Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle Structured version   Visualization version   GIF version

Theorem brsegle 33682
Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝑁

Proof of Theorem brsegle
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5321 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5321 . . 3 𝐶, 𝐷⟩ ∈ V
3 eqeq1 2802 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩))
4 eqcom 2805 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
53, 4syl6bb 290 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
653anbi1d 1437 . . . . . 6 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
76rexbidv 3256 . . . . 5 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
872rexbidv 3259 . . . 4 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
982rexbidv 3259 . . 3 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
10 eqeq1 2802 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩))
11 eqcom 2805 . . . . . . . 8 (⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
1210, 11syl6bb 290 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
13123anbi2d 1438 . . . . . 6 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
1413rexbidv 3256 . . . . 5 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
15142rexbidv 3259 . . . 4 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
16152rexbidv 3259 . . 3 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
17 df-segle 33681 . . 3 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
181, 2, 9, 16, 17brab 5395 . 2 (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
19 vex 3444 . . . . . . . . 9 𝑎 ∈ V
20 vex 3444 . . . . . . . . 9 𝑏 ∈ V
2119, 20opth 5333 . . . . . . . 8 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐵))
22 vex 3444 . . . . . . . . 9 𝑐 ∈ V
23 vex 3444 . . . . . . . . 9 𝑑 ∈ V
2422, 23opth 5333 . . . . . . . 8 (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑐 = 𝐶𝑑 = 𝐷))
25 biid 264 . . . . . . . 8 (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
2621, 24, 253anbi123i 1152 . . . . . . 7 ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
27262rexbii 3211 . . . . . 6 (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
28272rexbii 3211 . . . . 5 (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
2928rexbii 3210 . . . 4 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
30 simpl2l 1223 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (𝔼‘𝑁))
3130ad2antrl 727 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑁))
32 eleenn 26690 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 ∈ ℕ)
34 simprlr 779 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑛 ∈ ℕ)
35 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
3635adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑛))
37 axdimuniq 26707 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
3833, 31, 34, 36, 37syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 = 𝑛)
3938fveq2d 6649 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (𝔼‘𝑁) = (𝔼‘𝑛))
4039rexeqdv 3365 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
4140exbiri 810 . . . . . . . . . . . . 13 ((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
4241anassrs 471 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
43 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
44 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
4543, 44bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
47 eleq1 2877 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑 ∈ (𝔼‘𝑛) ↔ 𝐷 ∈ (𝔼‘𝑛)))
4846, 47bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) ↔ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))
4945, 48bi2anan9 638 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛))) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))))
5049anbi2d 631 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))))
51 opeq12 4767 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐴𝑏 = 𝐵) → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
5251breq1d 5040 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐴𝑏 = 𝐵) → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
5352anbi2d 631 . . . . . . . . . . . . . . 15 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
54 opeq12 4767 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑑 = 𝐷) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
5554breq2d 5042 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
56 opeq1 4763 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → ⟨𝑐, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
5756breq2d 5042 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐶 → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5857adantr 484 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5955, 58anbi12d 633 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6053, 59sylan9bb 513 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6160rexbidv 3256 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6261imbi1d 345 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6342, 50, 623imtr4d 297 . . . . . . . . . . 11 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6463com12 32 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6564expd 419 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑐 = 𝐶𝑑 = 𝐷) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))))
66653impd 1345 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6766expr 460 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6867rexlimdvv 3252 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6968rexlimdvva 3253 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7069rexlimdva 3243 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7129, 70syl5bi 245 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
72 simpl1 1188 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑁 ∈ ℕ)
73 simpl2l 1223 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl2r 1224 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐵 ∈ (𝔼‘𝑁))
75 simpl3l 1225 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 ∈ (𝔼‘𝑁))
76 simpl3r 1226 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐷 ∈ (𝔼‘𝑁))
77 eqidd 2799 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
78 eqidd 2799 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
79 simpr 488 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
80 opeq1 4763 . . . . . . . . . 10 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
8180eqeq1d 2800 . . . . . . . . 9 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
8280breq2d 5042 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝑑⟩))
8382, 57anbi12d 633 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8483rexbidv 3256 . . . . . . . . 9 (𝑐 = 𝐶 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8581, 843anbi23d 1436 . . . . . . . 8 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
86 opeq2 4765 . . . . . . . . . 10 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
8786eqeq1d 2800 . . . . . . . . 9 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩))
8886breq2d 5042 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑦 Btwn ⟨𝐶, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
8988anbi1d 632 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9089rexbidv 3256 . . . . . . . . 9 (𝑑 = 𝐷 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9187, 903anbi23d 1436 . . . . . . . 8 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
9285, 91rspc2ev 3583 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
9375, 76, 77, 78, 79, 92syl113anc 1379 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
94 opeq1 4763 . . . . . . . . . 10 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
9594eqeq1d 2800 . . . . . . . . 9 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
9694breq1d 5040 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
9796anbi2d 631 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9897rexbidv 3256 . . . . . . . . 9 (𝑎 = 𝐴 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9995, 983anbi13d 1435 . . . . . . . 8 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
100992rexbidv 3259 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
101 opeq2 4765 . . . . . . . . . 10 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
102101eqeq1d 2800 . . . . . . . . 9 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
103101breq1d 5040 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
104103anbi2d 631 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
105104rexbidv 3256 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
106102, 1053anbi13d 1435 . . . . . . . 8 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
1071062rexbidv 3259 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
108100, 107rspc2ev 3583 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
10973, 74, 93, 108syl3anc 1368 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
110 fveq2 6645 . . . . . . 7 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
111110rexeqdv 3365 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
1121113anbi3d 1439 . . . . . . . . . 10 (𝑛 = 𝑁 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
113110, 112rexeqbidv 3355 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
114110, 113rexeqbidv 3355 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
115110, 114rexeqbidv 3355 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
116110, 115rexeqbidv 3355 . . . . . 6 (𝑛 = 𝑁 → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
117116rspcev 3571 . . . . 5 ((𝑁 ∈ ℕ ∧ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
11872, 109, 117syl2anc 587 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
119118ex 416 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
12071, 119impbid 215 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
12118, 120syl5bb 286 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3107  cop 4531   class class class wbr 5030  cfv 6324  cn 11625  𝔼cee 26682   Btwn cbtwn 26683  Cgrccgr 26684   Seg csegle 33680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-z 11970  df-uz 12232  df-fz 12886  df-ee 26685  df-segle 33681
This theorem is referenced by:  brsegle2  33683  seglecgr12im  33684  seglerflx  33686  seglemin  33687  segletr  33688  segleantisym  33689  seglelin  33690  btwnsegle  33691
  Copyright terms: Public domain W3C validator