MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-scaf Structured version   Visualization version   GIF version

Definition df-scaf 20135
Description: Define the functionalization of the ·𝑠 operator. This restricts the value of ·𝑠 to the stated domain, which is necessary when working with restricted structures, whose operations may be defined on a larger set than the true base. (Contributed by Mario Carneiro, 5-Oct-2015.)
Assertion
Ref Expression
df-scaf ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Distinct variable group:   𝑥,𝑔,𝑦

Detailed syntax breakdown of Definition df-scaf
StepHypRef Expression
1 cscaf 20133 . 2 class ·sf
2 vg . . 3 setvar 𝑔
3 cvv 3433 . . 3 class V
4 vx . . . 4 setvar 𝑥
5 vy . . . 4 setvar 𝑦
62cv 1538 . . . . . 6 class 𝑔
7 csca 16974 . . . . . 6 class Scalar
86, 7cfv 6437 . . . . 5 class (Scalar‘𝑔)
9 cbs 16921 . . . . 5 class Base
108, 9cfv 6437 . . . 4 class (Base‘(Scalar‘𝑔))
116, 9cfv 6437 . . . 4 class (Base‘𝑔)
124cv 1538 . . . . 5 class 𝑥
135cv 1538 . . . . 5 class 𝑦
14 cvsca 16975 . . . . . 6 class ·𝑠
156, 14cfv 6437 . . . . 5 class ( ·𝑠𝑔)
1612, 13, 15co 7284 . . . 4 class (𝑥( ·𝑠𝑔)𝑦)
174, 5, 10, 11, 16cmpo 7286 . . 3 class (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦))
182, 3, 17cmpt 5158 . 2 class (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
191, 18wceq 1539 1 wff ·sf = (𝑔 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑔)), 𝑦 ∈ (Base‘𝑔) ↦ (𝑥( ·𝑠𝑔)𝑦)))
Colors of variables: wff setvar class
This definition is referenced by:  scaffval  20150
  Copyright terms: Public domain W3C validator