MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Visualization version   GIF version

Theorem setcval 18014
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c 𝐶 = (SetCat‘𝑈)
setcval.u (𝜑𝑈𝑉)
setcval.h (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
setcval.o (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
setcval (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem setcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2 𝐶 = (SetCat‘𝑈)
2 df-setc 18013 . . 3 SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
3 simpr 486 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
43opeq2d 4876 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Base‘ndx), 𝑢⟩ = ⟨(Base‘ndx), 𝑈⟩)
5 eqidd 2734 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑦m 𝑥) = (𝑦m 𝑥))
63, 3, 5mpoeq123dv 7471 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
7 setcval.h . . . . . . 7 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
87adantr 482 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
96, 8eqtr4d 2776 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = 𝐻)
109opeq2d 4876 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
113sqxpeqd 5704 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑢 × 𝑢) = (𝑈 × 𝑈))
12 eqidd 2734 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
1311, 3, 12mpoeq123dv 7471 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
14 setcval.o . . . . . . 7 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1514adantr 482 . . . . . 6 ((𝜑𝑢 = 𝑈) → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1613, 15eqtr4d 2776 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = · )
1716opeq2d 4876 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
184, 10, 17tpeq123d 4748 . . 3 ((𝜑𝑢 = 𝑈) → {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
19 setcval.u . . . 4 (𝜑𝑈𝑉)
2019elexd 3495 . . 3 (𝜑𝑈 ∈ V)
21 tpex 7721 . . . 4 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
2221a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6995 . 2 (𝜑 → (SetCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
241, 23eqtrid 2785 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  Vcvv 3475  {ctp 4628  cop 4630   × cxp 5670  ccom 5676  cfv 6535  (class class class)co 7396  cmpo 7398  1st c1st 7960  2nd c2nd 7961  m cmap 8808  ndxcnx 17113  Basecbs 17131  Hom chom 17195  compcco 17196  SetCatcsetc 18012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5295  ax-nul 5302  ax-pr 5423  ax-un 7712
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4321  df-if 4525  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4905  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-iota 6487  df-fun 6537  df-fv 6543  df-oprab 7400  df-mpo 7401  df-setc 18013
This theorem is referenced by:  setcbas  18015  setchomfval  18016  setccofval  18019
  Copyright terms: Public domain W3C validator