MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scaf Structured version   Visualization version   GIF version

Definition df-scaf 20797
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 20795 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 3436 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1540 . . . . . 6 class 𝑔
7 csca 17164 . . . . . 6 class Scalar
86, 7cfv 6481 . . . . 5 class (Scalar‘𝑔)
9 cbs 17120 . . . . 5 class Base
108, 9cfv 6481 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 6481 . . . 4 class (Base‘𝑔)
124cv 1540 . . . . 5 class 𝑥
135cv 1540 . . . . 5 class 𝑦
14 cvsca 17165 . . . . . 6 class ·𝑠
156, 14cfv 6481 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 7346 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 7348 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 5172 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1541 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  scaffval  20814
  Copyright terms: Public domain W3C validator