MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 20752
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
scaffval.s Β· = ( ·𝑠 β€˜π‘Š)
Assertion
Ref Expression
scaffval βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦   π‘₯, Β· ,𝑦   π‘₯,π‘Š,𝑦
Allowed substitution hints:   βˆ™ (π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 βˆ™ = ( Β·sf β€˜π‘Š)
2 fveq2 6891 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
42, 3eqtr4di 2785 . . . . . . 7 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
54fveq2d 6895 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜πΉ))
6 scaffval.k . . . . . 6 𝐾 = (Baseβ€˜πΉ)
75, 6eqtr4di 2785 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = 𝐾)
8 fveq2 6891 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
9 scaffval.b . . . . . 6 𝐡 = (Baseβ€˜π‘Š)
108, 9eqtr4di 2785 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝐡)
11 fveq2 6891 . . . . . . 7 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
12 scaffval.s . . . . . . 7 Β· = ( ·𝑠 β€˜π‘Š)
1311, 12eqtr4di 2785 . . . . . 6 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
1413oveqd 7431 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) = (π‘₯ Β· 𝑦))
157, 10, 14mpoeq123dv 7489 . . . 4 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
16 df-scaf 20735 . . . 4 Β·sf = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)))
176fvexi 6905 . . . . 5 𝐾 ∈ V
189fvexi 6905 . . . . 5 𝐡 ∈ V
1912fvexi 6905 . . . . . . 7 Β· ∈ V
2019rnex 7912 . . . . . 6 ran Β· ∈ V
21 p0ex 5378 . . . . . 6 {βˆ…} ∈ V
2220, 21unex 7742 . . . . 5 (ran Β· βˆͺ {βˆ…}) ∈ V
23 df-ov 7417 . . . . . . 7 (π‘₯ Β· 𝑦) = ( Β· β€˜βŸ¨π‘₯, π‘¦βŸ©)
24 fvrn0 6921 . . . . . . 7 ( Β· β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (ran Β· βˆͺ {βˆ…})
2523, 24eqeltri 2824 . . . . . 6 (π‘₯ Β· 𝑦) ∈ (ran Β· βˆͺ {βˆ…})
2625rgen2w 3061 . . . . 5 βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯ Β· 𝑦) ∈ (ran Β· βˆͺ {βˆ…})
2717, 18, 22, 26mpoexw 8077 . . . 4 (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) ∈ V
2815, 16, 27fvmpt 6999 . . 3 (π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
29 fvprc 6883 . . . 4 (Β¬ π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = βˆ…)
30 fvprc 6883 . . . . . . 7 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
319, 30eqtrid 2779 . . . . . 6 (Β¬ π‘Š ∈ V β†’ 𝐡 = βˆ…)
3231olcd 873 . . . . 5 (Β¬ π‘Š ∈ V β†’ (𝐾 = βˆ… ∨ 𝐡 = βˆ…))
33 0mpo0 7497 . . . . 5 ((𝐾 = βˆ… ∨ 𝐡 = βˆ…) β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) = βˆ…)
3432, 33syl 17 . . . 4 (Β¬ π‘Š ∈ V β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) = βˆ…)
3529, 34eqtr4d 2770 . . 3 (Β¬ π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
3628, 35pm2.61i 182 . 2 ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
371, 36eqtri 2755 1 βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 846   = wceq 1534   ∈ wcel 2099  Vcvv 3469   βˆͺ cun 3942  βˆ…c0 4318  {csn 4624  βŸ¨cop 4630  ran crn 5673  β€˜cfv 6542  (class class class)co 7414   ∈ cmpo 7416  Basecbs 17171  Scalarcsca 17227   ·𝑠 cvsca 17228   Β·sf cscaf 20733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-fv 6550  df-ov 7417  df-oprab 7418  df-mpo 7419  df-1st 7987  df-2nd 7988  df-scaf 20735
This theorem is referenced by:  scafval  20753  scafeq  20754  scaffn  20755  lmodscaf  20756  rlmscaf  21089
  Copyright terms: Public domain W3C validator