HomeHome Metamath Proof Explorer
Theorem List (p. 205 of 480)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30435)
  Hilbert Space Explorer  Hilbert Space Explorer
(30436-31958)
  Users' Mathboxes  Users' Mathboxes
(31959-47941)
 

Theorem List for Metamath Proof Explorer - 20401-20500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrhmopp 20401 A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.)
(𝐹 ∈ (𝑅 RingHom 𝑆) β†’ 𝐹 ∈ ((opprβ€˜π‘…) RingHom (opprβ€˜π‘†)))
 
Theoremelrhmunit 20402 Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unitβ€˜π‘…)) β†’ (πΉβ€˜π΄) ∈ (Unitβ€˜π‘†))
 
Theoremrhmunitinv 20403 Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unitβ€˜π‘…)) β†’ (πΉβ€˜((invrβ€˜π‘…)β€˜π΄)) = ((invrβ€˜π‘†)β€˜(πΉβ€˜π΄)))
 
10.3.11  Nonzero rings and zero rings
 
Syntaxcnzr 20404 The class of nonzero rings.
class NzRing
 
Definitiondf-nzr 20405 A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.)
NzRing = {π‘Ÿ ∈ Ring ∣ (1rβ€˜π‘Ÿ) β‰  (0gβ€˜π‘Ÿ)}
 
Theoremisnzr 20406 Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 β‰  0 ))
 
Theoremnzrnz 20407 One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing β†’ 1 β‰  0 )
 
Theoremnzrring 20408 A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.)
(𝑅 ∈ NzRing β†’ 𝑅 ∈ Ring)
 
TheoremnzrringOLD 20409 Obsolete version of nzrring 20408 as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑅 ∈ NzRing β†’ 𝑅 ∈ Ring)
 
Theoremisnzr2 20410 Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o β‰Ό 𝐡))
 
Theoremisnzr2hash 20411 Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20410. (Contributed by AV, 14-Apr-2019.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (β™―β€˜π΅)))
 
Theoremopprnzr 20412 The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.)
𝑂 = (opprβ€˜π‘…)    β‡’   (𝑅 ∈ NzRing β†’ 𝑂 ∈ NzRing)
 
Theoremringelnzr 20413 A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.)
0 = (0gβ€˜π‘…)    &   π΅ = (Baseβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐡 βˆ– { 0 })) β†’ 𝑅 ∈ NzRing)
 
Theoremnzrunit 20414 A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.)
π‘ˆ = (Unitβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ NzRing ∧ 𝐴 ∈ π‘ˆ) β†’ 𝐴 β‰  0 )
 
Theorem0ringnnzr 20415 A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.)
(𝑅 ∈ Ring β†’ ((β™―β€˜(Baseβ€˜π‘…)) = 1 ↔ Β¬ 𝑅 ∈ NzRing))
 
Theorem0ring 20416 If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (β™―β€˜π΅) = 1) β†’ 𝐡 = { 0 })
 
Theorem0ringdif 20417 A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ (Ring βˆ– NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐡 = { 0 }))
 
Theorem0ringbas 20418 The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ (Ring βˆ– NzRing) β†’ 𝐡 = { 0 })
 
Theorem0ring01eq 20419 In a ring with only one element, i.e. a zero ring, the zero and the identity element are the same. (Contributed by AV, 14-Apr-2019.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ (β™―β€˜π΅) = 1) β†’ 0 = 1 )
 
Theorem01eq0ring 20420 If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 0 = 1 ) β†’ 𝐡 = { 0 })
 
Theorem01eq0ringOLD 20421 Obsolete version of 01eq0ring 20420 as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   ((𝑅 ∈ Ring ∧ 0 = 1 ) β†’ 𝐡 = { 0 })
 
Theorem0ring01eqbi 20422 In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by AV, 23-Jan-2020.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (𝐡 β‰ˆ 1o ↔ 1 = 0 ))
 
Theorem0ring1eq0 20423 In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝑅 ∈ (Ring βˆ– NzRing) β†’ 1 = 0 )
 
Theoremc0rhm 20424* The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘‡)    &   π» = (π‘₯ ∈ 𝐡 ↦ 0 )    β‡’   ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring βˆ– NzRing)) β†’ 𝐻 ∈ (𝑆 RingHom 𝑇))
 
Theoremc0rnghm 20425* The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘†)    &    0 = (0gβ€˜π‘‡)    &   π» = (π‘₯ ∈ 𝐡 ↦ 0 )    β‡’   ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring βˆ– NzRing)) β†’ 𝐻 ∈ (𝑆 RngHom 𝑇))
 
Theoremzrrnghm 20426* The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.)
𝐡 = (Baseβ€˜π‘‡)    &    0 = (0gβ€˜π‘†)    &   π» = (π‘₯ ∈ 𝐡 ↦ 0 )    β‡’   ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring βˆ– NzRing)) β†’ 𝐻 ∈ (𝑇 RngHom 𝑆))
 
10.3.12  Local rings
 
Syntaxclring 20427 Extend class notation with class of all local rings.
class LRing
 
Definitiondf-lring 20428* A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
LRing = {π‘Ÿ ∈ NzRing ∣ βˆ€π‘₯ ∈ (Baseβ€˜π‘Ÿ)βˆ€π‘¦ ∈ (Baseβ€˜π‘Ÿ)((π‘₯(+gβ€˜π‘Ÿ)𝑦) = (1rβ€˜π‘Ÿ) β†’ (π‘₯ ∈ (Unitβ€˜π‘Ÿ) ∨ 𝑦 ∈ (Unitβ€˜π‘Ÿ)))}
 
Theoremislring 20429* The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &    + = (+gβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘…)    β‡’   (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ βˆ€π‘₯ ∈ 𝐡 βˆ€π‘¦ ∈ 𝐡 ((π‘₯ + 𝑦) = 1 β†’ (π‘₯ ∈ π‘ˆ ∨ 𝑦 ∈ π‘ˆ))))
 
Theoremlringnzr 20430 A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.)
(𝑅 ∈ LRing β†’ 𝑅 ∈ NzRing)
 
Theoremlringring 20431 A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(𝑅 ∈ LRing β†’ 𝑅 ∈ Ring)
 
Theoremlringnz 20432 A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.)
1 = (1rβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    β‡’   (𝑅 ∈ LRing β†’ 1 β‰  0 )
 
Theoremlringuplu 20433 If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π‘…))    &   (πœ‘ β†’ π‘ˆ = (Unitβ€˜π‘…))    &   (πœ‘ β†’ + = (+gβ€˜π‘…))    &   (πœ‘ β†’ 𝑅 ∈ LRing)    &   (πœ‘ β†’ (𝑋 + π‘Œ) ∈ π‘ˆ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ π‘Œ ∈ 𝐡)    β‡’   (πœ‘ β†’ (𝑋 ∈ π‘ˆ ∨ π‘Œ ∈ π‘ˆ))
 
10.3.13  Subrings
 
10.3.13.1  Subrings of non-unital rings
 
Syntaxcsubrng 20434 Extend class notation with all subrings of a non-unital ring.
class SubRng
 
Definitiondf-subrng 20435* Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.)
SubRng = (𝑀 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ (𝑀 β†Ύs 𝑠) ∈ Rng})
 
Theoremissubrng 20436 The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) ↔ (𝑅 ∈ Rng ∧ (𝑅 β†Ύs 𝐴) ∈ Rng ∧ 𝐴 βŠ† 𝐡))
 
Theoremsubrngss 20437 A subring is a subset. (Contributed by AV, 14-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
 
Theoremsubrngid 20438 Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ Rng β†’ 𝐡 ∈ (SubRngβ€˜π‘…))
 
Theoremsubrngrng 20439 A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝑆 ∈ Rng)
 
Theoremsubrngrcl 20440 Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝑅 ∈ Rng)
 
Theoremsubrngsubg 20441 A subring is a subgroup. (Contributed by AV, 14-Feb-2025.)
(𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
 
Theoremsubrngringnsg 20442 A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.)
(𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝐴 ∈ (NrmSGrpβ€˜π‘…))
 
Theoremsubrngbas 20443 Base set of a subring structure. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
 
Theoremsubrng0 20444 A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    0 = (0gβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ 0 = (0gβ€˜π‘†))
 
Theoremsubrngacl 20445 A subring is closed under addition. (Contributed by AV, 14-Feb-2025.)
+ = (+gβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRngβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 + π‘Œ) ∈ 𝐴)
 
Theoremsubrngmcl 20446 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 20475. (Revised by AV, 14-Feb-2025.)
Β· = (.rβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRngβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 Β· π‘Œ) ∈ 𝐴)
 
Theoremissubrng2 20447* Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ Rng β†’ (𝐴 ∈ (SubRngβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
 
Theoremopprsubrng 20448 Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.)
𝑂 = (opprβ€˜π‘…)    β‡’   (SubRngβ€˜π‘…) = (SubRngβ€˜π‘‚)
 
Theoremsubrngint 20449 The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝑆 βŠ† (SubRngβ€˜π‘…) ∧ 𝑆 β‰  βˆ…) β†’ ∩ 𝑆 ∈ (SubRngβ€˜π‘…))
 
Theoremsubrngin 20450 The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.)
((𝐴 ∈ (SubRngβ€˜π‘…) ∧ 𝐡 ∈ (SubRngβ€˜π‘…)) β†’ (𝐴 ∩ 𝐡) ∈ (SubRngβ€˜π‘…))
 
Theoremsubrngmre 20451 The subrings of a non-unital ring are a Moore system. (Contributed by AV, 15-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ Rng β†’ (SubRngβ€˜π‘…) ∈ (Mooreβ€˜π΅))
 
Theoremsubsubrng 20452 A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ (𝐡 ∈ (SubRngβ€˜π‘†) ↔ (𝐡 ∈ (SubRngβ€˜π‘…) ∧ 𝐡 βŠ† 𝐴)))
 
Theoremsubsubrng2 20453 The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRngβ€˜π‘…) β†’ (SubRngβ€˜π‘†) = ((SubRngβ€˜π‘…) ∩ 𝒫 𝐴))
 
Theoremrhmimasubrnglem 20454* Lemma for rhmimasubrng 20455: Modified part of mhmima 18743. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRngβ€˜π‘…)) β†’ βˆ€π‘₯ ∈ (𝐹 β€œ 𝑋)βˆ€π‘¦ ∈ (𝐹 β€œ 𝑋)(π‘₯(+gβ€˜π‘)𝑦) ∈ (𝐹 β€œ 𝑋))
 
Theoremrhmimasubrng 20455 The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025.)
((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRngβ€˜π‘€)) β†’ (𝐹 β€œ 𝑋) ∈ (SubRngβ€˜π‘))
 
Theoremcntzsubrng 20456 Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025.)
𝐡 = (Baseβ€˜π‘…)    &   π‘€ = (mulGrpβ€˜π‘…)    &   π‘ = (Cntzβ€˜π‘€)    β‡’   ((𝑅 ∈ Rng ∧ 𝑆 βŠ† 𝐡) β†’ (π‘β€˜π‘†) ∈ (SubRngβ€˜π‘…))
 
Theoremsubrngpropd 20457* If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    β‡’   (πœ‘ β†’ (SubRngβ€˜πΎ) = (SubRngβ€˜πΏ))
 
10.3.13.2  Subrings of unital rings
 
Syntaxcsubrg 20458 Extend class notation with all subrings of a ring.
class SubRing
 
Syntaxcrgspn 20459 Extend class notation with span of a set of elements over a ring.
class RingSpan
 
Definitiondf-subrg 20460* Define a subring of a ring as a set of elements that is a ring in its own right and contains the multiplicative identity.

The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (β„€ Γ— {0}) of (β„€ Γ— β„€) (where multiplication is componentwise) contains the false identity ⟨1, 0⟩ which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)

SubRing = (𝑀 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ∣ ((𝑀 β†Ύs 𝑠) ∈ Ring ∧ (1rβ€˜π‘€) ∈ 𝑠)})
 
Definitiondf-rgspn 20461* The ring-span of a set of elements in a ring is the smallest subring which contains all of them. (Contributed by Stefan O'Rear, 7-Dec-2014.)
RingSpan = (𝑀 ∈ V ↦ (𝑠 ∈ 𝒫 (Baseβ€˜π‘€) ↦ ∩ {𝑑 ∈ (SubRingβ€˜π‘€) ∣ 𝑠 βŠ† 𝑑}))
 
Theoremissubrg 20462 The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) ↔ ((𝑅 ∈ Ring ∧ (𝑅 β†Ύs 𝐴) ∈ Ring) ∧ (𝐴 βŠ† 𝐡 ∧ 1 ∈ 𝐴)))
 
Theoremsubrgss 20463 A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 βŠ† 𝐡)
 
Theoremsubrgid 20464 Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ 𝐡 ∈ (SubRingβ€˜π‘…))
 
Theoremsubrgring 20465 A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑆 ∈ Ring)
 
Theoremsubrgcrng 20466 A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ 𝑆 ∈ CRing)
 
Theoremsubrgrcl 20467 Reverse closure for a subring predicate. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑅 ∈ Ring)
 
Theoremsubrgsubg 20468 A subring is a subgroup. (Contributed by Mario Carneiro, 3-Dec-2014.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubGrpβ€˜π‘…))
 
Theoremsubrgsubrng 20469 A subring of a unital ring is a subring of a non-unital ring. (Contributed by AV, 30-Mar-2025.)
(𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubRngβ€˜π‘…))
 
Theoremsubrg0 20470 A subring always has the same additive identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    0 = (0gβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 0 = (0gβ€˜π‘†))
 
Theoremsubrg1cl 20471 A subring contains the multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 ∈ 𝐴)
 
Theoremsubrgbas 20472 Base set of a subring structure. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 = (Baseβ€˜π‘†))
 
Theoremsubrg1 20473 A subring always has the same multiplicative identity. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    1 = (1rβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 1 = (1rβ€˜π‘†))
 
Theoremsubrgacl 20474 A subring is closed under addition. (Contributed by Mario Carneiro, 2-Dec-2014.)
+ = (+gβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 + π‘Œ) ∈ 𝐴)
 
Theoremsubrgmcl 20475 A subgroup is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) (Proof shortened by AV, 30-Mar-2025.)
Β· = (.rβ€˜π‘…)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ 𝐴) β†’ (𝑋 Β· π‘Œ) ∈ 𝐴)
 
Theoremsubrgsubm 20476 A subring is a submonoid of the multiplicative monoid. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐴 ∈ (SubMndβ€˜π‘€))
 
Theoremsubrgdvds 20477 If an element divides another in a subring, then it also divides the other in the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    βˆ₯ = (βˆ₯rβ€˜π‘…)    &   πΈ = (βˆ₯rβ€˜π‘†)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝐸 βŠ† βˆ₯ )
 
Theoremsubrguss 20478 A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑉 βŠ† π‘ˆ)
 
Theoremsubrginv 20479 A subring always has the same inversion function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   πΌ = (invrβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘†)    &   π½ = (invrβ€˜π‘†)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ π‘ˆ) β†’ (πΌβ€˜π‘‹) = (π½β€˜π‘‹))
 
Theoremsubrgdv 20480 A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &    / = (/rβ€˜π‘…)    &   π‘ˆ = (Unitβ€˜π‘†)    &   πΈ = (/rβ€˜π‘†)    β‡’   ((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝑋 ∈ 𝐴 ∧ π‘Œ ∈ π‘ˆ) β†’ (𝑋 / π‘Œ) = (π‘‹πΈπ‘Œ))
 
Theoremsubrgunit 20481 An element of a ring is a unit of a subring iff it is a unit of the parent ring and both it and its inverse are in the subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    &   πΌ = (invrβ€˜π‘…)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝑋 ∈ 𝑉 ↔ (𝑋 ∈ π‘ˆ ∧ 𝑋 ∈ 𝐴 ∧ (πΌβ€˜π‘‹) ∈ 𝐴)))
 
Theoremsubrgugrp 20482 The units of a subring form a subgroup of the unit group of the original ring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    &   π‘ˆ = (Unitβ€˜π‘…)    &   π‘‰ = (Unitβ€˜π‘†)    &   πΊ = ((mulGrpβ€˜π‘…) β†Ύs π‘ˆ)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ 𝑉 ∈ (SubGrpβ€˜πΊ))
 
Theoremissubrg2 20483* Characterize the subrings of a ring by closure properties. (Contributed by Mario Carneiro, 3-Dec-2014.)
𝐡 = (Baseβ€˜π‘…)    &    1 = (1rβ€˜π‘…)    &    Β· = (.rβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (𝐴 ∈ (SubRingβ€˜π‘…) ↔ (𝐴 ∈ (SubGrpβ€˜π‘…) ∧ 1 ∈ 𝐴 ∧ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 (π‘₯ Β· 𝑦) ∈ 𝐴)))
 
Theoremopprsubrg 20484 Being a subring is a symmetric property. (Contributed by Mario Carneiro, 6-Dec-2014.)
𝑂 = (opprβ€˜π‘…)    β‡’   (SubRingβ€˜π‘…) = (SubRingβ€˜π‘‚)
 
Theoremsubrgnzr 20485 A subring of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 15-Jun-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   ((𝑅 ∈ NzRing ∧ 𝐴 ∈ (SubRingβ€˜π‘…)) β†’ 𝑆 ∈ NzRing)
 
Theoremsubrgint 20486 The intersection of a nonempty collection of subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝑆 βŠ† (SubRingβ€˜π‘…) ∧ 𝑆 β‰  βˆ…) β†’ ∩ 𝑆 ∈ (SubRingβ€˜π‘…))
 
Theoremsubrgin 20487 The intersection of two subrings is a subring. (Contributed by Stefan O'Rear, 30-Nov-2014.) (Revised by Mario Carneiro, 7-Dec-2014.)
((𝐴 ∈ (SubRingβ€˜π‘…) ∧ 𝐡 ∈ (SubRingβ€˜π‘…)) β†’ (𝐴 ∩ 𝐡) ∈ (SubRingβ€˜π‘…))
 
Theoremsubrgmre 20488 The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝐡 = (Baseβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (SubRingβ€˜π‘…) ∈ (Mooreβ€˜π΅))
 
Theoremsubsubrg 20489 A subring of a subring is a subring. (Contributed by Mario Carneiro, 4-Dec-2014.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (𝐡 ∈ (SubRingβ€˜π‘†) ↔ (𝐡 ∈ (SubRingβ€˜π‘…) ∧ 𝐡 βŠ† 𝐴)))
 
Theoremsubsubrg2 20490 The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015.)
𝑆 = (𝑅 β†Ύs 𝐴)    β‡’   (𝐴 ∈ (SubRingβ€˜π‘…) β†’ (SubRingβ€˜π‘†) = ((SubRingβ€˜π‘…) ∩ 𝒫 𝐴))
 
Theoremissubrg3 20491 A subring is an additive subgroup which is also a multiplicative submonoid. (Contributed by Mario Carneiro, 7-Mar-2015.)
𝑀 = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ Ring β†’ (𝑆 ∈ (SubRingβ€˜π‘…) ↔ (𝑆 ∈ (SubGrpβ€˜π‘…) ∧ 𝑆 ∈ (SubMndβ€˜π‘€))))
 
Theoremresrhm 20492 Restriction of a ring homomorphism to a subring is a homomorphism. (Contributed by Mario Carneiro, 12-Mar-2015.)
π‘ˆ = (𝑆 β†Ύs 𝑋)    β‡’   ((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝑋 ∈ (SubRingβ€˜π‘†)) β†’ (𝐹 β†Ύ 𝑋) ∈ (π‘ˆ RingHom 𝑇))
 
Theoremresrhm2b 20493 Restriction of the codomain of a (ring) homomorphism. resghm2b 19149 analog. (Contributed by SN, 7-Feb-2025.)
π‘ˆ = (𝑇 β†Ύs 𝑋)    β‡’   ((𝑋 ∈ (SubRingβ€˜π‘‡) ∧ ran 𝐹 βŠ† 𝑋) β†’ (𝐹 ∈ (𝑆 RingHom 𝑇) ↔ 𝐹 ∈ (𝑆 RingHom π‘ˆ)))
 
Theoremrhmeql 20494 The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑆 RingHom 𝑇) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) β†’ dom (𝐹 ∩ 𝐺) ∈ (SubRingβ€˜π‘†))
 
Theoremrhmima 20495 The homomorphic image of a subring is a subring. (Contributed by Stefan O'Rear, 10-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRingβ€˜π‘€)) β†’ (𝐹 β€œ 𝑋) ∈ (SubRingβ€˜π‘))
 
Theoremrnrhmsubrg 20496 The range of a ring homomorphism is a subring. (Contributed by SN, 18-Nov-2023.)
(𝐹 ∈ (𝑀 RingHom 𝑁) β†’ ran 𝐹 ∈ (SubRingβ€˜π‘))
 
Theoremcntzsubr 20497 Centralizers in a ring are subrings. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.)
𝐡 = (Baseβ€˜π‘…)    &   π‘€ = (mulGrpβ€˜π‘…)    &   π‘ = (Cntzβ€˜π‘€)    β‡’   ((𝑅 ∈ Ring ∧ 𝑆 βŠ† 𝐡) β†’ (π‘β€˜π‘†) ∈ (SubRingβ€˜π‘…))
 
Theorempwsdiagrhm 20498* Diagonal homomorphism into a structure power (Rings). (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
π‘Œ = (𝑅 ↑s 𝐼)    &   π΅ = (Baseβ€˜π‘…)    &   πΉ = (π‘₯ ∈ 𝐡 ↦ (𝐼 Γ— {π‘₯}))    β‡’   ((𝑅 ∈ Ring ∧ 𝐼 ∈ π‘Š) β†’ 𝐹 ∈ (𝑅 RingHom π‘Œ))
 
Theoremsubrgpropd 20499* If two structures have the same group components (properties), they have the same set of subrings. (Contributed by Mario Carneiro, 9-Feb-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    β‡’   (πœ‘ β†’ (SubRingβ€˜πΎ) = (SubRingβ€˜πΏ))
 
Theoremrhmpropd 20500* Ring homomorphism depends only on the ring attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.)
(πœ‘ β†’ 𝐡 = (Baseβ€˜π½))    &   (πœ‘ β†’ 𝐢 = (Baseβ€˜πΎ))    &   (πœ‘ β†’ 𝐡 = (Baseβ€˜πΏ))    &   (πœ‘ β†’ 𝐢 = (Baseβ€˜π‘€))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(+gβ€˜π½)𝑦) = (π‘₯(+gβ€˜πΏ)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯(+gβ€˜πΎ)𝑦) = (π‘₯(+gβ€˜π‘€)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ 𝐡)) β†’ (π‘₯(.rβ€˜π½)𝑦) = (π‘₯(.rβ€˜πΏ)𝑦))    &   ((πœ‘ ∧ (π‘₯ ∈ 𝐢 ∧ 𝑦 ∈ 𝐢)) β†’ (π‘₯(.rβ€˜πΎ)𝑦) = (π‘₯(.rβ€˜π‘€)𝑦))    β‡’   (πœ‘ β†’ (𝐽 RingHom 𝐾) = (𝐿 RingHom 𝑀))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47900 480 47901-47941
  Copyright terms: Public domain < Previous  Next >