Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-segle Structured version   Visualization version   GIF version

Definition df-segle 36089
Description: Define the segment length comparison relationship. This relationship expresses that the segment 𝐴𝐵 is no longer than 𝐶𝐷. In this section, we establish various properties of this relationship showing that it is a transitive, reflexive relationship on pairs of points that is substitutive under congruence. Definition 5.4 of [Schwabhauser] p. 41. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
df-segle Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
Distinct variable group:   𝑞,𝑝,𝑛,𝑎,𝑏,𝑐,𝑑,𝑦

Detailed syntax breakdown of Definition df-segle
StepHypRef Expression
1 csegle 36088 . 2 class Seg
2 vp . . . . . . . . . . 11 setvar 𝑝
32cv 1536 . . . . . . . . . 10 class 𝑝
4 va . . . . . . . . . . . 12 setvar 𝑎
54cv 1536 . . . . . . . . . . 11 class 𝑎
6 vb . . . . . . . . . . . 12 setvar 𝑏
76cv 1536 . . . . . . . . . . 11 class 𝑏
85, 7cop 4637 . . . . . . . . . 10 class 𝑎, 𝑏
93, 8wceq 1537 . . . . . . . . 9 wff 𝑝 = ⟨𝑎, 𝑏
10 vq . . . . . . . . . . 11 setvar 𝑞
1110cv 1536 . . . . . . . . . 10 class 𝑞
12 vc . . . . . . . . . . . 12 setvar 𝑐
1312cv 1536 . . . . . . . . . . 11 class 𝑐
14 vd . . . . . . . . . . . 12 setvar 𝑑
1514cv 1536 . . . . . . . . . . 11 class 𝑑
1613, 15cop 4637 . . . . . . . . . 10 class 𝑐, 𝑑
1711, 16wceq 1537 . . . . . . . . 9 wff 𝑞 = ⟨𝑐, 𝑑
18 vy . . . . . . . . . . . . 13 setvar 𝑦
1918cv 1536 . . . . . . . . . . . 12 class 𝑦
20 cbtwn 28919 . . . . . . . . . . . 12 class Btwn
2119, 16, 20wbr 5148 . . . . . . . . . . 11 wff 𝑦 Btwn ⟨𝑐, 𝑑
2213, 19cop 4637 . . . . . . . . . . . 12 class 𝑐, 𝑦
23 ccgr 28920 . . . . . . . . . . . 12 class Cgr
248, 22, 23wbr 5148 . . . . . . . . . . 11 wff 𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦
2521, 24wa 395 . . . . . . . . . 10 wff (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)
26 vn . . . . . . . . . . . 12 setvar 𝑛
2726cv 1536 . . . . . . . . . . 11 class 𝑛
28 cee 28918 . . . . . . . . . . 11 class 𝔼
2927, 28cfv 6563 . . . . . . . . . 10 class (𝔼‘𝑛)
3025, 18, 29wrex 3068 . . . . . . . . 9 wff 𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)
319, 17, 30w3a 1086 . . . . . . . 8 wff (𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3231, 14, 29wrex 3068 . . . . . . 7 wff 𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3332, 12, 29wrex 3068 . . . . . 6 wff 𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3433, 6, 29wrex 3068 . . . . 5 wff 𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3534, 4, 29wrex 3068 . . . 4 wff 𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
36 cn 12264 . . . 4 class
3735, 26, 36wrex 3068 . . 3 wff 𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
3837, 2, 10copab 5210 . 2 class {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
391, 38wceq 1537 1 wff Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
Colors of variables: wff setvar class
This definition is referenced by:  brsegle  36090
  Copyright terms: Public domain W3C validator