Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 35688
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,,𝑗,𝑚,𝑝,𝑟,𝑠,𝑡

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 35675 . 2 class splitFld1
2 vr . . 3 setvar 𝑟
3 vj . . 3 setvar 𝑗
4 cvv 3436 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1540 . . . . 5 class 𝑟
7 cpl1 22089 . . . . 5 class Poly1
86, 7cfv 6481 . . . 4 class (Poly1𝑟)
9 c1 11007 . . . . . . 7 class 1
105cv 1540 . . . . . . . 8 class 𝑝
11 cdg1 25986 . . . . . . . 8 class deg1
126, 10, 11co 7346 . . . . . . 7 class (𝑟deg1𝑝)
13 cfz 13407 . . . . . . 7 class ...
149, 12, 13co 7346 . . . . . 6 class (1...(𝑟deg1𝑝))
15 ccrd 9828 . . . . . 6 class card
1614, 15cfv 6481 . . . . 5 class (card‘(1...(𝑟deg1𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar 𝑚
2017cv 1540 . . . . . . . . 9 class 𝑠
2120, 7cfv 6481 . . . . . . . 8 class (Poly1𝑠)
22 vb . . . . . . . . 9 setvar 𝑏
23 vg . . . . . . . . . . . . 13 setvar 𝑔
2423cv 1540 . . . . . . . . . . . 12 class 𝑔
2518cv 1540 . . . . . . . . . . . . 13 class 𝑓
2610, 25ccom 5618 . . . . . . . . . . . 12 class (𝑝𝑓)
2719cv 1540 . . . . . . . . . . . . 13 class 𝑚
28 cdsr 20272 . . . . . . . . . . . . 13 class r
2927, 28cfv 6481 . . . . . . . . . . . 12 class (∥r𝑚)
3024, 26, 29wbr 5089 . . . . . . . . . . 11 wff 𝑔(∥r𝑚)(𝑝𝑓)
3120, 24, 11co 7346 . . . . . . . . . . . 12 class (𝑠deg1𝑔)
32 clt 11146 . . . . . . . . . . . 12 class <
339, 31, 32wbr 5089 . . . . . . . . . . 11 wff 1 < (𝑠deg1𝑔)
3430, 33wa 395 . . . . . . . . . 10 wff (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))
35 cmn1 26058 . . . . . . . . . . . 12 class Monic1p
3620, 35cfv 6481 . . . . . . . . . . 11 class (Monic1p𝑠)
37 cir 20274 . . . . . . . . . . . 12 class Irred
3827, 37cfv 6481 . . . . . . . . . . 11 class (Irred‘𝑚)
3936, 38cin 3896 . . . . . . . . . 10 class ((Monic1p𝑠) ∩ (Irred‘𝑚))
4034, 23, 39crab 3395 . . . . . . . . 9 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))}
41 c0g 17343 . . . . . . . . . . . . 13 class 0g
4227, 41cfv 6481 . . . . . . . . . . . 12 class (0g𝑚)
4326, 42wceq 1541 . . . . . . . . . . 11 wff (𝑝𝑓) = (0g𝑚)
4422cv 1540 . . . . . . . . . . . 12 class 𝑏
45 c0 4280 . . . . . . . . . . . 12 class
4644, 45wceq 1541 . . . . . . . . . . 11 wff 𝑏 = ∅
4743, 46wo 847 . . . . . . . . . 10 wff ((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅)
4820, 25cop 4579 . . . . . . . . . 10 class 𝑠, 𝑓
49 vh . . . . . . . . . . 11 setvar
50 cglb 18216 . . . . . . . . . . . 12 class glb
5144, 50cfv 6481 . . . . . . . . . . 11 class (glb‘𝑏)
52 vt . . . . . . . . . . . 12 setvar 𝑡
5349cv 1540 . . . . . . . . . . . . 13 class
54 cpfl 35674 . . . . . . . . . . . . 13 class polyFld
5520, 53, 54co 7346 . . . . . . . . . . . 12 class (𝑠 polyFld )
5652cv 1540 . . . . . . . . . . . . . 14 class 𝑡
57 c1st 7919 . . . . . . . . . . . . . 14 class 1st
5856, 57cfv 6481 . . . . . . . . . . . . 13 class (1st𝑡)
59 c2nd 7920 . . . . . . . . . . . . . . 15 class 2nd
6056, 59cfv 6481 . . . . . . . . . . . . . 14 class (2nd𝑡)
6125, 60ccom 5618 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd𝑡))
6258, 61cop 4579 . . . . . . . . . . . 12 class ⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6352, 55, 62csb 3845 . . . . . . . . . . 11 class (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6449, 51, 63csb 3845 . . . . . . . . . 10 class (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6547, 48, 64cif 4472 . . . . . . . . 9 class if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6622, 40, 65csb 3845 . . . . . . . 8 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6719, 21, 66csb 3845 . . . . . . 7 class (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6817, 18, 4, 4, 67cmpo 7348 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩))
693cv 1540 . . . . . 6 class 𝑗
7068, 69crdg 8328 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)
7116, 70cfv 6481 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))
725, 8, 71cmpt 5170 . . 3 class (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))
732, 3, 4, 4, 72cmpo 7348 . 2 class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
741, 73wceq 1541 1 wff splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator