MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  setcval Structured version   Visualization version   GIF version

Theorem setcval 18009
Description: Value of the category of sets (in a universe). (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
setcval.c 𝐢 = (SetCatβ€˜π‘ˆ)
setcval.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
setcval.h (πœ‘ β†’ 𝐻 = (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ (𝑦 ↑m π‘₯)))
setcval.o (πœ‘ β†’ Β· = (𝑣 ∈ (π‘ˆ Γ— π‘ˆ), 𝑧 ∈ π‘ˆ ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
Assertion
Ref Expression
setcval (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Distinct variable groups:   𝑓,𝑔,𝑣,π‘₯,𝑦,𝑧   πœ‘,𝑣,π‘₯,𝑦,𝑧   𝑣,π‘ˆ,π‘₯,𝑦,𝑧
Allowed substitution hints:   πœ‘(𝑓,𝑔)   𝐢(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   Β· (π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   π‘ˆ(𝑓,𝑔)   𝐻(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)   𝑉(π‘₯,𝑦,𝑧,𝑣,𝑓,𝑔)

Proof of Theorem setcval
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 setcval.c . 2 𝐢 = (SetCatβ€˜π‘ˆ)
2 df-setc 18008 . . 3 SetCat = (𝑒 ∈ V ↦ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩})
3 simpr 485 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ 𝑒 = π‘ˆ)
43opeq2d 4873 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ ⟨(Baseβ€˜ndx), π‘’βŸ© = ⟨(Baseβ€˜ndx), π‘ˆβŸ©)
5 eqidd 2732 . . . . . . 7 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑦 ↑m π‘₯) = (𝑦 ↑m π‘₯))
63, 3, 5mpoeq123dv 7468 . . . . . 6 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯)) = (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ (𝑦 ↑m π‘₯)))
7 setcval.h . . . . . . 7 (πœ‘ β†’ 𝐻 = (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ (𝑦 ↑m π‘₯)))
87adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ 𝐻 = (π‘₯ ∈ π‘ˆ, 𝑦 ∈ π‘ˆ ↦ (𝑦 ↑m π‘₯)))
96, 8eqtr4d 2774 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯)) = 𝐻)
109opeq2d 4873 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯))⟩ = ⟨(Hom β€˜ndx), 𝐻⟩)
113sqxpeqd 5701 . . . . . . 7 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑒 Γ— 𝑒) = (π‘ˆ Γ— π‘ˆ))
12 eqidd 2732 . . . . . . 7 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)) = (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))
1311, 3, 12mpoeq123dv 7468 . . . . . 6 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))) = (𝑣 ∈ (π‘ˆ Γ— π‘ˆ), 𝑧 ∈ π‘ˆ ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
14 setcval.o . . . . . . 7 (πœ‘ β†’ Β· = (𝑣 ∈ (π‘ˆ Γ— π‘ˆ), 𝑧 ∈ π‘ˆ ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
1514adantr 481 . . . . . 6 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ Β· = (𝑣 ∈ (π‘ˆ Γ— π‘ˆ), 𝑧 ∈ π‘ˆ ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))))
1613, 15eqtr4d 2774 . . . . 5 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓))) = Β· )
1716opeq2d 4873 . . . 4 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩ = ⟨(compβ€˜ndx), Β· ⟩)
184, 10, 17tpeq123d 4745 . . 3 ((πœ‘ ∧ 𝑒 = π‘ˆ) β†’ {⟨(Baseβ€˜ndx), π‘’βŸ©, ⟨(Hom β€˜ndx), (π‘₯ ∈ 𝑒, 𝑦 ∈ 𝑒 ↦ (𝑦 ↑m π‘₯))⟩, ⟨(compβ€˜ndx), (𝑣 ∈ (𝑒 Γ— 𝑒), 𝑧 ∈ 𝑒 ↦ (𝑔 ∈ (𝑧 ↑m (2nd β€˜π‘£)), 𝑓 ∈ ((2nd β€˜π‘£) ↑m (1st β€˜π‘£)) ↦ (𝑔 ∘ 𝑓)))⟩} = {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
19 setcval.u . . . 4 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
2019elexd 3493 . . 3 (πœ‘ β†’ π‘ˆ ∈ V)
21 tpex 7717 . . . 4 {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V
2221a1i 11 . . 3 (πœ‘ β†’ {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩} ∈ V)
232, 18, 20, 22fvmptd2 6992 . 2 (πœ‘ β†’ (SetCatβ€˜π‘ˆ) = {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
241, 23eqtrid 2783 1 (πœ‘ β†’ 𝐢 = {⟨(Baseβ€˜ndx), π‘ˆβŸ©, ⟨(Hom β€˜ndx), 𝐻⟩, ⟨(compβ€˜ndx), Β· ⟩})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3473  {ctp 4626  βŸ¨cop 4628   Γ— cxp 5667   ∘ ccom 5673  β€˜cfv 6532  (class class class)co 7393   ∈ cmpo 7395  1st c1st 7955  2nd c2nd 7956   ↑m cmap 8803  ndxcnx 17108  Basecbs 17126  Hom chom 17190  compcco 17191  SetCatcsetc 18007
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-iota 6484  df-fun 6534  df-fv 6540  df-oprab 7397  df-mpo 7398  df-setc 18008
This theorem is referenced by:  setcbas  18010  setchomfval  18011  setccofval  18014
  Copyright terms: Public domain W3C validator