MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Visualization version   GIF version

Theorem setcval 17708
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c 𝐶 = (SetCat‘𝑈)
setcval.u (𝜑𝑈𝑉)
setcval.h (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
setcval.o (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
setcval (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem setcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2 𝐶 = (SetCat‘𝑈)
2 df-setc 17707 . . 3 SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
3 simpr 484 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
43opeq2d 4808 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Base‘ndx), 𝑢⟩ = ⟨(Base‘ndx), 𝑈⟩)
5 eqidd 2739 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑦m 𝑥) = (𝑦m 𝑥))
63, 3, 5mpoeq123dv 7328 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
7 setcval.h . . . . . . 7 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
87adantr 480 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
96, 8eqtr4d 2781 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = 𝐻)
109opeq2d 4808 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
113sqxpeqd 5612 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑢 × 𝑢) = (𝑈 × 𝑈))
12 eqidd 2739 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
1311, 3, 12mpoeq123dv 7328 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
14 setcval.o . . . . . . 7 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1514adantr 480 . . . . . 6 ((𝜑𝑢 = 𝑈) → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1613, 15eqtr4d 2781 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = · )
1716opeq2d 4808 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
184, 10, 17tpeq123d 4681 . . 3 ((𝜑𝑢 = 𝑈) → {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
19 setcval.u . . . 4 (𝜑𝑈𝑉)
2019elexd 3442 . . 3 (𝜑𝑈 ∈ V)
21 tpex 7575 . . . 4 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
2221a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6865 . 2 (𝜑 → (SetCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
241, 23eqtrid 2790 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  {ctp 4562  cop 4564   × cxp 5578  ccom 5584  cfv 6418  (class class class)co 7255  cmpo 7257  1st c1st 7802  2nd c2nd 7803  m cmap 8573  ndxcnx 16822  Basecbs 16840  Hom chom 16899  compcco 16900  SetCatcsetc 17706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-oprab 7259  df-mpo 7260  df-setc 17707
This theorem is referenced by:  setcbas  17709  setchomfval  17710  setccofval  17713
  Copyright terms: Public domain W3C validator