MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scaf Structured version   Visualization version   GIF version

Definition df-scaf 20784
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 20782 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 3438 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1539 . . . . . 6 class 𝑔
7 csca 17182 . . . . . 6 class Scalar
86, 7cfv 6486 . . . . 5 class (Scalar‘𝑔)
9 cbs 17138 . . . . 5 class Base
108, 9cfv 6486 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 6486 . . . 4 class (Base‘𝑔)
124cv 1539 . . . . 5 class 𝑥
135cv 1539 . . . . 5 class 𝑦
14 cvsca 17183 . . . . . 6 class ·𝑠
156, 14cfv 6486 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 7353 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 7355 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 5176 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1540 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  scaffval  20801
  Copyright terms: Public domain W3C validator