| Metamath
Proof Explorer Theorem List (p. 205 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30909) |
(30910-32432) |
(32433-49920) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-rim 20401* | Define the set of ring isomorphisms from 𝑟 to 𝑠. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingIso = (𝑟 ∈ V, 𝑠 ∈ V ↦ {𝑓 ∈ (𝑟 RingHom 𝑠) ∣ ◡𝑓 ∈ (𝑠 RingHom 𝑟)}) | ||
| Theorem | dfrhm2 20402* | The property of a ring homomorphism can be decomposed into separate homomorphic conditions for addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ RingHom = (𝑟 ∈ Ring, 𝑠 ∈ Ring ↦ ((𝑟 GrpHom 𝑠) ∩ ((mulGrp‘𝑟) MndHom (mulGrp‘𝑠)))) | ||
| Definition | df-ric 20403 | Define the ring isomorphism relation, analogous to df-gic 19182: Two (unital) rings are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic rings share all global ring properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by AV, 24-Dec-2019.) |
| ⊢ ≃𝑟 = (◡ RingIso “ (V ∖ 1o)) | ||
| Theorem | rhmrcl1 20404 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) | ||
| Theorem | rhmrcl2 20405 | Reverse closure of a ring homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) | ||
| Theorem | isrhm 20406 | A function is a ring homomorphism iff it preserves both addition and multiplication. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹 ∈ (𝑀 MndHom 𝑁)))) | ||
| Theorem | rhmmhm 20407 | A ring homomorphism is a homomorphism of multiplicative monoids. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑁 = (mulGrp‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑀 MndHom 𝑁)) | ||
| Theorem | rhmisrnghm 20408 | Each unital ring homomorphism is a non-unital ring homomorphism. (Contributed by AV, 29-Feb-2020.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 RngHom 𝑆)) | ||
| Theorem | rimrcl 20409 | Reverse closure for an isomorphism of rings. (Contributed by AV, 22-Oct-2019.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → (𝑅 ∈ V ∧ 𝑆 ∈ V)) | ||
| Theorem | isrim0 20410 | A ring isomorphism is a homomorphism whose converse is also a homomorphism. Compare isgim2 19187. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
| Theorem | rhmghm 20411 | A ring homomorphism is an additive group homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | rhmf 20412 | A ring homomorphism is a function. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹:𝐵⟶𝐶) | ||
| Theorem | rhmmul 20413 | A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) | ||
| Theorem | isrhm2d 20414* | Demonstration of ring homomorphism. (Contributed by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 GrpHom 𝑆)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | isrhmd 20415* | Demonstration of ring homomorphism. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) & ⊢ · = (.r‘𝑅) & ⊢ × = (.r‘𝑆) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑆 ∈ Ring) & ⊢ (𝜑 → (𝐹‘ 1 ) = 𝑁) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 · 𝑦)) = ((𝐹‘𝑥) × (𝐹‘𝑦))) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ + = (+g‘𝑅) & ⊢ ⨣ = (+g‘𝑆) & ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | rhm1 20416 | Ring homomorphisms are required to fix 1. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (1r‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘ 1 ) = 𝑁) | ||
| Theorem | idrhm 20417 | The identity homomorphism on a ring. (Contributed by AV, 14-Feb-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → ( I ↾ 𝐵) ∈ (𝑅 RingHom 𝑅)) | ||
| Theorem | rhmf1o 20418 | A ring homomorphism is bijective iff its converse is also a ring homomorphism. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹:𝐵–1-1-onto→𝐶 ↔ ◡𝐹 ∈ (𝑆 RingHom 𝑅))) | ||
| Theorem | isrim 20419 | An isomorphism of rings is a bijective homomorphism. (Contributed by AV, 22-Oct-2019.) Remove sethood antecedent. (Revised by SN, 12-Jan-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
| Theorem | rimf1o 20420 | An isomorphism of rings is a bijection. (Contributed by AV, 22-Oct-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | rimrhm 20421 | A ring isomorphism is a homomorphism. Compare gimghm 19186. (Contributed by AV, 22-Oct-2019.) Remove hypotheses. (Revised by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RingHom 𝑆)) | ||
| Theorem | rimgim 20422 | An isomorphism of rings is an isomorphism of their additive groups. (Contributed by AV, 24-Dec-2019.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 GrpIso 𝑆)) | ||
| Theorem | rimisrngim 20423 | Each unital ring isomorphism is a non-unital ring isomorphism. (Contributed by AV, 30-Mar-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝐹 ∈ (𝑅 RngIso 𝑆)) | ||
| Theorem | rhmfn 20424 | The mapping of two rings to the ring homomorphisms between them is a function. (Contributed by AV, 1-Mar-2020.) |
| ⊢ RingHom Fn (Ring × Ring) | ||
| Theorem | rhmval 20425 | The ring homomorphisms between two rings. (Contributed by AV, 1-Mar-2020.) |
| ⊢ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) → (𝑅 RingHom 𝑆) = ((𝑅 GrpHom 𝑆) ∩ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))) | ||
| Theorem | rhmco 20426 | The composition of ring homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 RingHom 𝑈) ∧ 𝐺 ∈ (𝑆 RingHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 RingHom 𝑈)) | ||
| Theorem | pwsco1rhm 20427* | Right composition with a function on the index sets yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑅 ↑s 𝐵) & ⊢ 𝐶 = (Base‘𝑍) & ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐶 ↦ (𝑔 ∘ 𝐹)) ∈ (𝑍 RingHom 𝑌)) | ||
| Theorem | pwsco2rhm 20428* | Left composition with a ring homomorphism yields a ring homomorphism of structure powers. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐴) & ⊢ 𝑍 = (𝑆 ↑s 𝐴) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) ⇒ ⊢ (𝜑 → (𝑔 ∈ 𝐵 ↦ (𝐹 ∘ 𝑔)) ∈ (𝑌 RingHom 𝑍)) | ||
| Theorem | brric 20429 | The relation "is isomorphic to" for (unital) rings. (Contributed by AV, 24-Dec-2019.) |
| ⊢ (𝑅 ≃𝑟 𝑆 ↔ (𝑅 RingIso 𝑆) ≠ ∅) | ||
| Theorem | brrici 20430 | Prove isomorphic by an explicit isomorphism. (Contributed by SN, 10-Jan-2025.) |
| ⊢ (𝐹 ∈ (𝑅 RingIso 𝑆) → 𝑅 ≃𝑟 𝑆) | ||
| Theorem | brric2 20431* | The relation "is isomorphic to" for (unital) rings. This theorem corresponds to Definition df-risc 38033 of the ring isomorphism relation in JM's mathbox. (Contributed by AV, 24-Dec-2019.) |
| ⊢ (𝑅 ≃𝑟 𝑆 ↔ ((𝑅 ∈ Ring ∧ 𝑆 ∈ Ring) ∧ ∃𝑓 𝑓 ∈ (𝑅 RingIso 𝑆))) | ||
| Theorem | ricgic 20432 | If two rings are (ring) isomorphic, their additive groups are (group) isomorphic. (Contributed by AV, 24-Dec-2019.) |
| ⊢ (𝑅 ≃𝑟 𝑆 → 𝑅 ≃𝑔 𝑆) | ||
| Theorem | rhmdvdsr 20433 | A ring homomorphism preserves the divisibility relation. (Contributed by Thierry Arnoux, 22-Oct-2017.) |
| ⊢ 𝑋 = (Base‘𝑅) & ⊢ ∥ = (∥r‘𝑅) & ⊢ / = (∥r‘𝑆) ⇒ ⊢ (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) ∧ 𝐴 ∥ 𝐵) → (𝐹‘𝐴) / (𝐹‘𝐵)) | ||
| Theorem | rhmopp 20434 | A ring homomorphism is also a ring homomorphism for the opposite rings. (Contributed by Thierry Arnoux, 27-Oct-2017.) |
| ⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr‘𝑅) RingHom (oppr‘𝑆))) | ||
| Theorem | elrhmunit 20435 | Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘𝐴) ∈ (Unit‘𝑆)) | ||
| Theorem | rhmunitinv 20436 | Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.) |
| ⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹‘((invr‘𝑅)‘𝐴)) = ((invr‘𝑆)‘(𝐹‘𝐴))) | ||
| Syntax | cnzr 20437 | The class of nonzero rings. |
| class NzRing | ||
| Definition | df-nzr 20438 | A nonzero or nontrivial ring is a ring with at least two values, or equivalently where 1 and 0 are different. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ NzRing = {𝑟 ∈ Ring ∣ (1r‘𝑟) ≠ (0g‘𝑟)} | ||
| Theorem | isnzr 20439 | Property of a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 ≠ 0 )) | ||
| Theorem | nzrnz 20440 | One and zero are different in a nonzero ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 1 ≠ 0 ) | ||
| Theorem | nzrring 20441 | A nonzero ring is a ring. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | ||
| Theorem | nzrringOLD 20442 | Obsolete version of nzrring 20441 as of 23-Feb-2025. (Contributed by Stefan O'Rear, 24-Feb-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑅 ∈ NzRing → 𝑅 ∈ Ring) | ||
| Theorem | isnzr2 20443 | Equivalent characterization of nonzero rings: they have at least two elements. (Contributed by Stefan O'Rear, 24-Feb-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 2o ≼ 𝐵)) | ||
| Theorem | isnzr2hash 20444 | Equivalent characterization of nonzero rings: they have at least two elements. Analogous to isnzr2 20443. (Contributed by AV, 14-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ (𝑅 ∈ Ring ∧ 1 < (♯‘𝐵))) | ||
| Theorem | nzrpropd 20445* | If two structures have the same components (properties), one is a nonzero ring iff the other one is. (Contributed by SN, 21-Jun-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (𝐾 ∈ NzRing ↔ 𝐿 ∈ NzRing)) | ||
| Theorem | opprnzrb 20446 | The opposite of a nonzero ring is nonzero, bidirectional form of opprnzr 20447. (Contributed by SN, 20-Jun-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing ↔ 𝑂 ∈ NzRing) | ||
| Theorem | opprnzr 20447 | The opposite of a nonzero ring is nonzero. (Contributed by Mario Carneiro, 17-Jun-2015.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (𝑅 ∈ NzRing → 𝑂 ∈ NzRing) | ||
| Theorem | ringelnzr 20448 | A ring is nonzero if it has a nonzero element. (Contributed by Stefan O'Rear, 6-Feb-2015.) (Revised by Mario Carneiro, 13-Jun-2015.) |
| ⊢ 0 = (0g‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (𝐵 ∖ { 0 })) → 𝑅 ∈ NzRing) | ||
| Theorem | nzrunit 20449 | A unit is nonzero in any nonzero ring. (Contributed by Mario Carneiro, 6-Oct-2015.) |
| ⊢ 𝑈 = (Unit‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ NzRing ∧ 𝐴 ∈ 𝑈) → 𝐴 ≠ 0 ) | ||
| Theorem | 0ringnnzr 20450 | A ring is a zero ring iff it is not a nonzero ring. (Contributed by AV, 14-Apr-2019.) |
| ⊢ (𝑅 ∈ Ring → ((♯‘(Base‘𝑅)) = 1 ↔ ¬ 𝑅 ∈ NzRing)) | ||
| Theorem | 0ring 20451 | If a ring has only one element, it is the zero ring. According to Wikipedia ("Zero ring", 14-Apr-2019, https://en.wikipedia.org/wiki/Zero_ring): "The zero ring, denoted {0} or simply 0, consists of the one-element set {0} with the operations + and * defined so that 0 + 0 = 0 and 0 * 0 = 0.". (Contributed by AV, 14-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐵 = { 0 }) | ||
| Theorem | 0ringdif 20452 | A zero ring is a ring which is not a nonzero ring. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) ↔ (𝑅 ∈ Ring ∧ 𝐵 = { 0 })) | ||
| Theorem | 0ringbas 20453 | The base set of a zero ring, a ring which is not a nonzero ring, is the singleton of the zero element. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 𝐵 = { 0 }) | ||
| Theorem | 0ring01eq 20454 | In a ring with only one element, i.e. a zero ring, the zero and the identity element are the same. (Contributed by AV, 14-Apr-2019.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 0 = 1 ) | ||
| Theorem | 01eq0ring 20455 | If the zero and the identity element of a ring are the same, the ring is the zero ring. (Contributed by AV, 16-Apr-2019.) (Proof shortened by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) | ||
| Theorem | 01eq0ringOLD 20456 | Obsolete version of 01eq0ring 20455 as of 23-Feb-2025. (Contributed by AV, 16-Apr-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 0 = 1 ) → 𝐵 = { 0 }) | ||
| Theorem | 0ring01eqbi 20457 | In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010.) (Revised by AV, 23-Jan-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝐵 ≈ 1o ↔ 1 = 0 )) | ||
| Theorem | 0ring1eq0 20458 | In a zero ring, a ring which is not a nonzero ring, the ring unity equals the zero element. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝑅 ∈ (Ring ∖ NzRing) → 1 = 0 ) | ||
| Theorem | c0rhm 20459* | The constant mapping to zero is a ring homomorphism from any ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Ring ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RingHom 𝑇)) | ||
| Theorem | c0rnghm 20460* | The constant mapping to zero is a non-unital ring homomorphism from any non-unital ring to the zero ring. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑆 RngHom 𝑇)) | ||
| Theorem | zrrnghm 20461* | The constant mapping to zero is a non-unital ring homomorphism from the zero ring to any non-unital ring. (Contributed by AV, 17-Apr-2020.) |
| ⊢ 𝐵 = (Base‘𝑇) & ⊢ 0 = (0g‘𝑆) & ⊢ 𝐻 = (𝑥 ∈ 𝐵 ↦ 0 ) ⇒ ⊢ ((𝑆 ∈ Rng ∧ 𝑇 ∈ (Ring ∖ NzRing)) → 𝐻 ∈ (𝑇 RngHom 𝑆)) | ||
| Theorem | nrhmzr 20462 | There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020.) |
| ⊢ ((𝑍 ∈ (Ring ∖ NzRing) ∧ 𝑅 ∈ NzRing) → (𝑍 RingHom 𝑅) = ∅) | ||
| Syntax | clring 20463 | Extend class notation with class of all local rings. |
| class LRing | ||
| Definition | df-lring 20464* | A local ring is a nonzero ring where for any two elements summing to one, at least one is invertible. Any field is a local ring; the ring of integers is an example of a ring which is not a local ring. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ LRing = {𝑟 ∈ NzRing ∣ ∀𝑥 ∈ (Base‘𝑟)∀𝑦 ∈ (Base‘𝑟)((𝑥(+g‘𝑟)𝑦) = (1r‘𝑟) → (𝑥 ∈ (Unit‘𝑟) ∨ 𝑦 ∈ (Unit‘𝑟)))} | ||
| Theorem | islring 20465* | The predicate "is a local ring". (Contributed by SN, 23-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑈 = (Unit‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing ↔ (𝑅 ∈ NzRing ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 ((𝑥 + 𝑦) = 1 → (𝑥 ∈ 𝑈 ∨ 𝑦 ∈ 𝑈)))) | ||
| Theorem | lringnzr 20466 | A local ring is a nonzero ring. (Contributed by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ NzRing) | ||
| Theorem | lringring 20467 | A local ring is a ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝑅 ∈ LRing → 𝑅 ∈ Ring) | ||
| Theorem | lringnz 20468 | A local ring is a nonzero ring. (Contributed by Jim Kingdon, 20-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ 1 = (1r‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ LRing → 1 ≠ 0 ) | ||
| Theorem | lringuplu 20469 | If the sum of two elements of a local ring is invertible, then at least one of the summands must be invertible. (Contributed by Jim Kingdon, 18-Feb-2025.) (Revised by SN, 23-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝑅)) & ⊢ (𝜑 → 𝑈 = (Unit‘𝑅)) & ⊢ (𝜑 → + = (+g‘𝑅)) & ⊢ (𝜑 → 𝑅 ∈ LRing) & ⊢ (𝜑 → (𝑋 + 𝑌) ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∈ 𝑈 ∨ 𝑌 ∈ 𝑈)) | ||
| Syntax | csubrng 20470 | Extend class notation with all subrings of a non-unital ring. |
| class SubRng | ||
| Definition | df-subrng 20471* | Define a subring of a non-unital ring as a set of elements that is a non-unital ring in its own right. In this section, a subring of a non-unital ring is simply called "subring", unless it causes any ambiguity with SubRing. (Contributed by AV, 14-Feb-2025.) |
| ⊢ SubRng = (𝑤 ∈ Rng ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ (𝑤 ↾s 𝑠) ∈ Rng}) | ||
| Theorem | issubrng 20472 | The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) ↔ (𝑅 ∈ Rng ∧ (𝑅 ↾s 𝐴) ∈ Rng ∧ 𝐴 ⊆ 𝐵)) | ||
| Theorem | subrngss 20473 | A subring is a subset. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrngid 20474 | Every non-unital ring is a subring of itself. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → 𝐵 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngrng 20475 | A subring is a non-unital ring. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑆 ∈ Rng) | ||
| Theorem | subrngrcl 20476 | Reverse closure for a subring predicate. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝑅 ∈ Rng) | ||
| Theorem | subrngsubg 20477 | A subring is a subgroup. (Contributed by AV, 14-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (SubGrp‘𝑅)) | ||
| Theorem | subrngringnsg 20478 | A subring is a normal subgroup. (Contributed by AV, 25-Feb-2025.) |
| ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 ∈ (NrmSGrp‘𝑅)) | ||
| Theorem | subrngbas 20479 | Base set of a subring structure. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 𝐴 = (Base‘𝑆)) | ||
| Theorem | subrng0 20480 | A subring always has the same additive identity. (Contributed by AV, 14-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → 0 = (0g‘𝑆)) | ||
| Theorem | subrngacl 20481 | A subring is closed under addition. (Contributed by AV, 14-Feb-2025.) |
| ⊢ + = (+g‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 + 𝑌) ∈ 𝐴) | ||
| Theorem | subrngmcl 20482 | A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014.) Generalization of subrgmcl 20509. (Revised by AV, 14-Feb-2025.) |
| ⊢ · = (.r‘𝑅) ⇒ ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → (𝑋 · 𝑌) ∈ 𝐴) | ||
| Theorem | issubrng2 20483* | Characterize the subrings of a ring by closure properties. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → (𝐴 ∈ (SubRng‘𝑅) ↔ (𝐴 ∈ (SubGrp‘𝑅) ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 · 𝑦) ∈ 𝐴))) | ||
| Theorem | opprsubrng 20484 | Being a subring is a symmetric property. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑂 = (oppr‘𝑅) ⇒ ⊢ (SubRng‘𝑅) = (SubRng‘𝑂) | ||
| Theorem | subrngint 20485 | The intersection of a nonempty collection of subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝑆 ⊆ (SubRng‘𝑅) ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngin 20486 | The intersection of two subrings is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ ((𝐴 ∈ (SubRng‘𝑅) ∧ 𝐵 ∈ (SubRng‘𝑅)) → (𝐴 ∩ 𝐵) ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngmre 20487 | The subrings of a non-unital ring are a Moore system. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Rng → (SubRng‘𝑅) ∈ (Moore‘𝐵)) | ||
| Theorem | subsubrng 20488 | A subring of a subring is a subring. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (𝐵 ∈ (SubRng‘𝑆) ↔ (𝐵 ∈ (SubRng‘𝑅) ∧ 𝐵 ⊆ 𝐴))) | ||
| Theorem | subsubrng2 20489 | The set of subrings of a subring are the smaller subrings. (Contributed by AV, 15-Feb-2025.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRng‘𝑅) → (SubRng‘𝑆) = ((SubRng‘𝑅) ∩ 𝒫 𝐴)) | ||
| Theorem | rhmimasubrnglem 20490* | Lemma for rhmimasubrng 20491: Modified part of mhmima 18743. (Contributed by Mario Carneiro, 10-Mar-2015.) (Revised by AV, 16-Feb-2025.) |
| ⊢ 𝑀 = (mulGrp‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑀 MndHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑅)) → ∀𝑥 ∈ (𝐹 “ 𝑋)∀𝑦 ∈ (𝐹 “ 𝑋)(𝑥(+g‘𝑁)𝑦) ∈ (𝐹 “ 𝑋)) | ||
| Theorem | rhmimasubrng 20491 | The homomorphic image of a subring is a subring. (Contributed by AV, 16-Feb-2025.) |
| ⊢ ((𝐹 ∈ (𝑀 RingHom 𝑁) ∧ 𝑋 ∈ (SubRng‘𝑀)) → (𝐹 “ 𝑋) ∈ (SubRng‘𝑁)) | ||
| Theorem | cntzsubrng 20492 | Centralizers in a non-unital ring are subrings. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑀 = (mulGrp‘𝑅) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑅 ∈ Rng ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubRng‘𝑅)) | ||
| Theorem | subrngpropd 20493* | If two structures have the same ring components (properties), they have the same set of subrings. (Contributed by AV, 17-Feb-2025.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(.r‘𝐾)𝑦) = (𝑥(.r‘𝐿)𝑦)) ⇒ ⊢ (𝜑 → (SubRng‘𝐾) = (SubRng‘𝐿)) | ||
| Syntax | csubrg 20494 | Extend class notation with all subrings of a ring. |
| class SubRing | ||
| Definition | df-subrg 20495* |
Define a subring of a ring as a set of elements that is a ring in its
own right and contains the multiplicative identity.
The additional constraint is necessary because the multiplicative identity of a ring, unlike the additive identity of a ring/group or the multiplicative identity of a field, cannot be identified by a local property. Thus, it is possible for a subset of a ring to be a ring while not containing the true identity if it contains a false identity. For instance, the subset (ℤ × {0}) of (ℤ × ℤ) (where multiplication is componentwise) contains the false identity 〈1, 0〉 which preserves every element of the subset and thus appears to be the identity of the subset, but is not the identity of the larger ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ SubRing = (𝑤 ∈ Ring ↦ {𝑠 ∈ 𝒫 (Base‘𝑤) ∣ ((𝑤 ↾s 𝑠) ∈ Ring ∧ (1r‘𝑤) ∈ 𝑠)}) | ||
| Theorem | issubrg 20496 | The subring predicate. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Proof shortened by AV, 12-Oct-2020.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 1 = (1r‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) ↔ ((𝑅 ∈ Ring ∧ (𝑅 ↾s 𝐴) ∈ Ring) ∧ (𝐴 ⊆ 𝐵 ∧ 1 ∈ 𝐴))) | ||
| Theorem | subrgss 20497 | A subring is a subset. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝐴 ⊆ 𝐵) | ||
| Theorem | subrgid 20498 | Every ring is a subring of itself. (Contributed by Stefan O'Rear, 30-Nov-2014.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → 𝐵 ∈ (SubRing‘𝑅)) | ||
| Theorem | subrgring 20499 | A subring is a ring. (Contributed by Stefan O'Rear, 27-Nov-2014.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ (𝐴 ∈ (SubRing‘𝑅) → 𝑆 ∈ Ring) | ||
| Theorem | subrgcrng 20500 | A subring of a commutative ring is a commutative ring. (Contributed by Mario Carneiro, 10-Jan-2015.) |
| ⊢ 𝑆 = (𝑅 ↾s 𝐴) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐴 ∈ (SubRing‘𝑅)) → 𝑆 ∈ CRing) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |