| Metamath
Proof Explorer Theorem List (p. 250 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | phtpyhtpy 24901 | A path homotopy is a homotopy. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ (𝐹(II Htpy 𝐽)𝐺)) | ||
| Theorem | phtpycn 24902 | A path homotopy is a continuous function. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(PHtpy‘𝐽)𝐺) ⊆ ((II ×t II) Cn 𝐽)) | ||
| Theorem | phtpyi 24903 | Membership in the class of path homotopies between two continuous functions. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ ((𝜑 ∧ 𝐴 ∈ (0[,]1)) → ((0𝐻𝐴) = (𝐹‘0) ∧ (1𝐻𝐴) = (𝐹‘1))) | ||
| Theorem | phtpy01 24904 | Two path-homotopic paths have the same start and end point. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
| Theorem | isphtpyd 24905* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(II Htpy 𝐽)𝐺)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
| Theorem | isphtpy2d 24906* | Deduction for membership in the class of path homotopies. (Contributed by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ ((II ×t II) Cn 𝐽)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻0) = (𝐹‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (𝑠𝐻1) = (𝐺‘𝑠)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (0𝐻𝑠) = (𝐹‘0)) & ⊢ ((𝜑 ∧ 𝑠 ∈ (0[,]1)) → (1𝐻𝑠) = (𝐹‘1)) ⇒ ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) | ||
| Theorem | phtpycom 24907* | Given a homotopy from 𝐹 to 𝐺, produce a homotopy from 𝐺 to 𝐹. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ 𝐾 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝑥𝐻(1 − 𝑦))) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐺(PHtpy‘𝐽)𝐹)) | ||
| Theorem | phtpyid 24908* | A homotopy from a path to itself. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘𝑥)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐹(PHtpy‘𝐽)𝐹)) | ||
| Theorem | phtpyco2 24909 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 10-Mar-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐻 ∈ (𝐹(PHtpy‘𝐽)𝐺)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐻) ∈ ((𝑃 ∘ 𝐹)(PHtpy‘𝐾)(𝑃 ∘ 𝐺))) | ||
| Theorem | phtpycc 24910* | Concatenate two path homotopies. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ 𝑀 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑦 ≤ (1 / 2), (𝑥𝐾(2 · 𝑦)), (𝑥𝐿((2 · 𝑦) − 1)))) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐾 ∈ (𝐹(PHtpy‘𝐽)𝐺)) & ⊢ (𝜑 → 𝐿 ∈ (𝐺(PHtpy‘𝐽)𝐻)) ⇒ ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) | ||
| Definition | df-phtpc 24911* | Define the function which takes a topology and returns the path homotopy relation on that topology. Definition of [Hatcher] p. 25. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| ⊢ ≃ph = (𝑥 ∈ Top ↦ {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ (II Cn 𝑥) ∧ (𝑓(PHtpy‘𝑥)𝑔) ≠ ∅)}) | ||
| Theorem | phtpcrel 24912 | The path homotopy relation is a relation. (Contributed by Mario Carneiro, 7-Jun-2014.) (Revised by Mario Carneiro, 7-Aug-2014.) |
| ⊢ Rel ( ≃ph‘𝐽) | ||
| Theorem | isphtpc 24913 | The relation "is path homotopic to". (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ (𝐹( ≃ph‘𝐽)𝐺 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ 𝐺 ∈ (II Cn 𝐽) ∧ (𝐹(PHtpy‘𝐽)𝐺) ≠ ∅)) | ||
| Theorem | phtpcer 24914 | Path homotopy is an equivalence relation. Proposition 1.2 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 6-Jul-2015.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ( ≃ph‘𝐽) Er (II Cn 𝐽) | ||
| Theorem | phtpc01 24915 | Path homotopic paths have the same endpoints. (Contributed by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝐹( ≃ph‘𝐽)𝐺 → ((𝐹‘0) = (𝐺‘0) ∧ (𝐹‘1) = (𝐺‘1))) | ||
| Theorem | reparphti 24916* | Lemma for reparpht 24918. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) Avoid ax-mulf 11078. (Revised by GG, 16-Mar-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) & ⊢ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺‘𝑥)) + (𝑦 · 𝑥)))) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐹 ∘ 𝐺)(PHtpy‘𝐽)𝐹)) | ||
| Theorem | reparphtiOLD 24917* | Obsolete version of reparphti 24916 as of 9-Apr-2025. (Contributed by NM, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) & ⊢ 𝐻 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ (𝐹‘(((1 − 𝑦) · (𝐺‘𝑥)) + (𝑦 · 𝑥)))) ⇒ ⊢ (𝜑 → 𝐻 ∈ ((𝐹 ∘ 𝐺)(PHtpy‘𝐽)𝐹)) | ||
| Theorem | reparpht 24918 | Reparametrization lemma. The reparametrization of a path by any continuous map 𝐺:II⟶II with 𝐺(0) = 0 and 𝐺(1) = 1 is path-homotopic to the original path. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Feb-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn II)) & ⊢ (𝜑 → (𝐺‘0) = 0) & ⊢ (𝜑 → (𝐺‘1) = 1) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺)( ≃ph‘𝐽)𝐹) | ||
| Theorem | phtpcco2 24919 | Compose a path homotopy with a continuous map. (Contributed by Mario Carneiro, 6-Jul-2015.) |
| ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐺) & ⊢ (𝜑 → 𝑃 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝑃 ∘ 𝐹)( ≃ph‘𝐾)(𝑃 ∘ 𝐺)) | ||
| Syntax | cpco 24920 | Extend class notation with the concatenation operation for paths in a topological space. |
| class *𝑝 | ||
| Syntax | comi 24921 | Extend class notation with the loop space. |
| class Ω1 | ||
| Syntax | comn 24922 | Extend class notation with the higher loop spaces. |
| class Ω𝑛 | ||
| Syntax | cpi1 24923 | Extend class notation with the fundamental group. |
| class π1 | ||
| Syntax | cpin 24924 | Extend class notation with the higher homotopy groups. |
| class πn | ||
| Definition | df-pco 24925* | Define the concatenation of two paths in a topological space 𝐽. For simplicity of definition, we define it on all paths, not just those whose endpoints line up. Definition of [Hatcher] p. 26. Hatcher denotes path concatenation with a square dot; other authors, such as Munkres, use a star. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ *𝑝 = (𝑗 ∈ Top ↦ (𝑓 ∈ (II Cn 𝑗), 𝑔 ∈ (II Cn 𝑗) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1)))))) | ||
| Definition | df-om1 24926* | Define the loop space of a topological space, with a magma structure on it given by concatenation of loops. This structure is not a group, but the operation is compatible with homotopy, which allows the homotopy groups to be defined based on this operation. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ Ω1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ {〈(Base‘ndx), {𝑓 ∈ (II Cn 𝑗) ∣ ((𝑓‘0) = 𝑦 ∧ (𝑓‘1) = 𝑦)}〉, 〈(+g‘ndx), (*𝑝‘𝑗)〉, 〈(TopSet‘ndx), (𝑗 ↑ko II)〉}) | ||
| Definition | df-omn 24927* | Define the n-th iterated loop space of a topological space. Unlike Ω1 this is actually a pointed topological space, which is to say a tuple of a topological space (a member of TopSp, not Top) and a point in the space. Higher loop spaces select the constant loop at the point from the lower loop space for the distinguished point. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ Ω𝑛 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ seq0(((𝑥 ∈ V, 𝑝 ∈ V ↦ 〈((TopOpen‘(1st ‘𝑥)) Ω1 (2nd ‘𝑥)), ((0[,]1) × {(2nd ‘𝑥)})〉) ∘ 1st ), 〈{〈(Base‘ndx), ∪ 𝑗〉, 〈(TopSet‘ndx), 𝑗〉}, 𝑦〉)) | ||
| Definition | df-pi1 24928* | Define the fundamental group, whose operation is given by concatenation of homotopy classes of loops. Definition of [Hatcher] p. 26. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ π1 = (𝑗 ∈ Top, 𝑦 ∈ ∪ 𝑗 ↦ ((𝑗 Ω1 𝑦) /s ( ≃ph‘𝑗))) | ||
| Definition | df-pin 24929* | Define the n-th homotopy group, which is formed by taking the 𝑛-th loop space and forming the quotient under the relation of path homotopy equivalence in the base space of the 𝑛-th loop space, which is the 𝑛 − 1-th loop space. For 𝑛 = 0, since this is not well-defined we replace this relation with the path-connectedness relation, so that the 0-th homotopy group is the set of path components of 𝑋. (Since the 0-th loop space does not have a group operation, neither does the 0-th homotopy group, but the rest are genuine groups.) (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ πn = (𝑗 ∈ Top, 𝑝 ∈ ∪ 𝑗 ↦ (𝑛 ∈ ℕ0 ↦ ((1st ‘((𝑗 Ω𝑛 𝑝)‘𝑛)) /s if(𝑛 = 0, {〈𝑥, 𝑦〉 ∣ ∃𝑓 ∈ (II Cn 𝑗)((𝑓‘0) = 𝑥 ∧ (𝑓‘1) = 𝑦)}, ( ≃ph‘(TopOpen‘(1st ‘((𝑗 Ω𝑛 𝑝)‘(𝑛 − 1))))))))) | ||
| Theorem | pcofval 24930* | The value of the path concatenation function on a topological space. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ (*𝑝‘𝐽) = (𝑓 ∈ (II Cn 𝐽), 𝑔 ∈ (II Cn 𝐽) ↦ (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝑓‘(2 · 𝑥)), (𝑔‘((2 · 𝑥) − 1))))) | ||
| Theorem | pcoval 24931* | The concatenation of two paths. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 23-Aug-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), (𝐹‘(2 · 𝑥)), (𝐺‘((2 · 𝑥) − 1))))) | ||
| Theorem | pcovalg 24932 | Evaluate the concatenation of two paths. (Contributed by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = if(𝑋 ≤ (1 / 2), (𝐹‘(2 · 𝑋)), (𝐺‘((2 · 𝑋) − 1)))) | ||
| Theorem | pcoval1 24933 | Evaluate the concatenation of two paths on the first half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ (0[,](1 / 2))) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐹‘(2 · 𝑋))) | ||
| Theorem | pco0 24934 | The starting point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘0) = (𝐹‘0)) | ||
| Theorem | pco1 24935 | The ending point of a path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)‘1) = (𝐺‘1)) | ||
| Theorem | pcoval2 24936 | Evaluate the concatenation of two paths on the second half. (Contributed by Jeff Madsen, 15-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ ((1 / 2)[,]1)) → ((𝐹(*𝑝‘𝐽)𝐺)‘𝑋) = (𝐺‘((2 · 𝑋) − 1))) | ||
| Theorem | pcocn 24937 | The concatenation of two paths is a path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 7-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺) ∈ (II Cn 𝐽)) | ||
| Theorem | copco 24938 | The composition of a concatenation of paths with a continuous function. (Contributed by Mario Carneiro, 9-Jul-2015.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐻 ∈ (𝐽 Cn 𝐾)) ⇒ ⊢ (𝜑 → (𝐻 ∘ (𝐹(*𝑝‘𝐽)𝐺)) = ((𝐻 ∘ 𝐹)(*𝑝‘𝐾)(𝐻 ∘ 𝐺))) | ||
| Theorem | pcohtpylem 24939* | Lemma for pcohtpy 24940. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1), 𝑦 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), ((2 · 𝑥)𝑀𝑦), (((2 · 𝑥) − 1)𝑁𝑦))) & ⊢ (𝜑 → 𝑀 ∈ (𝐹(PHtpy‘𝐽)𝐻)) & ⊢ (𝜑 → 𝑁 ∈ (𝐺(PHtpy‘𝐽)𝐾)) ⇒ ⊢ (𝜑 → 𝑃 ∈ ((𝐹(*𝑝‘𝐽)𝐺)(PHtpy‘𝐽)(𝐻(*𝑝‘𝐽)𝐾))) | ||
| Theorem | pcohtpy 24940 | Homotopy invariance of path concatenation. (Contributed by Jeff Madsen, 15-Jun-2010.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → 𝐹( ≃ph‘𝐽)𝐻) & ⊢ (𝜑 → 𝐺( ≃ph‘𝐽)𝐾) ⇒ ⊢ (𝜑 → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)(𝐻(*𝑝‘𝐽)𝐾)) | ||
| Theorem | pcoptcl 24941 | A constant function is a path from 𝑌 to itself. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 19-Mar-2015.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → (𝑃 ∈ (II Cn 𝐽) ∧ (𝑃‘0) = 𝑌 ∧ (𝑃‘1) = 𝑌)) | ||
| Theorem | pcopt 24942 | Concatenation with a point does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌) → (𝑃(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝐹) | ||
| Theorem | pcopt2 24943 | Concatenation with a point does not affect homotopy class. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘1) = 𝑌) → (𝐹(*𝑝‘𝐽)𝑃)( ≃ph‘𝐽)𝐹) | ||
| Theorem | pcoass 24944* | Order of concatenation does not affect homotopy class. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
| ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐻 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘0)) & ⊢ (𝜑 → (𝐺‘1) = (𝐻‘0)) & ⊢ 𝑃 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 ≤ (1 / 2), if(𝑥 ≤ (1 / 4), (2 · 𝑥), (𝑥 + (1 / 4))), ((𝑥 / 2) + (1 / 2)))) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐺)(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)(𝐹(*𝑝‘𝐽)(𝐺(*𝑝‘𝐽)𝐻))) | ||
| Theorem | pcorevcl 24945* | Closure for a reversed path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺 ∈ (II Cn 𝐽) ∧ (𝐺‘0) = (𝐹‘1) ∧ (𝐺‘1) = (𝐹‘0))) | ||
| Theorem | pcorevlem 24946* | Lemma for pcorev 24947. Prove continuity of the homotopy function. (Contributed by Jeff Madsen, 11-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) & ⊢ 𝐻 = (𝑠 ∈ (0[,]1), 𝑡 ∈ (0[,]1) ↦ (𝐹‘if(𝑠 ≤ (1 / 2), (1 − ((1 − 𝑡) · (2 · 𝑠))), (1 − ((1 − 𝑡) · (1 − ((2 · 𝑠) − 1))))))) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐻 ∈ ((𝐺(*𝑝‘𝐽)𝐹)(PHtpy‘𝐽)𝑃) ∧ (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃)) | ||
| Theorem | pcorev 24947* | Concatenation with the reverse path. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘1)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐺(*𝑝‘𝐽)𝐹)( ≃ph‘𝐽)𝑃) | ||
| Theorem | pcorev2 24948* | Concatenation with the reverse path. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐺 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) ⇒ ⊢ (𝐹 ∈ (II Cn 𝐽) → (𝐹(*𝑝‘𝐽)𝐺)( ≃ph‘𝐽)𝑃) | ||
| Theorem | pcophtb 24949* | The path homotopy equivalence relation on two paths 𝐹, 𝐺 with the same start and end point can be written in terms of the loop 𝐹 − 𝐺 formed by concatenating 𝐹 with the inverse of 𝐺. Thus, all the homotopy information in ≃ph‘𝐽 is available if we restrict our attention to closed loops, as in the definition of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝐻 = (𝑥 ∈ (0[,]1) ↦ (𝐺‘(1 − 𝑥))) & ⊢ 𝑃 = ((0[,]1) × {(𝐹‘0)}) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐺 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = (𝐺‘0)) & ⊢ (𝜑 → (𝐹‘1) = (𝐺‘1)) ⇒ ⊢ (𝜑 → ((𝐹(*𝑝‘𝐽)𝐻)( ≃ph‘𝐽)𝑃 ↔ 𝐹( ≃ph‘𝐽)𝐺)) | ||
| Theorem | om1val 24950* | The definition of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) & ⊢ (𝜑 → + = (*𝑝‘𝐽)) & ⊢ (𝜑 → 𝐾 = (𝐽 ↑ko II)) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → 𝑂 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐾〉}) | ||
| Theorem | om1bas 24951* | The base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐵 = {𝑓 ∈ (II Cn 𝐽) ∣ ((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌)}) | ||
| Theorem | om1elbas 24952 | Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) | ||
| Theorem | om1addcl 24953 | Closure of the group operation of the loop space. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 5-Sep-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) & ⊢ (𝜑 → 𝐻 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐻(*𝑝‘𝐽)𝐾) ∈ 𝐵) | ||
| Theorem | om1plusg 24954 | The group operation (which isn't much more than a magma) of the loop space. (Contributed by Mario Carneiro, 11-Feb-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (*𝑝‘𝐽) = (+g‘𝑂)) | ||
| Theorem | om1tset 24955 | The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐽 ↑ko II) = (TopSet‘𝑂)) | ||
| Theorem | om1opn 24956 | The topology of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝐾 = (TopOpen‘𝑂) & ⊢ (𝜑 → 𝐵 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐾 = ((𝐽 ↑ko II) ↾t 𝐵)) | ||
| Theorem | pi1val 24957 | The definition of the fundamental group. (Contributed by Mario Carneiro, 11-Feb-2015.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) ⇒ ⊢ (𝜑 → 𝐺 = (𝑂 /s ( ≃ph‘𝐽))) | ||
| Theorem | pi1bas 24958 | The base set of the fundamental group of a topological space at a given base point. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → 𝐵 = (𝐾 / ( ≃ph‘𝐽))) | ||
| Theorem | pi1blem 24959 | Lemma for pi1buni 24960. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → ((( ≃ph‘𝐽) “ 𝐾) ⊆ 𝐾 ∧ 𝐾 ⊆ (II Cn 𝐽))) | ||
| Theorem | pi1buni 24960 | Another way to write the loop space base in terms of the base of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ (𝜑 → 𝐾 = (Base‘𝑂)) ⇒ ⊢ (𝜑 → ∪ 𝐵 = 𝐾) | ||
| Theorem | pi1bas2 24961 | The base set of the fundamental group, written self-referentially. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) ⇒ ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / ( ≃ph‘𝐽))) | ||
| Theorem | pi1eluni 24962 | Elementhood in the base set of the loop space. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐹 ∈ ∪ 𝐵 ↔ (𝐹 ∈ (II Cn 𝐽) ∧ (𝐹‘0) = 𝑌 ∧ (𝐹‘1) = 𝑌))) | ||
| Theorem | pi1bas3 24963 | The base set of the fundamental group. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) ⇒ ⊢ (𝜑 → 𝐵 = (∪ 𝐵 / 𝑅)) | ||
| Theorem | pi1cpbl 24964 | The group operation, loop concatenation, is compatible with homotopy equivalence. (Contributed by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐵 = (Base‘𝐺)) & ⊢ 𝑅 = (( ≃ph‘𝐽) ∩ (∪ 𝐵 × ∪ 𝐵)) & ⊢ 𝑂 = (𝐽 Ω1 𝑌) & ⊢ + = (+g‘𝑂) ⇒ ⊢ (𝜑 → ((𝑀𝑅𝑁 ∧ 𝑃𝑅𝑄) → (𝑀 + 𝑃)𝑅(𝑁 + 𝑄))) | ||
| Theorem | elpi1 24965* | The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → (𝐹 ∈ 𝐵 ↔ ∃𝑓 ∈ (II Cn 𝐽)(((𝑓‘0) = 𝑌 ∧ (𝑓‘1) = 𝑌) ∧ 𝐹 = [𝑓]( ≃ph‘𝐽)))) | ||
| Theorem | elpi1i 24966 | The elements of the fundamental group. (Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = 𝑌) & ⊢ (𝜑 → (𝐹‘1) = 𝑌) ⇒ ⊢ (𝜑 → [𝐹]( ≃ph‘𝐽) ∈ 𝐵) | ||
| Theorem | pi1addf 24967 | The group operation of π1 is a binary operation. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (𝜑 → + :(𝐵 × 𝐵)⟶𝐵) | ||
| Theorem | pi1addval 24968 | The concatenation of two path-homotopy classes in the fundamental group. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Jul-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ + = (+g‘𝐺) & ⊢ (𝜑 → 𝑀 ∈ ∪ 𝐵) & ⊢ (𝜑 → 𝑁 ∈ ∪ 𝐵) ⇒ ⊢ (𝜑 → ([𝑀]( ≃ph‘𝐽) + [𝑁]( ≃ph‘𝐽)) = [(𝑀(*𝑝‘𝐽)𝑁)]( ≃ph‘𝐽)) | ||
| Theorem | pi1grplem 24969 | Lemma for pi1grp 24970. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ (𝜑 → (𝐺 ∈ Grp ∧ [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺))) | ||
| Theorem | pi1grp 24970 | The fundamental group is a group. Proposition 1.3 of [Hatcher] p. 26. (Contributed by Jeff Madsen, 19-Jun-2010.) (Proof shortened by Mario Carneiro, 8-Jun-2014.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → 𝐺 ∈ Grp) | ||
| Theorem | pi1id 24971 | The identity element of the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 0 = ((0[,]1) × {𝑌}) ⇒ ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑌 ∈ 𝑋) → [ 0 ]( ≃ph‘𝐽) = (0g‘𝐺)) | ||
| Theorem | pi1inv 24972* | An inverse in the fundamental group. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 10-Aug-2015.) |
| ⊢ 𝐺 = (𝐽 π1 𝑌) & ⊢ 𝑁 = (invg‘𝐺) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘0) = 𝑌) & ⊢ (𝜑 → (𝐹‘1) = 𝑌) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → (𝑁‘[𝐹]( ≃ph‘𝐽)) = [𝐼]( ≃ph‘𝐽)) | ||
| Theorem | pi1xfrf 24973* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) ⇒ ⊢ (𝜑 → 𝐺:𝐵⟶(Base‘𝑄)) | ||
| Theorem | pi1xfrval 24974* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 12-Feb-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → 𝐼 ∈ (II Cn 𝐽)) & ⊢ (𝜑 → (𝐹‘1) = (𝐼‘0)) & ⊢ (𝜑 → (𝐼‘1) = (𝐹‘0)) & ⊢ (𝜑 → 𝐴 ∈ ∪ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘[𝐴]( ≃ph‘𝐽)) = [(𝐼(*𝑝‘𝐽)(𝐴(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)) | ||
| Theorem | pi1xfr 24975* | Given a path 𝐹 and its inverse 𝐼 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
| Theorem | pi1xfrcnvlem 24976* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → ◡𝐺 ⊆ 𝐻) | ||
| Theorem | pi1xfrcnv 24977* | Given a path 𝐹 between two basepoints, there is an induced group homomorphism on the fundamental groups. (Contributed by Mario Carneiro, 12-Feb-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) & ⊢ 𝐻 = ran (ℎ ∈ ∪ (Base‘𝑄) ↦ 〈[ℎ]( ≃ph‘𝐽), [(𝐹(*𝑝‘𝐽)(ℎ(*𝑝‘𝐽)𝐼))]( ≃ph‘𝐽)〉) ⇒ ⊢ (𝜑 → (◡𝐺 = 𝐻 ∧ ◡𝐺 ∈ (𝑄 GrpHom 𝑃))) | ||
| Theorem | pi1xfrgim 24978* | The mapping 𝐺 between fundamental groups is an isomorphism. (Contributed by Mario Carneiro, 12-Feb-2015.) |
| ⊢ 𝑃 = (𝐽 π1 (𝐹‘0)) & ⊢ 𝑄 = (𝐽 π1 (𝐹‘1)) & ⊢ 𝐵 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝐵 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐼(*𝑝‘𝐽)(𝑔(*𝑝‘𝐽)𝐹))]( ≃ph‘𝐽)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (II Cn 𝐽)) & ⊢ 𝐼 = (𝑥 ∈ (0[,]1) ↦ (𝐹‘(1 − 𝑥))) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpIso 𝑄)) | ||
| Theorem | pi1cof 24979* | Functionality of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺:𝑉⟶(Base‘𝑄)) | ||
| Theorem | pi1coval 24980* | The value of the loop transfer function on the equivalence class of a path. (Contributed by Mario Carneiro, 10-Aug-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ ((𝜑 ∧ 𝑇 ∈ ∪ 𝑉) → (𝐺‘[𝑇]( ≃ph‘𝐽)) = [(𝐹 ∘ 𝑇)]( ≃ph‘𝐾)) | ||
| Theorem | pi1coghm 24981* | The mapping 𝐺 between fundamental groups is a group homomorphism. (Contributed by Mario Carneiro, 10-Aug-2015.) (Revised by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑃 = (𝐽 π1 𝐴) & ⊢ 𝑄 = (𝐾 π1 𝐵) & ⊢ 𝑉 = (Base‘𝑃) & ⊢ 𝐺 = ran (𝑔 ∈ ∪ 𝑉 ↦ 〈[𝑔]( ≃ph‘𝐽), [(𝐹 ∘ 𝑔)]( ≃ph‘𝐾)〉) & ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐴 ∈ 𝑋) & ⊢ (𝜑 → (𝐹‘𝐴) = 𝐵) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝑃 GrpHom 𝑄)) | ||
| Syntax | cclm 24982 | Syntax for the class of subcomplex modules. |
| class ℂMod | ||
| Definition | df-clm 24983* | Define the class of subcomplex modules, which are left modules over a subring of the field of complex numbers ℂfld, which allows to use the complex addition, multiplication, etc. in theorems about subcomplex modules. Since the field of complex numbers is commutative and so are its subrings (see subrgcrng 20483), left modules over such subrings are the same as right modules, see rmodislmod 20856. Therefore, we drop the word "left" from "subcomplex left module". (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ ℂMod = {𝑤 ∈ LMod ∣ [(Scalar‘𝑤) / 𝑓][(Base‘𝑓) / 𝑘](𝑓 = (ℂfld ↾s 𝑘) ∧ 𝑘 ∈ (SubRing‘ℂfld))} | ||
| Theorem | isclm 24984 | A subcomplex module is a left module over a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod ↔ (𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld))) | ||
| Theorem | clmsca 24985 | The ring of scalars 𝐹 of a subcomplex module is the restriction of the field of complex numbers to the base set of 𝐹. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 = (ℂfld ↾s 𝐾)) | ||
| Theorem | clmsubrg 24986 | The base set of the ring of scalars of a subcomplex module is the base set of a subring of the field of complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐾 ∈ (SubRing‘ℂfld)) | ||
| Theorem | clmlmod 24987 | A subcomplex module is a left module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ LMod) | ||
| Theorem | clmgrp 24988 | A subcomplex module is an additive group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Grp) | ||
| Theorem | clmabl 24989 | A subcomplex module is an abelian group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ (𝑊 ∈ ℂMod → 𝑊 ∈ Abel) | ||
| Theorem | clmring 24990 | The scalar ring of a subcomplex module is a ring. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Ring) | ||
| Theorem | clmfgrp 24991 | The scalar ring of a subcomplex module is a group. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐹 ∈ Grp) | ||
| Theorem | clm0 24992 | The zero of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 0 = (0g‘𝐹)) | ||
| Theorem | clm1 24993 | The identity of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → 1 = (1r‘𝐹)) | ||
| Theorem | clmadd 24994 | The addition of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → + = (+g‘𝐹)) | ||
| Theorem | clmmul 24995 | The multiplication of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → · = (.r‘𝐹)) | ||
| Theorem | clmcj 24996 | The conjugation of the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ (𝑊 ∈ ℂMod → ∗ = (*𝑟‘𝐹)) | ||
| Theorem | isclmi 24997 | Reverse direction of isclm 24984. (Contributed by Mario Carneiro, 30-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) ⇒ ⊢ ((𝑊 ∈ LMod ∧ 𝐹 = (ℂfld ↾s 𝐾) ∧ 𝐾 ∈ (SubRing‘ℂfld)) → 𝑊 ∈ ℂMod) | ||
| Theorem | clmzss 24998 | The scalar ring of a subcomplex module contains the integers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → ℤ ⊆ 𝐾) | ||
| Theorem | clmsscn 24999 | The scalar ring of a subcomplex module is a subset of the complex numbers. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ (𝑊 ∈ ℂMod → 𝐾 ⊆ ℂ) | ||
| Theorem | clmsub 25000 | Subtraction in the scalar ring of a subcomplex module. (Contributed by Mario Carneiro, 16-Oct-2015.) |
| ⊢ 𝐹 = (Scalar‘𝑊) & ⊢ 𝐾 = (Base‘𝐹) ⇒ ⊢ ((𝑊 ∈ ℂMod ∧ 𝐴 ∈ 𝐾 ∧ 𝐵 ∈ 𝐾) → (𝐴 − 𝐵) = (𝐴(-g‘𝐹)𝐵)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |