MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Visualization version   GIF version

Theorem setcval 18090
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c 𝐶 = (SetCat‘𝑈)
setcval.u (𝜑𝑈𝑉)
setcval.h (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
setcval.o (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
Assertion
Ref Expression
setcval (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,𝑥,𝑦,𝑧   𝜑,𝑣,𝑥,𝑦,𝑧   𝑣,𝑈,𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐶(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   · (𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑈(𝑓,𝑔)   𝐻(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem setcval
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2 𝐶 = (SetCat‘𝑈)
2 df-setc 18089 . . 3 SetCat = (𝑢 ∈ V ↦ {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩})
3 simpr 484 . . . . 5 ((𝜑𝑢 = 𝑈) → 𝑢 = 𝑈)
43opeq2d 4856 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Base‘ndx), 𝑢⟩ = ⟨(Base‘ndx), 𝑈⟩)
5 eqidd 2736 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑦m 𝑥) = (𝑦m 𝑥))
63, 3, 5mpoeq123dv 7482 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
7 setcval.h . . . . . . 7 (𝜑𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
87adantr 480 . . . . . 6 ((𝜑𝑢 = 𝑈) → 𝐻 = (𝑥𝑈, 𝑦𝑈 ↦ (𝑦m 𝑥)))
96, 8eqtr4d 2773 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥)) = 𝐻)
109opeq2d 4856 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩ = ⟨(Hom ‘ndx), 𝐻⟩)
113sqxpeqd 5686 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑢 × 𝑢) = (𝑈 × 𝑈))
12 eqidd 2736 . . . . . . 7 ((𝜑𝑢 = 𝑈) → (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)) = (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))
1311, 3, 12mpoeq123dv 7482 . . . . . 6 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
14 setcval.o . . . . . . 7 (𝜑· = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1514adantr 480 . . . . . 6 ((𝜑𝑢 = 𝑈) → · = (𝑣 ∈ (𝑈 × 𝑈), 𝑧𝑈 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))))
1613, 15eqtr4d 2773 . . . . 5 ((𝜑𝑢 = 𝑈) → (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓))) = · )
1716opeq2d 4856 . . . 4 ((𝜑𝑢 = 𝑈) → ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩ = ⟨(comp‘ndx), · ⟩)
184, 10, 17tpeq123d 4724 . . 3 ((𝜑𝑢 = 𝑈) → {⟨(Base‘ndx), 𝑢⟩, ⟨(Hom ‘ndx), (𝑥𝑢, 𝑦𝑢 ↦ (𝑦m 𝑥))⟩, ⟨(comp‘ndx), (𝑣 ∈ (𝑢 × 𝑢), 𝑧𝑢 ↦ (𝑔 ∈ (𝑧m (2nd𝑣)), 𝑓 ∈ ((2nd𝑣) ↑m (1st𝑣)) ↦ (𝑔𝑓)))⟩} = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
19 setcval.u . . . 4 (𝜑𝑈𝑉)
2019elexd 3483 . . 3 (𝜑𝑈 ∈ V)
21 tpex 7740 . . . 4 {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V
2221a1i 11 . . 3 (𝜑 → {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6994 . 2 (𝜑 → (SetCat‘𝑈) = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
241, 23eqtrid 2782 1 (𝜑𝐶 = {⟨(Base‘ndx), 𝑈⟩, ⟨(Hom ‘ndx), 𝐻⟩, ⟨(comp‘ndx), · ⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  {ctp 4605  cop 4607   × cxp 5652  ccom 5658  cfv 6531  (class class class)co 7405  cmpo 7407  1st c1st 7986  2nd c2nd 7987  m cmap 8840  ndxcnx 17212  Basecbs 17228  Hom chom 17282  compcco 17283  SetCatcsetc 18088
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-iota 6484  df-fun 6533  df-fv 6539  df-oprab 7409  df-mpo 7410  df-setc 18089
This theorem is referenced by:  setcbas  18091  setchomfval  18092  setccofval  18095
  Copyright terms: Public domain W3C validator