MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 20902
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffval = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 fveq2 6922 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2798 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6926 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6eqtr4di 2798 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6922 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
9 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
108, 9eqtr4di 2798 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
11 fveq2 6922 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
12 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1311, 12eqtr4di 2798 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1413oveqd 7467 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
157, 10, 14mpoeq123dv 7527 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
16 df-scaf 20885 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
176fvexi 6936 . . . . 5 𝐾 ∈ V
189fvexi 6936 . . . . 5 𝐵 ∈ V
1912fvexi 6936 . . . . . . 7 · ∈ V
2019rnex 7952 . . . . . 6 ran · ∈ V
21 p0ex 5402 . . . . . 6 {∅} ∈ V
2220, 21unex 7781 . . . . 5 (ran · ∪ {∅}) ∈ V
23 df-ov 7453 . . . . . . 7 (𝑥 · 𝑦) = ( · ‘⟨𝑥, 𝑦⟩)
24 fvrn0 6952 . . . . . . 7 ( · ‘⟨𝑥, 𝑦⟩) ∈ (ran · ∪ {∅})
2523, 24eqeltri 2840 . . . . . 6 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2625rgen2w 3072 . . . . 5 𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2717, 18, 22, 26mpoexw 8121 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V
2815, 16, 27fvmpt 7031 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
29 fvprc 6914 . . . 4 𝑊 ∈ V → ( ·sf𝑊) = ∅)
30 fvprc 6914 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
319, 30eqtrid 2792 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
3231olcd 873 . . . . 5 𝑊 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7535 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3432, 33syl 17 . . . 4 𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3529, 34eqtr4d 2783 . . 3 𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
3628, 35pm2.61i 182 . 2 ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
371, 36eqtri 2768 1 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 846   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  c0 4352  {csn 4648  cop 4654  ran crn 5701  cfv 6575  (class class class)co 7450  cmpo 7452  Basecbs 17260  Scalarcsca 17316   ·𝑠 cvsca 17317   ·sf cscaf 20883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7772
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-fv 6583  df-ov 7453  df-oprab 7454  df-mpo 7455  df-1st 8032  df-2nd 8033  df-scaf 20885
This theorem is referenced by:  scafval  20903  scafeq  20904  scaffn  20905  lmodscaf  20906  rlmscaf  21239
  Copyright terms: Public domain W3C validator