MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 20767
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐡 = (Baseβ€˜π‘Š)
scaffval.f 𝐹 = (Scalarβ€˜π‘Š)
scaffval.k 𝐾 = (Baseβ€˜πΉ)
scaffval.a βˆ™ = ( Β·sf β€˜π‘Š)
scaffval.s Β· = ( ·𝑠 β€˜π‘Š)
Assertion
Ref Expression
scaffval βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
Distinct variable groups:   π‘₯,𝑦,𝐡   π‘₯,𝐾,𝑦   π‘₯, Β· ,𝑦   π‘₯,π‘Š,𝑦
Allowed substitution hints:   βˆ™ (π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑀 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 βˆ™ = ( Β·sf β€˜π‘Š)
2 fveq2 6894 . . . . . . . 8 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = (Scalarβ€˜π‘Š))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalarβ€˜π‘Š)
42, 3eqtr4di 2783 . . . . . . 7 (𝑀 = π‘Š β†’ (Scalarβ€˜π‘€) = 𝐹)
54fveq2d 6898 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = (Baseβ€˜πΉ))
6 scaffval.k . . . . . 6 𝐾 = (Baseβ€˜πΉ)
75, 6eqtr4di 2783 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜(Scalarβ€˜π‘€)) = 𝐾)
8 fveq2 6894 . . . . . 6 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = (Baseβ€˜π‘Š))
9 scaffval.b . . . . . 6 𝐡 = (Baseβ€˜π‘Š)
108, 9eqtr4di 2783 . . . . 5 (𝑀 = π‘Š β†’ (Baseβ€˜π‘€) = 𝐡)
11 fveq2 6894 . . . . . . 7 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = ( ·𝑠 β€˜π‘Š))
12 scaffval.s . . . . . . 7 Β· = ( ·𝑠 β€˜π‘Š)
1311, 12eqtr4di 2783 . . . . . 6 (𝑀 = π‘Š β†’ ( ·𝑠 β€˜π‘€) = Β· )
1413oveqd 7434 . . . . 5 (𝑀 = π‘Š β†’ (π‘₯( ·𝑠 β€˜π‘€)𝑦) = (π‘₯ Β· 𝑦))
157, 10, 14mpoeq123dv 7493 . . . 4 (𝑀 = π‘Š β†’ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
16 df-scaf 20750 . . . 4 Β·sf = (𝑀 ∈ V ↦ (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘€)), 𝑦 ∈ (Baseβ€˜π‘€) ↦ (π‘₯( ·𝑠 β€˜π‘€)𝑦)))
176fvexi 6908 . . . . 5 𝐾 ∈ V
189fvexi 6908 . . . . 5 𝐡 ∈ V
1912fvexi 6908 . . . . . . 7 Β· ∈ V
2019rnex 7916 . . . . . 6 ran Β· ∈ V
21 p0ex 5383 . . . . . 6 {βˆ…} ∈ V
2220, 21unex 7747 . . . . 5 (ran Β· βˆͺ {βˆ…}) ∈ V
23 df-ov 7420 . . . . . . 7 (π‘₯ Β· 𝑦) = ( Β· β€˜βŸ¨π‘₯, π‘¦βŸ©)
24 fvrn0 6924 . . . . . . 7 ( Β· β€˜βŸ¨π‘₯, π‘¦βŸ©) ∈ (ran Β· βˆͺ {βˆ…})
2523, 24eqeltri 2821 . . . . . 6 (π‘₯ Β· 𝑦) ∈ (ran Β· βˆͺ {βˆ…})
2625rgen2w 3056 . . . . 5 βˆ€π‘₯ ∈ 𝐾 βˆ€π‘¦ ∈ 𝐡 (π‘₯ Β· 𝑦) ∈ (ran Β· βˆͺ {βˆ…})
2717, 18, 22, 26mpoexw 8081 . . . 4 (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) ∈ V
2815, 16, 27fvmpt 7002 . . 3 (π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
29 fvprc 6886 . . . 4 (Β¬ π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = βˆ…)
30 fvprc 6886 . . . . . . 7 (Β¬ π‘Š ∈ V β†’ (Baseβ€˜π‘Š) = βˆ…)
319, 30eqtrid 2777 . . . . . 6 (Β¬ π‘Š ∈ V β†’ 𝐡 = βˆ…)
3231olcd 872 . . . . 5 (Β¬ π‘Š ∈ V β†’ (𝐾 = βˆ… ∨ 𝐡 = βˆ…))
33 0mpo0 7501 . . . . 5 ((𝐾 = βˆ… ∨ 𝐡 = βˆ…) β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) = βˆ…)
3432, 33syl 17 . . . 4 (Β¬ π‘Š ∈ V β†’ (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)) = βˆ…)
3529, 34eqtr4d 2768 . . 3 (Β¬ π‘Š ∈ V β†’ ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦)))
3628, 35pm2.61i 182 . 2 ( Β·sf β€˜π‘Š) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
371, 36eqtri 2753 1 βˆ™ = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ (π‘₯ Β· 𝑦))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   ∨ wo 845   = wceq 1533   ∈ wcel 2098  Vcvv 3463   βˆͺ cun 3943  βˆ…c0 4323  {csn 4629  βŸ¨cop 4635  ran crn 5678  β€˜cfv 6547  (class class class)co 7417   ∈ cmpo 7419  Basecbs 17179  Scalarcsca 17235   ·𝑠 cvsca 17236   Β·sf cscaf 20748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-1st 7992  df-2nd 7993  df-scaf 20750
This theorem is referenced by:  scafval  20768  scafeq  20769  scaffn  20770  lmodscaf  20771  rlmscaf  21104
  Copyright terms: Public domain W3C validator