Detailed syntax breakdown of Definition df-setc
Step | Hyp | Ref
| Expression |
1 | | csetc 17790 |
. 2
class
SetCat |
2 | | vu |
. . 3
setvar 𝑢 |
3 | | cvv 3432 |
. . 3
class
V |
4 | | cnx 16894 |
. . . . . 6
class
ndx |
5 | | cbs 16912 |
. . . . . 6
class
Base |
6 | 4, 5 | cfv 6433 |
. . . . 5
class
(Base‘ndx) |
7 | 2 | cv 1538 |
. . . . 5
class 𝑢 |
8 | 6, 7 | cop 4567 |
. . . 4
class
〈(Base‘ndx), 𝑢〉 |
9 | | chom 16973 |
. . . . . 6
class
Hom |
10 | 4, 9 | cfv 6433 |
. . . . 5
class (Hom
‘ndx) |
11 | | vx |
. . . . . 6
setvar 𝑥 |
12 | | vy |
. . . . . 6
setvar 𝑦 |
13 | 12 | cv 1538 |
. . . . . . 7
class 𝑦 |
14 | 11 | cv 1538 |
. . . . . . 7
class 𝑥 |
15 | | cmap 8615 |
. . . . . . 7
class
↑m |
16 | 13, 14, 15 | co 7275 |
. . . . . 6
class (𝑦 ↑m 𝑥) |
17 | 11, 12, 7, 7, 16 | cmpo 7277 |
. . . . 5
class (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥)) |
18 | 10, 17 | cop 4567 |
. . . 4
class
〈(Hom ‘ndx), (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉 |
19 | | cco 16974 |
. . . . . 6
class
comp |
20 | 4, 19 | cfv 6433 |
. . . . 5
class
(comp‘ndx) |
21 | | vv |
. . . . . 6
setvar 𝑣 |
22 | | vz |
. . . . . 6
setvar 𝑧 |
23 | 7, 7 | cxp 5587 |
. . . . . 6
class (𝑢 × 𝑢) |
24 | | vg |
. . . . . . 7
setvar 𝑔 |
25 | | vf |
. . . . . . 7
setvar 𝑓 |
26 | 22 | cv 1538 |
. . . . . . . 8
class 𝑧 |
27 | 21 | cv 1538 |
. . . . . . . . 9
class 𝑣 |
28 | | c2nd 7830 |
. . . . . . . . 9
class
2nd |
29 | 27, 28 | cfv 6433 |
. . . . . . . 8
class
(2nd ‘𝑣) |
30 | 26, 29, 15 | co 7275 |
. . . . . . 7
class (𝑧 ↑m
(2nd ‘𝑣)) |
31 | | c1st 7829 |
. . . . . . . . 9
class
1st |
32 | 27, 31 | cfv 6433 |
. . . . . . . 8
class
(1st ‘𝑣) |
33 | 29, 32, 15 | co 7275 |
. . . . . . 7
class
((2nd ‘𝑣) ↑m (1st
‘𝑣)) |
34 | 24 | cv 1538 |
. . . . . . . 8
class 𝑔 |
35 | 25 | cv 1538 |
. . . . . . . 8
class 𝑓 |
36 | 34, 35 | ccom 5593 |
. . . . . . 7
class (𝑔 ∘ 𝑓) |
37 | 24, 25, 30, 33, 36 | cmpo 7277 |
. . . . . 6
class (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)) |
38 | 21, 22, 23, 7, 37 | cmpo 7277 |
. . . . 5
class (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓))) |
39 | 20, 38 | cop 4567 |
. . . 4
class
〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉 |
40 | 8, 18, 39 | ctp 4565 |
. . 3
class
{〈(Base‘ndx), 𝑢〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉} |
41 | 2, 3, 40 | cmpt 5157 |
. 2
class (𝑢 ∈ V ↦
{〈(Base‘ndx), 𝑢〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |
42 | 1, 41 | wceq 1539 |
1
wff SetCat =
(𝑢 ∈ V ↦
{〈(Base‘ndx), 𝑢〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ (𝑦 ↑m 𝑥))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ (𝑧 ↑m (2nd
‘𝑣)), 𝑓 ∈ ((2nd
‘𝑣)
↑m (1st ‘𝑣)) ↦ (𝑔 ∘ 𝑓)))〉}) |