![]() |
Metamath
Proof Explorer Theorem List (p. 181 of 474) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-29923) |
![]() (29924-31446) |
![]() (31447-47372) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | catcbas 18001 | Set of objects of the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (𝑈 ∩ Cat)) | ||
Theorem | catchomfval 18002* | Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (𝑥 Func 𝑦))) | ||
Theorem | catchom 18003 | Set of arrows of the category of categories (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝑋 Func 𝑌)) | ||
Theorem | catccofval 18004* | Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝐵 × 𝐵), 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑣) Func 𝑧), 𝑓 ∈ ( Func ‘𝑣) ↦ (𝑔 ∘func 𝑓)))) | ||
Theorem | catcco 18005 | Composition in the category of categories. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋 Func 𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌 Func 𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘func 𝐹)) | ||
Theorem | catccatid 18006* | Lemma for catccat 18008. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝐵 ↦ (idfunc‘𝑥)))) | ||
Theorem | catcid 18007 | The identity arrow in the category of categories is the identity functor. (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐼 = (idfunc‘𝑋) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = 𝐼) | ||
Theorem | catccat 18008 | The category of categories is a category, see remark 3.48 in [Adamek] p. 40. (Clearly it cannot be an element of itself, hence it is "𝑈 -large".) (Contributed by Mario Carneiro, 3-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | resscatc 18009 | The restriction of the category of categories to a subset is the category of categories in the subset. Thus, the CatCat‘𝑈 categories for different 𝑈 are full subcategories of each other. (Contributed by Mario Carneiro, 6-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐷 = (CatCat‘𝑉) & ⊢ (𝜑 → 𝑈 ∈ 𝑊) & ⊢ (𝜑 → 𝑉 ⊆ 𝑈) ⇒ ⊢ (𝜑 → ((Homf ‘(𝐶 ↾s 𝑉)) = (Homf ‘𝐷) ∧ (compf‘(𝐶 ↾s 𝑉)) = (compf‘𝐷))) | ||
Theorem | catcisolem 18010* | Lemma for catciso 18011. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Inv‘𝐶) & ⊢ 𝐻 = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑆 ↦ ◡((◡𝐹‘𝑥)𝐺(◡𝐹‘𝑦))) & ⊢ (𝜑 → 𝐹((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌))𝐺) & ⊢ (𝜑 → 𝐹:𝑅–1-1-onto→𝑆) ⇒ ⊢ (𝜑 → 〈𝐹, 𝐺〉(𝑋𝐼𝑌)〈◡𝐹, 𝐻〉) | ||
Theorem | catciso 18011 | A functor is an isomorphism of categories if and only if it is full and faithful, and is a bijection on the objects. Remark 3.28(2) in [Adamek] p. 34. (Contributed by Mario Carneiro, 29-Jan-2017.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑅 = (Base‘𝑋) & ⊢ 𝑆 = (Base‘𝑌) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐼 = (Iso‘𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐼𝑌) ↔ (𝐹 ∈ ((𝑋 Full 𝑌) ∩ (𝑋 Faith 𝑌)) ∧ (1st ‘𝐹):𝑅–1-1-onto→𝑆))) | ||
Theorem | catcbascl 18012 | An element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 18017. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑈) | ||
Theorem | catcslotelcl 18013 | A slot entry of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 18017. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ 𝐸 = Slot (𝐸‘ndx) ⇒ ⊢ (𝜑 → (𝐸‘𝑋) ∈ 𝑈) | ||
Theorem | catcbaselcl 18014 | The base set of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 18017. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (Base‘𝑋) ∈ 𝑈) | ||
Theorem | catchomcl 18015 | The Hom-set of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 18017. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (Hom ‘𝑋) ∈ 𝑈) | ||
Theorem | catcccocl 18016 | The composition operation of an element of the base set of the category of categories for a weak universe belongs to the weak universe. Formerly part of the proof for catcoppccl 18017. (Contributed by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (comp‘𝑋) ∈ 𝑈) | ||
Theorem | catcoppccl 18017 | The category of categories for a weak universe is closed under taking opposites. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 13-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑂 = (oppCat‘𝑋) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐵) | ||
Theorem | catcoppcclOLD 18018 | Obsolete proof of catcoppccl 18017 as of 13-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑂 = (oppCat‘𝑋) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑂 ∈ 𝐵) | ||
Theorem | catcfuccl 18019 | The category of categories for a weak universe is closed under the functor category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑄 = (𝑋 FuncCat 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐵) | ||
Theorem | catcfucclOLD 18020 | Obsolete proof of catcfuccl 18019 as of 14-Oct-2024. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑄 = (𝑋 FuncCat 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑄 ∈ 𝐵) | ||
The "category of extensible structures" ExtStrCat is the category of all sets in a universe regarded as extensible structures and the functions between their base sets, see df-estrc 18024. Since we consider only "small categories" (i.e. categories whose objects and morphisms are actually sets and not proper classes), the objects of the category (i.e. the base set of the category regarded as extensible structure) are all sets in a universe 𝑢, which can be an arbitrary set, see estrcbas 18026. Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 18022 we do not need to restrict the universe to sets which "have a base". The morphisms (or arrows) between two objects, i.e. sets from the universe, are the mappings between their base sets, see estrchomfval 18027, whereas the composition is the ordinary composition of functions, see estrccofval 18030 and estrcco 18031. It is shown that the category of extensible structures ExtStrCat is actually a category, see estrccat 18034 with the identity function as identity arrow, see estrcid 18035. In the following, some background information about the category of extensible structures is given, taken from the discussion in Github issue #1507 (see https://github.com/metamath/set.mm/issues/1507 18035): At the beginning, the categories of non-unital rings RngCat and unital rings RingCat were defined separately (as unordered triples of ordereds pairs, see dfrngc2 46390 and dfringc2 46436, but with special compositions). With this definitions, however, Theorem rngcresringcat 46448 could not be proven, because the compositions were not compatible. Unfortunately, no precise definition of the composition within the category of rings could be found in the literature. In section 3.3 EXAMPLES, paragraph (2) of [Adamek] p. 22, however, a definition is given for "Grp", the category of groups: "The following constructs; i.e., categories of structured sets and structure-preserving functions between them (o will always be the composition of functions and idA will always be the identity function on A): ... (b) Grp with objects all groups and morphisms all homomorphisms between them." Therefore, the compositions should have been harmonized by using the composition of the category of sets SetCat, see df-setc 17976, which is the ordinary composition of functions. Analogously, categories of Rngs (and Rings) could have been shown to be restrictions resp. subcategories of the category of sets. BJ and MC observed, however, that "... ↾cat [cannot be used] to restrict the category Set to Ring, because the homs are different. Although Ring is a concrete category, a hom between rings R and S is a function (Base`R) --> (Base`S) with certain properties, unlike in Set where it is a function R --> S.". Therefore, MC suggested that "we could have an alternative version of the Set category consisting of extensible structures (in U) together with (A Hom B) := (Base`A) --> (Base`B). This category is not isomorphic to Set because different extensible structures can have the same base set, but it is equivalent to Set; the relevant functors are (U`A) = (Base`A), the forgetful functor, and (F`A) = { <. (Base`ndx), A >. }". This led to the current definition of ExtStrCat, see df-estrc 18024. The claimed equivalence is proven by equivestrcsetc 18054. Having a definition of a category of extensible structures, the categories of non-unital and unital rings can be defined as appropriate restrictions of the category of extensible structures, see df-rngc 46377 and df-ringc 46423. In the same way, more subcategories could be provided, resulting in the following "inclusion chain" by proving theorems like rngcresringcat 46448, although the morphisms of the shown categories are different ( "->" means "is subcategory of"): RingCat-> RngCat-> GrpCat -> MndCat -> MgmCat -> ExtStrCat According to MC, "If we generalize from subcategories to embeddings, then we can even fit SetCat into the chain, equivalent to ExtStrCat at the end." As mentioned before, the equivalence of SetCat and ExtStrCat is proven by equivestrcsetc 18054. Furthermore, it can be shown that SetCat is embedded into ExtStrCat, see embedsetcestrc 18069. Remark: equivestrcsetc 18054 as well as embedsetcestrc 18069 require that the index of the base set extractor is contained within the considered universe. This is ensured by assuming that the natural numbers are contained within the considered universe: ω ∈ 𝑈 (see wunndx 17078), but it would be currently sufficient to assume that 1 ∈ 𝑈, because the index value of the base set extractor is hard-coded as 1, see basendx 17103. Some people, however, feel uncomfortable to say that a ring "is a" group (without mentioning the restriction to the addition, which is usually found in the literature, e.g., the definition of a ring in [Herstein] p. 126: "... Note that so far all we have said is that R is an abelian group under +.". The main argument against a ring being a group is the number of components/slots: usually, a group consists of (exactly!) two components (a base set and an operation), whereas a ring consists of (exactly!) three components (a base set and two operations). According to this "definition", a ring cannot be a group. This is also an (unfortunately informal) argument for the category of rings not being a subcategory of the category of abelian groups in "Categories and Functors", Bodo Pareigis, Academic Press, New York, London, 1970: "A category A is called a subcategory of a category B if Ob(A) ⊆ Ob(B) and MorA(X,Y) ⊆ MorB(X,Y) for all X,Y e. Ob(A), if the composition of morphisms in A coincides with the composition of the same morphisms in B and if the identity of an object in A is also the identity of the same object viewed as an object in B. Then there is a forgetful functor from A to B. We note that Ri [the category of rings] is not a subcategory of Ab [the category of abelian groups]. In fact, Ob(Ri) ⊆ Ob(Ab) is not true, although every ring can also be regarded as an abelian group. The corresponding abelian groups of two rings may coincide even if the rings do not coincide. The multiplication may be defined differently.". As long as we define Rings, Groups, etc. in a way that 𝐴 ∈ Ring → 𝐴 ∈ Grp is valid (see ringgrp 19983) the corresponding categories are in a subcategory relation. If we do not want Rings to be Groups (then the category of rings would not be a subcategory of the category of groups, as observed by Pareigis), we would have to change the definitions of Magmas, Monoids, Groups, Rings etc. to restrict them to have exactly the required number of slots, so that the following holds 𝑔 ∈ Grp → 𝑔 Struct 〈(Base‘ndx), (+g‘ndx)〉 𝑟 ∈ Ring → 𝑟 Struct 〈(Base‘ndx), (+g‘ndx), (.r‘ndx)〉 | ||
Theorem | fncnvimaeqv 18021 | The inverse images of the universal class V under functions on the universal class V are the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.) |
⊢ (𝐹 Fn V → (◡𝐹 “ V) = V) | ||
Theorem | bascnvimaeqv 18022 | The inverse image of the universal class V under the base function is the universal class V itself. (Proposed by Mario Carneiro, 7-Mar-2020.) (Contributed by AV, 7-Mar-2020.) |
⊢ (◡Base “ V) = V | ||
Syntax | cestrc 18023 | Extend class notation to include the category ExtStr. |
class ExtStrCat | ||
Definition | df-estrc 18024* | Definition of the category ExtStr of extensible structures. This is the category whose objects are all sets in a universe 𝑢 regarded as extensible structures and whose morphisms are the functions between their base sets. If a set is not a real extensible structure, it is regarded as extensible structure with an empty base set. Because of bascnvimaeqv 18022 we do not need to restrict the universe to sets which "have a base". Generally, we will take 𝑢 to be a weak universe or Grothendieck universe, because these sets have closure properties as good as the real thing. (Proposed by Mario Carneiro, 5-Mar-2020.) (Contributed by AV, 7-Mar-2020.) |
⊢ ExtStrCat = (𝑢 ∈ V ↦ {〈(Base‘ndx), 𝑢〉, 〈(Hom ‘ndx), (𝑥 ∈ 𝑢, 𝑦 ∈ 𝑢 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))〉, 〈(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧 ∈ 𝑢 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))〉}) | ||
Theorem | estrcval 18025* | Value of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) & ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) ⇒ ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝑈〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | estrcbas 18026 | Set of objects of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑈 = (Base‘𝐶)) | ||
Theorem | estrchomfval 18027* | Set of morphisms ("arrows") of the category of extensible structures (in a universe). (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 = (𝑥 ∈ 𝑈, 𝑦 ∈ 𝑈 ↦ ((Base‘𝑦) ↑m (Base‘𝑥)))) | ||
Theorem | estrchom 18028 | The morphisms between extensible structures are mappings between their base sets. (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ 𝐴 = (Base‘𝑋) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝜑 → (𝑋𝐻𝑌) = (𝐵 ↑m 𝐴)) | ||
Theorem | elestrchom 18029 | A morphism between extensible structures is a function between their base sets. (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ 𝐴 = (Base‘𝑋) & ⊢ 𝐵 = (Base‘𝑌) ⇒ ⊢ (𝜑 → (𝐹 ∈ (𝑋𝐻𝑌) ↔ 𝐹:𝐴⟶𝐵)) | ||
Theorem | estrccofval 18030* | Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧 ∈ 𝑈 ↦ (𝑔 ∈ ((Base‘𝑧) ↑m (Base‘(2nd ‘𝑣))), 𝑓 ∈ ((Base‘(2nd ‘𝑣)) ↑m (Base‘(1st ‘𝑣))) ↦ (𝑔 ∘ 𝑓)))) | ||
Theorem | estrcco 18031 | Composition in the category of extensible structures. (Contributed by AV, 7-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ · = (comp‘𝐶) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) & ⊢ (𝜑 → 𝑌 ∈ 𝑈) & ⊢ (𝜑 → 𝑍 ∈ 𝑈) & ⊢ 𝐴 = (Base‘𝑋) & ⊢ 𝐵 = (Base‘𝑌) & ⊢ 𝐷 = (Base‘𝑍) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐺:𝐵⟶𝐷) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉 · 𝑍)𝐹) = (𝐺 ∘ 𝐹)) | ||
Theorem | estrcbasbas 18032 | An element of the base set of the base set of the category of extensible structures (i.e. the base set of an extensible structure) belongs to the considered weak universe. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ WUni) ⇒ ⊢ ((𝜑 ∧ 𝐸 ∈ 𝐵) → (Base‘𝐸) ∈ 𝑈) | ||
Theorem | estrccatid 18033* | Lemma for estrccat 18034. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → (𝐶 ∈ Cat ∧ (Id‘𝐶) = (𝑥 ∈ 𝑈 ↦ ( I ↾ (Base‘𝑥))))) | ||
Theorem | estrccat 18034 | The category of extensible structures is a category. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
Theorem | estrcid 18035 | The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) | ||
Theorem | estrchomfn 18036 | The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑈 × 𝑈)) | ||
Theorem | estrchomfeqhom 18037 | The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020.) |
⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = 𝐻) | ||
Theorem | estrreslem1 18038 | Lemma 1 for estrres 18041. (Contributed by AV, 14-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
Theorem | estrreslem1OLD 18039 | Obsolete version of estrreslem1 18038 as of 28-Oct-2024. Lemma 1 for estrres 18041. (Contributed by AV, 14-Mar-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
Theorem | estrreslem2 18040 | Lemma 2 for estrres 18041. (Contributed by AV, 14-Mar-2020.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐶) | ||
Theorem | estrres 18041 | Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.) |
⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) = {〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx), · 〉}) | ||
Theorem | funcestrcsetclem1 18042* | Lemma 1 for funcestrcsetc 18051. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
Theorem | funcestrcsetclem2 18043* | Lemma 2 for funcestrcsetc 18051. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcestrcsetclem3 18044* | Lemma 3 for funcestrcsetc 18051. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
Theorem | funcestrcsetclem4 18045* | Lemma 4 for funcestrcsetc 18051. (Contributed by AV, 22-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
Theorem | funcestrcsetclem5 18046* | Lemma 5 for funcestrcsetc 18051. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) | ||
Theorem | funcestrcsetclem6 18047* | Lemma 6 for funcestrcsetc 18051. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcestrcsetclem7 18048* | Lemma 7 for funcestrcsetc 18051. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
Theorem | funcestrcsetclem8 18049* | Lemma 8 for funcestrcsetc 18051. (Contributed by AV, 15-Feb-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
Theorem | funcestrcsetclem9 18050* | Lemma 9 for funcestrcsetc 18051. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcestrcsetc 18051* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) | ||
Theorem | fthestrcsetc 18052* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) | ||
Theorem | fullestrcsetc 18053* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) | ||
Theorem | equivestrcsetc 18054* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) | ||
Theorem | setc1strwun 18055 | A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) | ||
Theorem | funcsetcestrclem1 18056* | Lemma 1 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) | ||
Theorem | funcsetcestrclem2 18057* | Lemma 2 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) | ||
Theorem | funcsetcestrclem3 18058* | Lemma 3 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | ||
Theorem | embedsetcestrclem 18059* | Lemma for embedsetcestrc 18069. (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) | ||
Theorem | funcsetcestrclem4 18060* | Lemma 4 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) | ||
Theorem | funcsetcestrclem5 18061* | Lemma 5 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) | ||
Theorem | funcsetcestrclem6 18062* | Lemma 6 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
Theorem | funcsetcestrclem7 18063* | Lemma 7 for funcsetcestrc 18066. (Contributed by AV, 27-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) | ||
Theorem | funcsetcestrclem8 18064* | Lemma 8 for funcsetcestrc 18066. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) | ||
Theorem | funcsetcestrclem9 18065* | Lemma 9 for funcsetcestrc 18066. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
Theorem | funcsetcestrc 18066* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Func 𝐸)𝐺) | ||
Theorem | fthsetcestrc 18067* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Faith 𝐸)𝐺) | ||
Theorem | fullsetcestrc 18068* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Full 𝐸)𝐺) | ||
Theorem | embedsetcestrc 18069* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is an embedding. According to definition 3.27 (1) of [Adamek] p. 34, a functor "F is called an embedding provided that F is injective on morphisms", or according to remark 3.28 (1) in [Adamek] p. 34, "a functor is an embedding if and only if it is faithful and injective on objects". (Contributed by AV, 31-Mar-2020.) |
⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹(𝑆 Faith 𝐸)𝐺 ∧ 𝐹:𝐶–1-1→𝐵)) | ||
Syntax | cxpc 18070 | Extend class notation with the product of two categories. |
class ×c | ||
Syntax | c1stf 18071 | Extend class notation with the first projection functor. |
class 1stF | ||
Syntax | c2ndf 18072 | Extend class notation with the second projection functor. |
class 2ndF | ||
Syntax | cprf 18073 | Extend class notation with the functor pairing operation. |
class 〈,〉F | ||
Definition | df-xpc 18074* | Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) | ||
Definition | df-1stf 18075* | Define the first projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
Definition | df-2ndf 18076* | Define the second projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
Definition | df-prf 18077* | Define the pairing operation for functors (which takes two functors 𝐹:𝐶⟶𝐷 and 𝐺:𝐶⟶𝐸 and produces (𝐹 〈,〉F 𝐺):𝐶⟶(𝐷 ×c 𝐸)). (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom (1st ‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) | ||
Theorem | fnxpc 18078 | The binary product of categories is a two-argument function. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ ×c Fn (V × V) | ||
Theorem | xpcval 18079* | Value of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) & ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉))) ⇒ ⊢ (𝜑 → 𝑇 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐾〉, 〈(comp‘ndx), 𝑂〉}) | ||
Theorem | xpcbas 18080 | Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) ⇒ ⊢ (𝑋 × 𝑌) = (Base‘𝑇) | ||
Theorem | xpchomfval 18081* | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) | ||
Theorem | xpchom 18082 | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) | ||
Theorem | relxpchom 18083 | A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ Rel (𝑋𝐾𝑌) | ||
Theorem | xpccofval 18084* | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 2-Mar-2024.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉)) | ||
Theorem | xpcco 18085 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 ∙ (2nd ‘𝑍))(2nd ‘𝐹))〉) | ||
Theorem | xpcco1st 18086 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) | ||
Theorem | xpcco2nd 18087 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐷) ⇒ ⊢ (𝜑 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) | ||
Theorem | xpchom2 18088 | Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) | ||
Theorem | xpcco2 18089 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 ∈ (𝑀𝐻𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁𝐽𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃𝐻𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄𝐽𝑆)) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉 · 𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉 ∙ 𝑆)𝐺)〉) | ||
Theorem | xpccatid 18090* | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) | ||
Theorem | xpcid 18091 | The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) & ⊢ 1 = (Id‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) ⇒ ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) | ||
Theorem | xpccat 18092 | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑇 ∈ Cat) | ||
Theorem | 1stfval 18093* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) | ||
Theorem | 1stf1 18094 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) | ||
Theorem | 1stf2 18095 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) | ||
Theorem | 2ndfval 18096* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) | ||
Theorem | 2ndf1 18097 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) | ||
Theorem | 2ndf2 18098 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) | ||
Theorem | 1stfcl 18099 | The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑇 Func 𝐶)) | ||
Theorem | 2ndfcl 18100 | The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑇 Func 𝐷)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |