MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scaf Structured version   Visualization version   GIF version

Definition df-scaf 20769
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 20767 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 3447 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1539 . . . . . 6 class 𝑔
7 csca 17223 . . . . . 6 class Scalar
86, 7cfv 6511 . . . . 5 class (Scalar‘𝑔)
9 cbs 17179 . . . . 5 class Base
108, 9cfv 6511 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 6511 . . . 4 class (Base‘𝑔)
124cv 1539 . . . . 5 class 𝑥
135cv 1539 . . . . 5 class 𝑦
14 cvsca 17224 . . . . . 6 class ·𝑠
156, 14cfv 6511 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 7387 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 7389 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 5188 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1540 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  scaffval  20786
  Copyright terms: Public domain W3C validator