MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scaf Structured version   Visualization version   GIF version

Definition df-scaf 20807
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 20805 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 3457 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1538 . . . . . 6 class 𝑔
7 csca 17261 . . . . . 6 class Scalar
86, 7cfv 6528 . . . . 5 class (Scalar‘𝑔)
9 cbs 17215 . . . . 5 class Base
108, 9cfv 6528 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 6528 . . . 4 class (Base‘𝑔)
124cv 1538 . . . . 5 class 𝑥
135cv 1538 . . . . 5 class 𝑦
14 cvsca 17262 . . . . . 6 class ·𝑠
156, 14cfv 6528 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 7400 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 7402 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 5199 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1539 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  scaffval  20824
  Copyright terms: Public domain W3C validator