurable. (This proof does not use countable choice, unlike iunmbl 24917.) Lemma 565Ca of [Fremlin5] p. 214. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → ∪ ran ((,) ∘ 𝐹) ∈ dom vol) | ||
Theorem | uniiccmbl 24954* | An almost-disjoint union of closed intervals is measurable. (This proof does not use countable choice, unlike iunmbl 24917.) (Contributed by Mario Carneiro, 25-Mar-2015.) |
⊢ (𝜑 → 𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ))) & ⊢ (𝜑 → Disj 𝑥 ∈ ℕ ((,)‘(𝐹‘𝑥))) & ⊢ 𝑆 = seq1( + , ((abs ∘ − ) ∘ 𝐹)) ⇒ ⊢ (𝜑 → ∪ ran ([,] ∘ 𝐹) ∈ dom vol) | ||
Theorem | dyadf 24955* | The function 𝐹 returns the endpoints of a dyadic rational covering of the real line. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ 𝐹:(ℤ × ℕ0)⟶( ≤ ∩ (ℝ × ℝ)) | ||
Theorem | dyadval 24956* | Value of the dyadic rational function 𝐹. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (𝐴𝐹𝐵) = 〈(𝐴 / (2↑𝐵)), ((𝐴 + 1) / (2↑𝐵))〉) | ||
Theorem | dyadovol 24957* | Volume of a dyadic rational interval. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ0) → (vol*‘([,]‘(𝐴𝐹𝐵))) = (1 / (2↑𝐵))) | ||
Theorem | dyadss 24958* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) (Proof shortened by Mario Carneiro, 26-Apr-2016.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) → 𝐷 ≤ 𝐶)) | ||
Theorem | dyaddisjlem 24959* | Lemma for dyaddisj 24960. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0 ∧ 𝐷 ∈ ℕ0)) ∧ 𝐶 ≤ 𝐷) → (([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷)) ∨ ([,]‘(𝐵𝐹𝐷)) ⊆ ([,]‘(𝐴𝐹𝐶)) ∨ (((,)‘(𝐴𝐹𝐶)) ∩ ((,)‘(𝐵𝐹𝐷))) = ∅)) | ||
Theorem | dyaddisj 24960* | Two closed dyadic rational intervals are either in a subset relationship or are almost disjoint (the interiors are disjoint). (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ∈ ran 𝐹 ∧ 𝐵 ∈ ran 𝐹) → (([,]‘𝐴) ⊆ ([,]‘𝐵) ∨ ([,]‘𝐵) ⊆ ([,]‘𝐴) ∨ (((,)‘𝐴) ∩ ((,)‘𝐵)) = ∅)) | ||
Theorem | dyadmaxlem 24961* | Lemma for dyadmax 24962. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ (𝜑 → 𝐴 ∈ ℤ) & ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 𝐶 ∈ ℕ0) & ⊢ (𝜑 → 𝐷 ∈ ℕ0) & ⊢ (𝜑 → ¬ 𝐷 < 𝐶) & ⊢ (𝜑 → ([,]‘(𝐴𝐹𝐶)) ⊆ ([,]‘(𝐵𝐹𝐷))) ⇒ ⊢ (𝜑 → (𝐴 = 𝐵 ∧ 𝐶 = 𝐷)) | ||
Theorem | dyadmax 24962* | Any nonempty set of dyadic rational intervals has a maximal element. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ ((𝐴 ⊆ ran 𝐹 ∧ 𝐴 ≠ ∅) → ∃𝑧 ∈ 𝐴 ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)) | ||
Theorem | dyadmbllem 24963* | Lemma for dyadmbl 24964. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ 𝐺 = {𝑧 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} & ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) ⇒ ⊢ (𝜑 → ∪ ([,] “ 𝐴) = ∪ ([,] “ 𝐺)) | ||
Theorem | dyadmbl 24964* | Any union of dyadic rational intervals is measurable. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) & ⊢ 𝐺 = {𝑧 ∈ 𝐴 ∣ ∀𝑤 ∈ 𝐴 (([,]‘𝑧) ⊆ ([,]‘𝑤) → 𝑧 = 𝑤)} & ⊢ (𝜑 → 𝐴 ⊆ ran 𝐹) ⇒ ⊢ (𝜑 → ∪ ([,] “ 𝐴) ∈ dom vol) | ||
Theorem | opnmbllem 24965* | Lemma for opnmbl 24966. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ 𝐹 = (𝑥 ∈ ℤ, 𝑦 ∈ ℕ0 ↦ 〈(𝑥 / (2↑𝑦)), ((𝑥 + 1) / (2↑𝑦))〉) ⇒ ⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | opnmbl 24966 | All open sets are measurable. This proof, via dyadmbl 24964 and uniioombl 24953, shows that it is possible to avoid choice for measurability of open sets and hence continuous functions, which extends the choice-free consequences of Lebesgue measure considerably farther than would otherwise be possible. (Contributed by Mario Carneiro, 26-Mar-2015.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | opnmblALT 24967 | All open sets are measurable. This alternative proof of opnmbl 24966 is significantly shorter, at the expense of invoking countable choice ax-cc 10371. (This was also the original proof before the current opnmbl 24966 was discovered.) (Contributed by Mario Carneiro, 17-Jun-2014.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ (𝐴 ∈ (topGen‘ran (,)) → 𝐴 ∈ dom vol) | ||
Theorem | subopnmbl 24968 | Sets which are open in a measurable subspace are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ 𝐽 = ((topGen‘ran (,)) ↾t 𝐴) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ 𝐽) → 𝐵 ∈ dom vol) | ||
Theorem | volsup2 24969* | The volume of 𝐴 is the supremum of the sequence vol*‘(𝐴 ∩ (-𝑛[,]𝑛)) of volumes of bounded sets. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ ∧ 𝐵 < (vol‘𝐴)) → ∃𝑛 ∈ ℕ 𝐵 < (vol‘(𝐴 ∩ (-𝑛[,]𝑛)))) | ||
Theorem | volcn 24970* | The function formed by restricting a measurable set to a closed interval with a varying endpoint produces an increasing continuous function on the reals. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (vol‘(𝐴 ∩ (𝐵[,]𝑥)))) ⇒ ⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℝ) → 𝐹 ∈ (ℝ–cn→ℝ)) | ||
Theorem | volivth 24971* | The Intermediate Value Theorem for the Lebesgue volume function. For any positive 𝐵 ≤ (vol‘𝐴), there is a measurable subset of 𝐴 whose volume is 𝐵. (Contributed by Mario Carneiro, 30-Aug-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ (0[,](vol‘𝐴))) → ∃𝑥 ∈ dom vol(𝑥 ⊆ 𝐴 ∧ (vol‘𝑥) = 𝐵)) | ||
Theorem | vitalilem1 24972* | Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) (Proof shortened by AV, 1-May-2021.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} ⇒ ⊢ ∼ Er (0[,]1) | ||
Theorem | vitalilem2 24973* | Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → (ran 𝐹 ⊆ (0[,]1) ∧ (0[,]1) ⊆ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ∧ ∪ 𝑚 ∈ ℕ (𝑇‘𝑚) ⊆ (-1[,]2))) | ||
Theorem | vitalilem3 24974* | Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ (𝜑 → Disj 𝑚 ∈ ℕ (𝑇‘𝑚)) | ||
Theorem | vitalilem4 24975* | Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (vol*‘(𝑇‘𝑚)) = 0) | ||
Theorem | vitalilem5 24976* | Lemma for vitali 24977. (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]1)) ∧ (𝑥 − 𝑦) ∈ ℚ)} & ⊢ 𝑆 = ((0[,]1) / ∼ ) & ⊢ (𝜑 → 𝐹 Fn 𝑆) & ⊢ (𝜑 → ∀𝑧 ∈ 𝑆 (𝑧 ≠ ∅ → (𝐹‘𝑧) ∈ 𝑧)) & ⊢ (𝜑 → 𝐺:ℕ–1-1-onto→(ℚ ∩ (-1[,]1))) & ⊢ 𝑇 = (𝑛 ∈ ℕ ↦ {𝑠 ∈ ℝ ∣ (𝑠 − (𝐺‘𝑛)) ∈ ran 𝐹}) & ⊢ (𝜑 → ¬ ran 𝐹 ∈ (𝒫 ℝ ∖ dom vol)) ⇒ ⊢ ¬ 𝜑 | ||
Theorem | vitali 24977 | If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014.) |
⊢ ( < We ℝ → dom vol ⊊ 𝒫 ℝ) | ||
Syntax | cmbf 24978 | Extend class notation with the class of measurable functions. |
class MblFn | ||
Syntax | citg1 24979 | Extend class notation with the Lebesgue integral for simple functions. |
class ∫1 | ||
Syntax | citg2 24980 | Extend class notation with the Lebesgue integral for nonnegative functions. |
class ∫2 | ||
Syntax | cibl 24981 | Extend class notation with the class of integrable functions. |
class 𝐿1 | ||
Syntax | citg 24982 | Extend class notation with the general Lebesgue integral. |
class ∫𝐴𝐵 d𝑥 | ||
Definition | df-mbf 24983* | Define the class of measurable functions on the reals. A real function is measurable if the preimage of every open interval is a measurable set (see ismbl 24890) and a complex function is measurable if the real and imaginary parts of the function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ MblFn = {𝑓 ∈ (ℂ ↑pm ℝ) ∣ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝑓) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝑓) “ 𝑥) ∈ dom vol)} | ||
Definition | df-itg1 24984* | Define the Lebesgue integral for simple functions. A simple function is a finite linear combination of indicator functions for finitely measurable sets, whose assigned value is the sum of the measures of the sets times their respective weights. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ∫1 = (𝑓 ∈ {𝑔 ∈ MblFn ∣ (𝑔:ℝ⟶ℝ ∧ ran 𝑔 ∈ Fin ∧ (vol‘(◡𝑔 “ (ℝ ∖ {0}))) ∈ ℝ)} ↦ Σ𝑥 ∈ (ran 𝑓 ∖ {0})(𝑥 · (vol‘(◡𝑓 “ {𝑥})))) | ||
Definition | df-itg2 24985* | Define the Lebesgue integral for nonnegative functions. A nonnegative function's integral is the supremum of the integrals of all simple functions that are less than the input function. Note that this may be +∞ for functions that take the value +∞ on a set of positive measure or functions that are bounded below by a positive number on a set of infinite measure. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ ∫2 = (𝑓 ∈ ((0[,]+∞) ↑m ℝ) ↦ sup({𝑥 ∣ ∃𝑔 ∈ dom ∫1(𝑔 ∘r ≤ 𝑓 ∧ 𝑥 = (∫1‘𝑔))}, ℝ*, < )) | ||
Definition | df-ibl 24986* | Define the class of integrable functions on the reals. A function is integrable if it is measurable and the integrals of the pieces of the function are all finite. (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ 𝐿1 = {𝑓 ∈ MblFn ∣ ∀𝑘 ∈ (0...3)(∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘((𝑓‘𝑥) / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ dom 𝑓 ∧ 0 ≤ 𝑦), 𝑦, 0))) ∈ ℝ} | ||
Definition | df-itg 24987* | Define the full Lebesgue integral, for complex-valued functions to ℝ. The syntax is designed to be suggestive of the standard notation for integrals. For example, our notation for the integral of 𝑥↑2 from 0 to 1 is ∫(0[,]1)(𝑥↑2) d𝑥 = (1 / 3). The only real function of this definition is to break the integral up into nonnegative real parts and send it off to df-itg2 24985 for further processing. Note that this definition cannot handle integrals which evaluate to infinity, because addition and multiplication are not currently defined on extended reals. (You can use df-itg2 24985 directly for this use-case.) (Contributed by Mario Carneiro, 28-Jun-2014.) |
⊢ ∫𝐴𝐵 d𝑥 = Σ𝑘 ∈ (0...3)((i↑𝑘) · (∫2‘(𝑥 ∈ ℝ ↦ ⦋(ℜ‘(𝐵 / (i↑𝑘))) / 𝑦⦌if((𝑥 ∈ 𝐴 ∧ 0 ≤ 𝑦), 𝑦, 0)))) | ||
Theorem | ismbf1 24988* | The predicate "𝐹 is a measurable function". This is more naturally stated for functions on the reals, see ismbf 24992 and ismbfcn 24993 for the decomposition of the real and imaginary parts. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn ↔ (𝐹 ∈ (ℂ ↑pm ℝ) ∧ ∀𝑥 ∈ ran (,)((◡(ℜ ∘ 𝐹) “ 𝑥) ∈ dom vol ∧ (◡(ℑ ∘ 𝐹) “ 𝑥) ∈ dom vol))) | ||
Theorem | mbff 24989 | A measurable function is a function into the complex numbers. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) | ||
Theorem | mbfdm 24990 | The domain of a measurable function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol) | ||
Theorem | mbfconstlem 24991 | Lemma for mbfconst 24997 and related theorems. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐶 ∈ ℝ) → (◡(𝐴 × {𝐶}) “ 𝐵) ∈ dom vol) | ||
Theorem | ismbf 24992* | The predicate "𝐹 is a measurable function". A function is measurable iff the preimages of all open intervals are measurable sets in the sense of ismbl 24890. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℝ → (𝐹 ∈ MblFn ↔ ∀𝑥 ∈ ran (,)(◡𝐹 “ 𝑥) ∈ dom vol)) | ||
Theorem | ismbfcn 24993 | A complex function is measurable iff the real and imaginary components of the function are measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐹:𝐴⟶ℂ → (𝐹 ∈ MblFn ↔ ((ℜ ∘ 𝐹) ∈ MblFn ∧ (ℑ ∘ 𝐹) ∈ MblFn))) | ||
Theorem | mbfima 24994 | Definitional property of a measurable function: the preimage of an open right-unbounded interval is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) → (◡𝐹 “ (𝐵(,)𝐶)) ∈ dom vol) | ||
Theorem | mbfimaicc 24995 | The preimage of any closed interval under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ (((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ) ∧ (𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ)) → (◡𝐹 “ (𝐵[,]𝐶)) ∈ dom vol) | ||
Theorem | mbfimasn 24996 | The preimage of a point under a measurable function is measurable. (Contributed by Mario Carneiro, 18-Jun-2014.) |
⊢ ((𝐹 ∈ MblFn ∧ 𝐹:𝐴⟶ℝ ∧ 𝐵 ∈ ℝ) → (◡𝐹 “ {𝐵}) ∈ dom vol) | ||
Theorem | mbfconst 24997 | A constant function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ ((𝐴 ∈ dom vol ∧ 𝐵 ∈ ℂ) → (𝐴 × {𝐵}) ∈ MblFn) | ||
Theorem | mbf0 24998 | The empty function is measurable. (Contributed by Brendan Leahy, 28-Mar-2018.) |
⊢ ∅ ∈ MblFn | ||
Theorem | mbfid 24999 | The identity function is measurable. (Contributed by Mario Carneiro, 17-Jun-2014.) |
⊢ (𝐴 ∈ dom vol → ( I ↾ 𝐴) ∈ MblFn) | ||
Theorem | mbfmptcl 25000* | Lemma for the MblFn predicate applied to a mapping operation. (Contributed by Mario Carneiro, 11-Aug-2014.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℂ) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |