Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle Structured version   Visualization version   GIF version

Theorem brsegle 33959
Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝑁

Proof of Theorem brsegle
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5324 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5324 . . 3 𝐶, 𝐷⟩ ∈ V
3 eqeq1 2762 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩))
4 eqcom 2765 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
53, 4bitrdi 290 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
653anbi1d 1437 . . . . . 6 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
76rexbidv 3221 . . . . 5 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
872rexbidv 3224 . . . 4 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
982rexbidv 3224 . . 3 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
10 eqeq1 2762 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩))
11 eqcom 2765 . . . . . . . 8 (⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
1210, 11bitrdi 290 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
13123anbi2d 1438 . . . . . 6 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
1413rexbidv 3221 . . . . 5 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
15142rexbidv 3224 . . . 4 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
16152rexbidv 3224 . . 3 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
17 df-segle 33958 . . 3 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
181, 2, 9, 16, 17brab 5400 . 2 (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
19 vex 3413 . . . . . . . . 9 𝑎 ∈ V
20 vex 3413 . . . . . . . . 9 𝑏 ∈ V
2119, 20opth 5336 . . . . . . . 8 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐵))
22 vex 3413 . . . . . . . . 9 𝑐 ∈ V
23 vex 3413 . . . . . . . . 9 𝑑 ∈ V
2422, 23opth 5336 . . . . . . . 8 (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑐 = 𝐶𝑑 = 𝐷))
25 biid 264 . . . . . . . 8 (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
2621, 24, 253anbi123i 1152 . . . . . . 7 ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
27262rexbii 3176 . . . . . 6 (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
28272rexbii 3176 . . . . 5 (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
2928rexbii 3175 . . . 4 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
30 simpl2l 1223 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (𝔼‘𝑁))
3130ad2antrl 727 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑁))
32 eleenn 26789 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 ∈ ℕ)
34 simprlr 779 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑛 ∈ ℕ)
35 simprll 778 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
3635adantl 485 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑛))
37 axdimuniq 26806 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
3833, 31, 34, 36, 37syl22anc 837 . . . . . . . . . . . . . . . 16 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 = 𝑛)
3938fveq2d 6662 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (𝔼‘𝑁) = (𝔼‘𝑛))
4039rexeqdv 3330 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
4140exbiri 810 . . . . . . . . . . . . 13 ((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
4241anassrs 471 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
43 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
44 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
4543, 44bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
47 eleq1 2839 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑 ∈ (𝔼‘𝑛) ↔ 𝐷 ∈ (𝔼‘𝑛)))
4846, 47bi2anan9 638 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) ↔ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))
4945, 48bi2anan9 638 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛))) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))))
5049anbi2d 631 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))))
51 opeq12 4765 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐴𝑏 = 𝐵) → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
5251breq1d 5042 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐴𝑏 = 𝐵) → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
5352anbi2d 631 . . . . . . . . . . . . . . 15 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
54 opeq12 4765 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑑 = 𝐷) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
5554breq2d 5044 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
56 opeq1 4761 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → ⟨𝑐, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
5756breq2d 5044 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐶 → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5857adantr 484 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5955, 58anbi12d 633 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6053, 59sylan9bb 513 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6160rexbidv 3221 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6261imbi1d 345 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6342, 50, 623imtr4d 297 . . . . . . . . . . 11 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6463com12 32 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6564expd 419 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑐 = 𝐶𝑑 = 𝐷) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))))
66653impd 1345 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6766expr 460 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6867rexlimdvv 3217 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6968rexlimdvva 3218 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7069rexlimdva 3208 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7129, 70syl5bi 245 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
72 simpl1 1188 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑁 ∈ ℕ)
73 simpl2l 1223 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl2r 1224 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐵 ∈ (𝔼‘𝑁))
75 simpl3l 1225 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 ∈ (𝔼‘𝑁))
76 simpl3r 1226 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐷 ∈ (𝔼‘𝑁))
77 eqidd 2759 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
78 eqidd 2759 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
79 simpr 488 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
80 opeq1 4761 . . . . . . . . . 10 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
8180eqeq1d 2760 . . . . . . . . 9 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
8280breq2d 5044 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝑑⟩))
8382, 57anbi12d 633 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8483rexbidv 3221 . . . . . . . . 9 (𝑐 = 𝐶 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8581, 843anbi23d 1436 . . . . . . . 8 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
86 opeq2 4763 . . . . . . . . . 10 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
8786eqeq1d 2760 . . . . . . . . 9 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩))
8886breq2d 5044 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑦 Btwn ⟨𝐶, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
8988anbi1d 632 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9089rexbidv 3221 . . . . . . . . 9 (𝑑 = 𝐷 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9187, 903anbi23d 1436 . . . . . . . 8 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
9285, 91rspc2ev 3553 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
9375, 76, 77, 78, 79, 92syl113anc 1379 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
94 opeq1 4761 . . . . . . . . . 10 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
9594eqeq1d 2760 . . . . . . . . 9 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
9694breq1d 5042 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
9796anbi2d 631 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9897rexbidv 3221 . . . . . . . . 9 (𝑎 = 𝐴 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9995, 983anbi13d 1435 . . . . . . . 8 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
100992rexbidv 3224 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
101 opeq2 4763 . . . . . . . . . 10 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
102101eqeq1d 2760 . . . . . . . . 9 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
103101breq1d 5042 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
104103anbi2d 631 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
105104rexbidv 3221 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
106102, 1053anbi13d 1435 . . . . . . . 8 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
1071062rexbidv 3224 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
108100, 107rspc2ev 3553 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
10973, 74, 93, 108syl3anc 1368 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
110 fveq2 6658 . . . . . . 7 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
111110rexeqdv 3330 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
1121113anbi3d 1439 . . . . . . . . . 10 (𝑛 = 𝑁 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
113110, 112rexeqbidv 3320 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
114110, 113rexeqbidv 3320 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
115110, 114rexeqbidv 3320 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
116110, 115rexeqbidv 3320 . . . . . 6 (𝑛 = 𝑁 → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
117116rspcev 3541 . . . . 5 ((𝑁 ∈ ℕ ∧ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
11872, 109, 117syl2anc 587 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
119118ex 416 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
12071, 119impbid 215 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
12118, 120syl5bb 286 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wrex 3071  cop 4528   class class class wbr 5032  cfv 6335  cn 11674  𝔼cee 26781   Btwn cbtwn 26782  Cgrccgr 26783   Seg csegle 33957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459  ax-cnex 10631  ax-resscn 10632  ax-1cn 10633  ax-icn 10634  ax-addcl 10635  ax-addrcl 10636  ax-mulcl 10637  ax-mulrcl 10638  ax-mulcom 10639  ax-addass 10640  ax-mulass 10641  ax-distr 10642  ax-i2m1 10643  ax-1ne0 10644  ax-1rid 10645  ax-rnegex 10646  ax-rrecex 10647  ax-cnre 10648  ax-pre-lttri 10649  ax-pre-lttrn 10650  ax-pre-ltadd 10651  ax-pre-mulgt0 10652
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-pss 3877  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-tp 4527  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-tr 5139  df-id 5430  df-eprel 5435  df-po 5443  df-so 5444  df-fr 5483  df-we 5485  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-pred 6126  df-ord 6172  df-on 6173  df-lim 6174  df-suc 6175  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7580  df-1st 7693  df-2nd 7694  df-wrecs 7957  df-recs 8018  df-rdg 8056  df-er 8299  df-map 8418  df-en 8528  df-dom 8529  df-sdom 8530  df-pnf 10715  df-mnf 10716  df-xr 10717  df-ltxr 10718  df-le 10719  df-sub 10910  df-neg 10911  df-nn 11675  df-z 12021  df-uz 12283  df-fz 12940  df-ee 26784  df-segle 33958
This theorem is referenced by:  brsegle2  33960  seglecgr12im  33961  seglerflx  33963  seglemin  33964  segletr  33965  segleantisym  33966  seglelin  33967  btwnsegle  33968
  Copyright terms: Public domain W3C validator