Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-segle Structured version   Visualization version   GIF version

Definition df-segle 36102
Description: Define the segment length comparison relationship. This relationship expresses that the segment 𝐴𝐵 is no longer than 𝐶𝐷. In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
df-segle Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
Distinct variable group:   𝑞,𝑝,𝑛,𝑎,𝑏,𝑐,𝑑,𝑦

Detailed syntax breakdown of Definition df-segle
StepHypRef Expression
1 csegle 36101 . 2 class Seg
2 vp . . . . . . . . . . 11 setvar 𝑝
32cv 1539 . . . . . . . . . 10 class 𝑝
4 va . . . . . . . . . . . 12 setvar 𝑎
54cv 1539 . . . . . . . . . . 11 class 𝑎
6 vb . . . . . . . . . . . 12 setvar 𝑏
76cv 1539 . . . . . . . . . . 11 class 𝑏
85, 7cop 4598 . . . . . . . . . 10 class 𝑎, 𝑏
93, 8wceq 1540 . . . . . . . . 9 wff 𝑝 = ⟨𝑎, 𝑏
10 vq . . . . . . . . . . 11 setvar 𝑞
1110cv 1539 . . . . . . . . . 10 class 𝑞
12 vc . . . . . . . . . . . 12 setvar 𝑐
1312cv 1539 . . . . . . . . . . 11 class 𝑐
14 vd . . . . . . . . . . . 12 setvar 𝑑
1514cv 1539 . . . . . . . . . . 11 class 𝑑
1613, 15cop 4598 . . . . . . . . . 10 class 𝑐, 𝑑
1711, 16wceq 1540 . . . . . . . . 9 wff 𝑞 = ⟨𝑐, 𝑑
18 vy . . . . . . . . . . . . 13 setvar 𝑦
1918cv 1539 . . . . . . . . . . . 12 class 𝑦
20 cbtwn 28823 . . . . . . . . . . . 12 class Btwn
2119, 16, 20wbr 5110 . . . . . . . . . . 11 wff 𝑦 Btwn ⟨𝑐, 𝑑
2213, 19cop 4598 . . . . . . . . . . . 12 class 𝑐, 𝑦
23 ccgr 28824 . . . . . . . . . . . 12 class Cgr
248, 22, 23wbr 5110 . . . . . . . . . . 11 wff 𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦
2521, 24wa 395 . . . . . . . . . 10 wff (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)
26 vn . . . . . . . . . . . 12 setvar 𝑛
2726cv 1539 . . . . . . . . . . 11 class 𝑛
28 cee 28822 . . . . . . . . . . 11 class 𝔼
2927, 28cfv 6514 . . . . . . . . . 10 class (𝔼‘𝑛)
3025, 18, 29wrex 3054 . . . . . . . . 9 wff 𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)
319, 17, 30w3a 1086 . . . . . . . 8 wff (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3231, 14, 29wrex 3054 . . . . . . 7 wff 𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3332, 12, 29wrex 3054 . . . . . 6 wff 𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3433, 6, 29wrex 3054 . . . . 5 wff 𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3534, 4, 29wrex 3054 . . . 4 wff 𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
36 cn 12193 . . . 4 class
3735, 26, 36wrex 3054 . . 3 wff 𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3837, 2, 10copab 5172 . 2 class {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
391, 38wceq 1540 1 wff Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
Colors of variables: wff setvar class
This definition is referenced by:  brsegle  36103
  Copyright terms: Public domain W3C validator