Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 35590
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,,𝑗,𝑚,𝑝,𝑟,𝑠,𝑡

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 35577 . 2 class splitFld1
2 vr . . 3 setvar 𝑟
3 vj . . 3 setvar 𝑗
4 cvv 3464 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1538 . . . . 5 class 𝑟
7 cpl1 22145 . . . . 5 class Poly1
86, 7cfv 6542 . . . 4 class (Poly1𝑟)
9 c1 11139 . . . . . . 7 class 1
105cv 1538 . . . . . . . 8 class 𝑝
11 cdg1 26048 . . . . . . . 8 class deg1
126, 10, 11co 7414 . . . . . . 7 class (𝑟deg1𝑝)
13 cfz 13530 . . . . . . 7 class ...
149, 12, 13co 7414 . . . . . 6 class (1...(𝑟deg1𝑝))
15 ccrd 9958 . . . . . 6 class card
1614, 15cfv 6542 . . . . 5 class (card‘(1...(𝑟deg1𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar 𝑚
2017cv 1538 . . . . . . . . 9 class 𝑠
2120, 7cfv 6542 . . . . . . . 8 class (Poly1𝑠)
22 vb . . . . . . . . 9 setvar 𝑏
23 vg . . . . . . . . . . . . 13 setvar 𝑔
2423cv 1538 . . . . . . . . . . . 12 class 𝑔
2518cv 1538 . . . . . . . . . . . . 13 class 𝑓
2610, 25ccom 5671 . . . . . . . . . . . 12 class (𝑝𝑓)
2719cv 1538 . . . . . . . . . . . . 13 class 𝑚
28 cdsr 20327 . . . . . . . . . . . . 13 class r
2927, 28cfv 6542 . . . . . . . . . . . 12 class (∥r𝑚)
3024, 26, 29wbr 5125 . . . . . . . . . . 11 wff 𝑔(∥r𝑚)(𝑝𝑓)
3120, 24, 11co 7414 . . . . . . . . . . . 12 class (𝑠deg1𝑔)
32 clt 11278 . . . . . . . . . . . 12 class <
339, 31, 32wbr 5125 . . . . . . . . . . 11 wff 1 < (𝑠deg1𝑔)
3430, 33wa 395 . . . . . . . . . 10 wff (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))
35 cmn1 26120 . . . . . . . . . . . 12 class Monic1p
3620, 35cfv 6542 . . . . . . . . . . 11 class (Monic1p𝑠)
37 cir 20329 . . . . . . . . . . . 12 class Irred
3827, 37cfv 6542 . . . . . . . . . . 11 class (Irred‘𝑚)
3936, 38cin 3932 . . . . . . . . . 10 class ((Monic1p𝑠) ∩ (Irred‘𝑚))
4034, 23, 39crab 3420 . . . . . . . . 9 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))}
41 c0g 17460 . . . . . . . . . . . . 13 class 0g
4227, 41cfv 6542 . . . . . . . . . . . 12 class (0g𝑚)
4326, 42wceq 1539 . . . . . . . . . . 11 wff (𝑝𝑓) = (0g𝑚)
4422cv 1538 . . . . . . . . . . . 12 class 𝑏
45 c0 4315 . . . . . . . . . . . 12 class
4644, 45wceq 1539 . . . . . . . . . . 11 wff 𝑏 = ∅
4743, 46wo 847 . . . . . . . . . 10 wff ((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅)
4820, 25cop 4614 . . . . . . . . . 10 class 𝑠, 𝑓
49 vh . . . . . . . . . . 11 setvar
50 cglb 18331 . . . . . . . . . . . 12 class glb
5144, 50cfv 6542 . . . . . . . . . . 11 class (glb‘𝑏)
52 vt . . . . . . . . . . . 12 setvar 𝑡
5349cv 1538 . . . . . . . . . . . . 13 class
54 cpfl 35576 . . . . . . . . . . . . 13 class polyFld
5520, 53, 54co 7414 . . . . . . . . . . . 12 class (𝑠 polyFld )
5652cv 1538 . . . . . . . . . . . . . 14 class 𝑡
57 c1st 7995 . . . . . . . . . . . . . 14 class 1st
5856, 57cfv 6542 . . . . . . . . . . . . 13 class (1st𝑡)
59 c2nd 7996 . . . . . . . . . . . . . . 15 class 2nd
6056, 59cfv 6542 . . . . . . . . . . . . . 14 class (2nd𝑡)
6125, 60ccom 5671 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd𝑡))
6258, 61cop 4614 . . . . . . . . . . . 12 class ⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6352, 55, 62csb 3881 . . . . . . . . . . 11 class (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6449, 51, 63csb 3881 . . . . . . . . . 10 class (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6547, 48, 64cif 4507 . . . . . . . . 9 class if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6622, 40, 65csb 3881 . . . . . . . 8 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6719, 21, 66csb 3881 . . . . . . 7 class (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6817, 18, 4, 4, 67cmpo 7416 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩))
693cv 1538 . . . . . 6 class 𝑗
7068, 69crdg 8432 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)
7116, 70cfv 6542 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))
725, 8, 71cmpt 5207 . . 3 class (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))
732, 3, 4, 4, 72cmpo 7416 . 2 class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
741, 73wceq 1539 1 wff splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator