MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 19644
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffval = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 fveq2 6663 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3syl6eqr 2872 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6667 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6syl6eqr 2872 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6663 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
9 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
108, 9syl6eqr 2872 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
11 fveq2 6663 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
12 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1311, 12syl6eqr 2872 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1413oveqd 7165 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
157, 10, 14mpoeq123dv 7221 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
16 df-scaf 19629 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
176fvexi 6677 . . . . 5 𝐾 ∈ V
189fvexi 6677 . . . . 5 𝐵 ∈ V
1912fvexi 6677 . . . . . . 7 · ∈ V
2019rnex 7609 . . . . . 6 ran · ∈ V
21 p0ex 5275 . . . . . 6 {∅} ∈ V
2220, 21unex 7461 . . . . 5 (ran · ∪ {∅}) ∈ V
23 df-ov 7151 . . . . . . 7 (𝑥 · 𝑦) = ( · ‘⟨𝑥, 𝑦⟩)
24 fvrn0 6691 . . . . . . 7 ( · ‘⟨𝑥, 𝑦⟩) ∈ (ran · ∪ {∅})
2523, 24eqeltri 2907 . . . . . 6 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2625rgen2w 3149 . . . . 5 𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2717, 18, 22, 26mpoexw 7768 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V
2815, 16, 27fvmpt 6761 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
29 fvprc 6656 . . . 4 𝑊 ∈ V → ( ·sf𝑊) = ∅)
30 fvprc 6656 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
319, 30syl5eq 2866 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
3231olcd 872 . . . . 5 𝑊 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7229 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3432, 33syl 17 . . . 4 𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3529, 34eqtr4d 2857 . . 3 𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
3628, 35pm2.61i 184 . 2 ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
371, 36eqtri 2842 1 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 843   = wceq 1530  wcel 2107  Vcvv 3493  cun 3932  c0 4289  {csn 4559  cop 4565  ran crn 5549  cfv 6348  (class class class)co 7148  cmpo 7150  Basecbs 16475  Scalarcsca 16560   ·𝑠 cvsca 16561   ·sf cscaf 19627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fv 6356  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7681  df-2nd 7682  df-scaf 19629
This theorem is referenced by:  scafval  19645  scafeq  19646  scaffn  19647  lmodscaf  19648  rlmscaf  19973
  Copyright terms: Public domain W3C validator