Home | Metamath
Proof Explorer Theorem List (p. 181 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | glbeu 18001* | Unique existence proper of a member of the domain of the greatest lower bound function of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 𝜓) | ||
Theorem | glbval 18002* | Value of the greatest lower bound function of a poset. Out-of-domain arguments (those not satisfying 𝑆 ∈ dom 𝑈) are allowed for convenience, evaluating to the empty set on both sides of the equality. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜓 ↔ (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = (℩𝑥 ∈ 𝐵 𝜓)) | ||
Theorem | glbcl 18003 | The least upper bound function value belongs to the base set. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) ∈ 𝐵) | ||
Theorem | glbprop 18004* | Properties of greatest lower bound of a poset. (Contributed by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → (∀𝑦 ∈ 𝑆 (𝑈‘𝑆) ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ (𝑈‘𝑆)))) | ||
Theorem | glble 18005 | The greatest lower bound is the least element. (Contributed by NM, 22-Oct-2011.) (Revised by NM, 7-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 𝑈 = (glb‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑆 ∈ dom 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) ≤ 𝑋) | ||
Theorem | joinfval 18006* | Value of join function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove joinfval2 18007 first to reduce net proof size (existence part)? |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) | ||
Theorem | joinfval2 18007* | Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) | ||
Theorem | joindm 18008* | Domain of join function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∨ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝑈}) | ||
Theorem | joindef 18009 | Two ways to say that a join is defined. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ↔ {𝑋, 𝑌} ∈ dom 𝑈)) | ||
Theorem | joinval 18010 | Join value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝑈 requirement. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝑈 = (lub‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (𝑈‘{𝑋, 𝑌})) | ||
Theorem | joincl 18011 | Closure of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
Theorem | joindmss 18012 | Subset property of domain of join. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom ∨ ⊆ (𝐵 × 𝐵)) | ||
Theorem | joinval2lem 18013* | Lemma for joinval2 18014 and joineu 18015. (Contributed by NM, 12-Sep-2018.) TODO: combine this through joineu 18015 into joinlem 18016? |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧)) ↔ ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | joinval2 18014* | Value of join for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∨ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧)))) | ||
Theorem | joineu 18015* | Uniqueness of join of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑋 ≤ 𝑥 ∧ 𝑌 ≤ 𝑥) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → 𝑥 ≤ 𝑧))) | ||
Theorem | joinlem 18016* | Lemma for join properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ (𝑋 ∨ 𝑌) ∧ 𝑌 ≤ (𝑋 ∨ 𝑌)) ∧ ∀𝑧 ∈ 𝐵 ((𝑋 ≤ 𝑧 ∧ 𝑌 ≤ 𝑧) → (𝑋 ∨ 𝑌) ≤ 𝑧))) | ||
Theorem | lejoin1 18017 | A join's first argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑋 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | lejoin2 18018 | A join's second argument is less than or equal to the join. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → 𝑌 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | joinle 18019 | A join is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∨ ) ⇒ ⊢ (𝜑 → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | ||
Theorem | meetfval 18020* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) TODO: prove meetfval2 18021 first to reduce net proof size (existence part)? |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧}) | ||
Theorem | meetfval2 18021* | Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) | ||
Theorem | meetdm 18022* | Domain of meet function for a poset-type structure. (Contributed by NM, 16-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → dom ∧ = {〈𝑥, 𝑦〉 ∣ {𝑥, 𝑦} ∈ dom 𝐺}) | ||
Theorem | meetdef 18023 | Two ways to say that a meet is defined. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∧ ↔ {𝑋, 𝑌} ∈ dom 𝐺)) | ||
Theorem | meetval 18024 | Meet value. Since both sides evaluate to ∅ when they don't exist, for convenience we drop the {𝑋, 𝑌} ∈ dom 𝐺 requirement. (Contributed by NM, 9-Sep-2018.) |
⊢ 𝐺 = (glb‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑍) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (𝐺‘{𝑋, 𝑌})) | ||
Theorem | meetcl 18025 | Closure of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ∈ 𝐵) | ||
Theorem | meetdmss 18026 | Subset property of domain of meet. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom ∧ ⊆ (𝐵 × 𝐵)) | ||
Theorem | meetval2lem 18027* | Lemma for meetval2 18028 and meeteu 18029. (Contributed by NM, 12-Sep-2018.) TODO: combine this through meeteu 18029 into meetlem 18030? |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((∀𝑦 ∈ {𝑋, 𝑌}𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ {𝑋, 𝑌}𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥)) ↔ ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | ||
Theorem | meetval2 18028* | Value of meet for a poset with LUB expanded. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 11-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) = (℩𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥)))) | ||
Theorem | meeteu 18029* | Uniqueness of meet of elements in the domain. (Contributed by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐵 ((𝑥 ≤ 𝑋 ∧ 𝑥 ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ 𝑥))) | ||
Theorem | meetlem 18030* | Lemma for meet properties. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (((𝑋 ∧ 𝑌) ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑌) ∧ ∀𝑧 ∈ 𝐵 ((𝑧 ≤ 𝑋 ∧ 𝑧 ≤ 𝑌) → 𝑧 ≤ (𝑋 ∧ 𝑌)))) | ||
Theorem | lemeet1 18031 | A meet's first argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑋) | ||
Theorem | lemeet2 18032 | A meet's second argument is less than or equal to the meet. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → (𝑋 ∧ 𝑌) ≤ 𝑌) | ||
Theorem | meetle 18033 | A meet is less than or equal to a third value iff each argument is less than or equal to the third value. (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 〈𝑋, 𝑌〉 ∈ dom ∧ ) ⇒ ⊢ (𝜑 → ((𝑍 ≤ 𝑋 ∧ 𝑍 ≤ 𝑌) ↔ 𝑍 ≤ (𝑋 ∧ 𝑌))) | ||
Theorem | joincomALT 18034 | The join of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 16-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | joincom 18035 | The join of a poset is commutative. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ i.e., "the joins exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 16-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑌, 𝑋〉 ∈ dom ∨ )) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | meetcomALT 18036 | The meet of a poset is commutative. (This may not be a theorem under other definitions of meet.) (Contributed by NM, 17-Sep-2011.) (New usage is discouraged.) (Proof modification is discouraged.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
Theorem | meetcom 18037 | The meet of a poset is commutative. (The antecedent 〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ i.e., "the meets exist" could be omitted as an artifact of our particular join definition, but other definitions may require it.) (Contributed by NM, 17-Sep-2011.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (((𝐾 ∈ Poset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (〈𝑋, 𝑌〉 ∈ dom ∧ ∧ 〈𝑌, 𝑋〉 ∈ dom ∧ )) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
Theorem | join0 18038 | Lemma for odumeet 18043. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ (join‘∅) = ∅ | ||
Theorem | meet0 18039 | Lemma for odujoin 18041. (Contributed by Stefan O'Rear, 29-Jan-2015.) TODO (df-riota 7212 update): This proof increased from 152 bytes to 547 bytes after the df-riota 7212 change. Any way to shorten it? join0 18038 also. |
⊢ (meet‘∅) = ∅ | ||
Theorem | odulub 18040 | Least upper bounds in a dual order are greatest lower bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝐿 = (glb‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → 𝐿 = (lub‘𝐷)) | ||
Theorem | odujoin 18041 | Joins in a dual order are meets in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ∧ = (meet‘𝑂) ⇒ ⊢ ∧ = (join‘𝐷) | ||
Theorem | oduglb 18042 | Greatest lower bounds in a dual order are least upper bounds in the original order. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ 𝑈 = (lub‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → 𝑈 = (glb‘𝐷)) | ||
Theorem | odumeet 18043 | Meets in a dual order are joins in the original. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) & ⊢ ∨ = (join‘𝑂) ⇒ ⊢ ∨ = (meet‘𝐷) | ||
Theorem | poslubmo 18044* | Least upper bounds in a poset are unique if they exist. (Contributed by Stefan O'Rear, 31-Jan-2015.) (Revised by NM, 16-Jun-2017.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑥 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑦 ≤ 𝑧 → 𝑥 ≤ 𝑧))) | ||
Theorem | posglbmo 18045* | Greatest lower bounds in a poset are unique if they exist. (Contributed by NM, 20-Sep-2018.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) ⇒ ⊢ ((𝐾 ∈ Poset ∧ 𝑆 ⊆ 𝐵) → ∃*𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑥 ≤ 𝑦 ∧ ∀𝑧 ∈ 𝐵 (∀𝑦 ∈ 𝑆 𝑧 ≤ 𝑦 → 𝑧 ≤ 𝑥))) | ||
Theorem | poslubd 18046* | Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
Theorem | poslubdg 18047* | Properties which determine the least upper bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝑈 = (lub‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑥 ≤ 𝑇) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑥 ≤ 𝑦) → 𝑇 ≤ 𝑦) ⇒ ⊢ (𝜑 → (𝑈‘𝑆) = 𝑇) | ||
Theorem | posglbdg 18048* | Properties which determine the greatest lower bound in a poset. (Contributed by Stefan O'Rear, 31-Jan-2015.) |
⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐵 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐺 = (glb‘𝐾)) & ⊢ (𝜑 → 𝐾 ∈ Poset) & ⊢ (𝜑 → 𝑆 ⊆ 𝐵) & ⊢ (𝜑 → 𝑇 ∈ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑆) → 𝑇 ≤ 𝑥) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝑆 𝑦 ≤ 𝑥) → 𝑦 ≤ 𝑇) ⇒ ⊢ (𝜑 → (𝐺‘𝑆) = 𝑇) | ||
Syntax | ctos 18049 | Extend class notation with the class of all tosets. |
class Toset | ||
Definition | df-toset 18050* | Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014.) |
⊢ Toset = {𝑓 ∈ Poset ∣ [(Base‘𝑓) / 𝑏][(le‘𝑓) / 𝑟]∀𝑥 ∈ 𝑏 ∀𝑦 ∈ 𝑏 (𝑥𝑟𝑦 ∨ 𝑦𝑟𝑥)} | ||
Theorem | istos 18051* | The predicate "is a toset". (Contributed by FL, 17-Nov-2014.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ (𝐾 ∈ Toset ↔ (𝐾 ∈ Poset ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐵 (𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥))) | ||
Theorem | tosso 18052 | Write the totally ordered set structure predicate in terms of the proper class strict order predicate. (Contributed by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → (𝐾 ∈ Toset ↔ ( < Or 𝐵 ∧ ( I ↾ 𝐵) ⊆ ≤ ))) | ||
Theorem | tospos 18053 | A Toset is a Poset. (Contributed by Thierry Arnoux, 20-Jan-2018.) |
⊢ (𝐹 ∈ Toset → 𝐹 ∈ Poset) | ||
Theorem | tleile 18054 | In a Toset, any two elements are comparable. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ∨ 𝑌 ≤ 𝑋)) | ||
Theorem | tltnle 18055 | In a Toset, "less than" is equivalent to the negation of the converse of "less than or equal to", see pltnle 17971. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ < = (lt‘𝐾) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 < 𝑌 ↔ ¬ 𝑌 ≤ 𝑋)) | ||
Syntax | cp0 18056 | Extend class notation with poset zero. |
class 0. | ||
Syntax | cp1 18057 | Extend class notation with poset unit. |
class 1. | ||
Definition | df-p0 18058 | Define poset zero. (Contributed by NM, 12-Oct-2011.) |
⊢ 0. = (𝑝 ∈ V ↦ ((glb‘𝑝)‘(Base‘𝑝))) | ||
Definition | df-p1 18059 | Define poset unit. (Contributed by NM, 22-Oct-2011.) |
⊢ 1. = (𝑝 ∈ V ↦ ((lub‘𝑝)‘(Base‘𝑝))) | ||
Theorem | p0val 18060 | Value of poset zero. (Contributed by NM, 12-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ 0 = (0.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 0 = (𝐺‘𝐵)) | ||
Theorem | p1val 18061 | Value of poset zero. (Contributed by NM, 22-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ 1 = (1.‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑉 → 1 = (𝑈‘𝐵)) | ||
Theorem | p0le 18062 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝐺 = (glb‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 0 = (0.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝐺) ⇒ ⊢ (𝜑 → 0 ≤ 𝑋) | ||
Theorem | ple1 18063 | Any element is less than or equal to a poset's upper bound (if defined). (Contributed by NM, 22-Oct-2011.) (Revised by NM, 13-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ 𝑈 = (lub‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ 1 = (1.‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑈) ⇒ ⊢ (𝜑 → 𝑋 ≤ 1 ) | ||
Syntax | clat 18064 | Extend class notation with the class of all lattices. |
class Lat | ||
Definition | df-lat 18065 | Define the class of all lattices. A lattice is a poset in which the join and meet of any two elements always exists. (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
⊢ Lat = {𝑝 ∈ Poset ∣ (dom (join‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)) ∧ dom (meet‘𝑝) = ((Base‘𝑝) × (Base‘𝑝)))} | ||
Theorem | islat 18066 | The predicate "is a lattice". (Contributed by NM, 18-Oct-2012.) (Revised by NM, 12-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ (𝐾 ∈ Lat ↔ (𝐾 ∈ Poset ∧ (dom ∨ = (𝐵 × 𝐵) ∧ dom ∧ = (𝐵 × 𝐵)))) | ||
Theorem | odulatb 18067 | Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ Lat ↔ 𝐷 ∈ Lat)) | ||
Theorem | odulat 18068 | Being a lattice is self-dual. (Contributed by Stefan O'Rear, 29-Jan-2015.) |
⊢ 𝐷 = (ODual‘𝑂) ⇒ ⊢ (𝑂 ∈ Lat → 𝐷 ∈ Lat) | ||
Theorem | latcl2 18069 | The join and meet of any two elements exist. (Contributed by NM, 14-Sep-2018.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (〈𝑋, 𝑌〉 ∈ dom ∨ ∧ 〈𝑋, 𝑌〉 ∈ dom ∧ )) | ||
Theorem | latlem 18070 | Lemma for lattice properties. (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ∨ 𝑌) ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵)) | ||
Theorem | latpos 18071 | A lattice is a poset. (Contributed by NM, 17-Sep-2011.) |
⊢ (𝐾 ∈ Lat → 𝐾 ∈ Poset) | ||
Theorem | latjcl 18072 | Closure of join operation in a lattice. (chjcom 29769 analog.) (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) ∈ 𝐵) | ||
Theorem | latmcl 18073 | Closure of meet operation in a lattice. (incom 4131 analog.) (Contributed by NM, 14-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) | ||
Theorem | latref 18074 | A lattice ordering is reflexive. (ssid 3939 analog.) (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → 𝑋 ≤ 𝑋) | ||
Theorem | latasymb 18075 | A lattice ordering is asymmetric. (eqss 3932 analog.) (Contributed by NM, 22-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) ↔ 𝑋 = 𝑌)) | ||
Theorem | latasym 18076 | A lattice ordering is asymmetric. (eqss 3932 analog.) (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑋) → 𝑋 = 𝑌)) | ||
Theorem | lattr 18077 | A lattice ordering is transitive. (sstr 3925 analog.) (Contributed by NM, 17-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑌 ≤ 𝑍) → 𝑋 ≤ 𝑍)) | ||
Theorem | latasymd 18078 | Deduce equality from lattice ordering. (eqssd 3934 analog.) (Contributed by NM, 18-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑋) ⇒ ⊢ (𝜑 → 𝑋 = 𝑌) | ||
Theorem | lattrd 18079 | A lattice ordering is transitive. Deduction version of lattr 18077. (Contributed by NM, 3-Sep-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ (𝜑 → 𝐾 ∈ Lat) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) & ⊢ (𝜑 → 𝑌 ≤ 𝑍) ⇒ ⊢ (𝜑 → 𝑋 ≤ 𝑍) | ||
Theorem | latjcom 18080 | The join of a lattice commutes. (chjcom 29769 analog.) (Contributed by NM, 16-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∨ 𝑌) = (𝑌 ∨ 𝑋)) | ||
Theorem | latlej1 18081 | A join's first argument is less than or equal to the join. (chub1 29770 analog.) (Contributed by NM, 17-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑋 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | latlej2 18082 | A join's second argument is less than or equal to the join. (chub2 29771 analog.) (Contributed by NM, 17-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → 𝑌 ≤ (𝑋 ∨ 𝑌)) | ||
Theorem | latjle12 18083 | A join is less than or equal to a third value iff each argument is less than or equal to the third value. (chlub 29772 analog.) (Contributed by NM, 17-Sep-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑍 ∧ 𝑌 ≤ 𝑍) ↔ (𝑋 ∨ 𝑌) ≤ 𝑍)) | ||
Theorem | latleeqj1 18084 | "Less than or equal to" in terms of join. (chlejb1 29775 analog.) (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∨ 𝑌) = 𝑌)) | ||
Theorem | latleeqj2 18085 | "Less than or equal to" in terms of join. (chlejb2 29776 analog.) (Contributed by NM, 14-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑌 ∨ 𝑋) = 𝑌)) | ||
Theorem | latjlej1 18086 | Add join to both sides of a lattice ordering. (chlej1i 29736 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑍))) | ||
Theorem | latjlej2 18087 | Add join to both sides of a lattice ordering. (chlej2i 29737 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → (𝑋 ≤ 𝑌 → (𝑍 ∨ 𝑋) ≤ (𝑍 ∨ 𝑌))) | ||
Theorem | latjlej12 18088 | Add join to both sides of a lattice ordering. (chlej12i 29738 analog.) (Contributed by NM, 8-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑍 ∈ 𝐵 ∧ 𝑊 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑍 ≤ 𝑊) → (𝑋 ∨ 𝑍) ≤ (𝑌 ∨ 𝑊))) | ||
Theorem | latnlej 18089 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 28-May-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (𝑋 ≠ 𝑌 ∧ 𝑋 ≠ 𝑍)) | ||
Theorem | latnlej1l 18090 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑌) | ||
Theorem | latnlej1r 18091 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → 𝑋 ≠ 𝑍) | ||
Theorem | latnlej2 18092 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 10-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → (¬ 𝑋 ≤ 𝑌 ∧ ¬ 𝑋 ≤ 𝑍)) | ||
Theorem | latnlej2l 18093 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → ¬ 𝑋 ≤ 𝑌) | ||
Theorem | latnlej2r 18094 | An idiom to express that a lattice element differs from two others. (Contributed by NM, 19-Jul-2012.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ ¬ 𝑋 ≤ (𝑌 ∨ 𝑍)) → ¬ 𝑋 ≤ 𝑍) | ||
Theorem | latjidm 18095 | Lattice join is idempotent. Analogue of unidm 4082. (Contributed by NM, 8-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∨ = (join‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵) → (𝑋 ∨ 𝑋) = 𝑋) | ||
Theorem | latmcom 18096 | The join of a lattice commutes. (Contributed by NM, 6-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) | ||
Theorem | latmle1 18097 | A meet is less than or equal to its first argument. (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑋) | ||
Theorem | latmle2 18098 | A meet is less than or equal to its second argument. (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ≤ 𝑌) | ||
Theorem | latlem12 18099 | An element is less than or equal to a meet iff the element is less than or equal to each argument of the meet. (Contributed by NM, 21-Oct-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵)) → ((𝑋 ≤ 𝑌 ∧ 𝑋 ≤ 𝑍) ↔ 𝑋 ≤ (𝑌 ∧ 𝑍))) | ||
Theorem | latleeqm1 18100 | "Less than or equal to" in terms of meet. (Contributed by NM, 7-Nov-2011.) |
⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = (le‘𝐾) & ⊢ ∧ = (meet‘𝐾) ⇒ ⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ≤ 𝑌 ↔ (𝑋 ∧ 𝑌) = 𝑋)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |