Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle Structured version   Visualization version   GIF version

Theorem brsegle 33569
Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝑁

Proof of Theorem brsegle
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5355 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5355 . . 3 𝐶, 𝐷⟩ ∈ V
3 eqeq1 2825 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩))
4 eqcom 2828 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
53, 4syl6bb 289 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
653anbi1d 1436 . . . . . 6 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
76rexbidv 3297 . . . . 5 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
872rexbidv 3300 . . . 4 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
982rexbidv 3300 . . 3 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
10 eqeq1 2825 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩))
11 eqcom 2828 . . . . . . . 8 (⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
1210, 11syl6bb 289 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
13123anbi2d 1437 . . . . . 6 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
1413rexbidv 3297 . . . . 5 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
15142rexbidv 3300 . . . 4 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
16152rexbidv 3300 . . 3 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
17 df-segle 33568 . . 3 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
181, 2, 9, 16, 17brab 5429 . 2 (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
19 vex 3497 . . . . . . . . 9 𝑎 ∈ V
20 vex 3497 . . . . . . . . 9 𝑏 ∈ V
2119, 20opth 5367 . . . . . . . 8 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐵))
22 vex 3497 . . . . . . . . 9 𝑐 ∈ V
23 vex 3497 . . . . . . . . 9 𝑑 ∈ V
2422, 23opth 5367 . . . . . . . 8 (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑐 = 𝐶𝑑 = 𝐷))
25 biid 263 . . . . . . . 8 (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
2621, 24, 253anbi123i 1151 . . . . . . 7 ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
27262rexbii 3248 . . . . . 6 (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
28272rexbii 3248 . . . . 5 (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
2928rexbii 3247 . . . 4 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
30 simpl2l 1222 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (𝔼‘𝑁))
3130ad2antrl 726 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑁))
32 eleenn 26681 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 ∈ ℕ)
34 simprlr 778 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑛 ∈ ℕ)
35 simprll 777 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
3635adantl 484 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑛))
37 axdimuniq 26698 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
3833, 31, 34, 36, 37syl22anc 836 . . . . . . . . . . . . . . . 16 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 = 𝑛)
3938fveq2d 6673 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (𝔼‘𝑁) = (𝔼‘𝑛))
4039rexeqdv 3416 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
4140exbiri 809 . . . . . . . . . . . . 13 ((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
4241anassrs 470 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
43 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
44 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
4543, 44bi2anan9 637 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
47 eleq1 2900 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑 ∈ (𝔼‘𝑛) ↔ 𝐷 ∈ (𝔼‘𝑛)))
4846, 47bi2anan9 637 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) ↔ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))
4945, 48bi2anan9 637 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛))) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))))
5049anbi2d 630 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))))
51 opeq12 4804 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐴𝑏 = 𝐵) → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
5251breq1d 5075 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐴𝑏 = 𝐵) → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
5352anbi2d 630 . . . . . . . . . . . . . . 15 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
54 opeq12 4804 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑑 = 𝐷) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
5554breq2d 5077 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
56 opeq1 4802 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → ⟨𝑐, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
5756breq2d 5077 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐶 → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5857adantr 483 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5955, 58anbi12d 632 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6053, 59sylan9bb 512 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6160rexbidv 3297 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6261imbi1d 344 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6342, 50, 623imtr4d 296 . . . . . . . . . . 11 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6463com12 32 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6564expd 418 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑐 = 𝐶𝑑 = 𝐷) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))))
66653impd 1344 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6766expr 459 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6867rexlimdvv 3293 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6968rexlimdvva 3294 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7069rexlimdva 3284 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7129, 70syl5bi 244 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
72 simpl1 1187 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑁 ∈ ℕ)
73 simpl2l 1222 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl2r 1223 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐵 ∈ (𝔼‘𝑁))
75 simpl3l 1224 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 ∈ (𝔼‘𝑁))
76 simpl3r 1225 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐷 ∈ (𝔼‘𝑁))
77 eqidd 2822 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
78 eqidd 2822 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
79 simpr 487 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
80 opeq1 4802 . . . . . . . . . 10 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
8180eqeq1d 2823 . . . . . . . . 9 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
8280breq2d 5077 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝑑⟩))
8382, 57anbi12d 632 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8483rexbidv 3297 . . . . . . . . 9 (𝑐 = 𝐶 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8581, 843anbi23d 1435 . . . . . . . 8 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
86 opeq2 4803 . . . . . . . . . 10 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
8786eqeq1d 2823 . . . . . . . . 9 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩))
8886breq2d 5077 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑦 Btwn ⟨𝐶, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
8988anbi1d 631 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9089rexbidv 3297 . . . . . . . . 9 (𝑑 = 𝐷 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9187, 903anbi23d 1435 . . . . . . . 8 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
9285, 91rspc2ev 3634 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
9375, 76, 77, 78, 79, 92syl113anc 1378 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
94 opeq1 4802 . . . . . . . . . 10 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
9594eqeq1d 2823 . . . . . . . . 9 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
9694breq1d 5075 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
9796anbi2d 630 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9897rexbidv 3297 . . . . . . . . 9 (𝑎 = 𝐴 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9995, 983anbi13d 1434 . . . . . . . 8 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
100992rexbidv 3300 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
101 opeq2 4803 . . . . . . . . . 10 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
102101eqeq1d 2823 . . . . . . . . 9 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
103101breq1d 5075 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
104103anbi2d 630 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
105104rexbidv 3297 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
106102, 1053anbi13d 1434 . . . . . . . 8 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
1071062rexbidv 3300 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
108100, 107rspc2ev 3634 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
10973, 74, 93, 108syl3anc 1367 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
110 fveq2 6669 . . . . . . 7 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
111110rexeqdv 3416 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
1121113anbi3d 1438 . . . . . . . . . 10 (𝑛 = 𝑁 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
113110, 112rexeqbidv 3402 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
114110, 113rexeqbidv 3402 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
115110, 114rexeqbidv 3402 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
116110, 115rexeqbidv 3402 . . . . . 6 (𝑛 = 𝑁 → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
117116rspcev 3622 . . . . 5 ((𝑁 ∈ ℕ ∧ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
11872, 109, 117syl2anc 586 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
119118ex 415 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
12071, 119impbid 214 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
12118, 120syl5bb 285 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  cop 4572   class class class wbr 5065  cfv 6354  cn 11637  𝔼cee 26673   Btwn cbtwn 26674  Cgrccgr 26675   Seg csegle 33567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-nn 11638  df-z 11981  df-uz 12243  df-fz 12892  df-ee 26676  df-segle 33568
This theorem is referenced by:  brsegle2  33570  seglecgr12im  33571  seglerflx  33573  seglemin  33574  segletr  33575  segleantisym  33576  seglelin  33577  btwnsegle  33578
  Copyright terms: Public domain W3C validator