MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scaffval Structured version   Visualization version   GIF version

Theorem scaffval 20248
Description: The scalar multiplication operation as a function. (Contributed by Mario Carneiro, 5-Oct-2015.) (Proof shortened by AV, 2-Mar-2024.)
Hypotheses
Ref Expression
scaffval.b 𝐵 = (Base‘𝑊)
scaffval.f 𝐹 = (Scalar‘𝑊)
scaffval.k 𝐾 = (Base‘𝐹)
scaffval.a = ( ·sf𝑊)
scaffval.s · = ( ·𝑠𝑊)
Assertion
Ref Expression
scaffval = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Distinct variable groups:   𝑥,𝑦,𝐵   𝑥,𝐾,𝑦   𝑥, · ,𝑦   𝑥,𝑊,𝑦
Allowed substitution hints:   (𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem scaffval
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 scaffval.a . 2 = ( ·sf𝑊)
2 fveq2 6826 . . . . . . . 8 (𝑤 = 𝑊 → (Scalar‘𝑤) = (Scalar‘𝑊))
3 scaffval.f . . . . . . . 8 𝐹 = (Scalar‘𝑊)
42, 3eqtr4di 2794 . . . . . . 7 (𝑤 = 𝑊 → (Scalar‘𝑤) = 𝐹)
54fveq2d 6830 . . . . . 6 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = (Base‘𝐹))
6 scaffval.k . . . . . 6 𝐾 = (Base‘𝐹)
75, 6eqtr4di 2794 . . . . 5 (𝑤 = 𝑊 → (Base‘(Scalar‘𝑤)) = 𝐾)
8 fveq2 6826 . . . . . 6 (𝑤 = 𝑊 → (Base‘𝑤) = (Base‘𝑊))
9 scaffval.b . . . . . 6 𝐵 = (Base‘𝑊)
108, 9eqtr4di 2794 . . . . 5 (𝑤 = 𝑊 → (Base‘𝑤) = 𝐵)
11 fveq2 6826 . . . . . . 7 (𝑤 = 𝑊 → ( ·𝑠𝑤) = ( ·𝑠𝑊))
12 scaffval.s . . . . . . 7 · = ( ·𝑠𝑊)
1311, 12eqtr4di 2794 . . . . . 6 (𝑤 = 𝑊 → ( ·𝑠𝑤) = · )
1413oveqd 7355 . . . . 5 (𝑤 = 𝑊 → (𝑥( ·𝑠𝑤)𝑦) = (𝑥 · 𝑦))
157, 10, 14mpoeq123dv 7413 . . . 4 (𝑤 = 𝑊 → (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
16 df-scaf 20233 . . . 4 ·sf = (𝑤 ∈ V ↦ (𝑥 ∈ (Base‘(Scalar‘𝑤)), 𝑦 ∈ (Base‘𝑤) ↦ (𝑥( ·𝑠𝑤)𝑦)))
176fvexi 6840 . . . . 5 𝐾 ∈ V
189fvexi 6840 . . . . 5 𝐵 ∈ V
1912fvexi 6840 . . . . . . 7 · ∈ V
2019rnex 7828 . . . . . 6 ran · ∈ V
21 p0ex 5328 . . . . . 6 {∅} ∈ V
2220, 21unex 7659 . . . . 5 (ran · ∪ {∅}) ∈ V
23 df-ov 7341 . . . . . . 7 (𝑥 · 𝑦) = ( · ‘⟨𝑥, 𝑦⟩)
24 fvrn0 6856 . . . . . . 7 ( · ‘⟨𝑥, 𝑦⟩) ∈ (ran · ∪ {∅})
2523, 24eqeltri 2833 . . . . . 6 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2625rgen2w 3066 . . . . 5 𝑥𝐾𝑦𝐵 (𝑥 · 𝑦) ∈ (ran · ∪ {∅})
2717, 18, 22, 26mpoexw 7988 . . . 4 (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) ∈ V
2815, 16, 27fvmpt 6932 . . 3 (𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
29 fvprc 6818 . . . 4 𝑊 ∈ V → ( ·sf𝑊) = ∅)
30 fvprc 6818 . . . . . . 7 𝑊 ∈ V → (Base‘𝑊) = ∅)
319, 30eqtrid 2788 . . . . . 6 𝑊 ∈ V → 𝐵 = ∅)
3231olcd 871 . . . . 5 𝑊 ∈ V → (𝐾 = ∅ ∨ 𝐵 = ∅))
33 0mpo0 7421 . . . . 5 ((𝐾 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3432, 33syl 17 . . . 4 𝑊 ∈ V → (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)) = ∅)
3529, 34eqtr4d 2779 . . 3 𝑊 ∈ V → ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦)))
3628, 35pm2.61i 182 . 2 ( ·sf𝑊) = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
371, 36eqtri 2764 1 = (𝑥𝐾, 𝑦𝐵 ↦ (𝑥 · 𝑦))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wo 844   = wceq 1540  wcel 2105  Vcvv 3441  cun 3896  c0 4270  {csn 4574  cop 4580  ran crn 5622  cfv 6480  (class class class)co 7338  cmpo 7340  Basecbs 17010  Scalarcsca 17063   ·𝑠 cvsca 17064   ·sf cscaf 20231
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5244  ax-nul 5251  ax-pow 5309  ax-pr 5373  ax-un 7651
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4271  df-if 4475  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4854  df-iun 4944  df-br 5094  df-opab 5156  df-mpt 5177  df-id 5519  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6432  df-fun 6482  df-fn 6483  df-f 6484  df-fv 6488  df-ov 7341  df-oprab 7342  df-mpo 7343  df-1st 7900  df-2nd 7901  df-scaf 20233
This theorem is referenced by:  scafval  20249  scafeq  20250  scaffn  20251  lmodscaf  20252  rlmscaf  20586
  Copyright terms: Public domain W3C validator