Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 35631
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,,𝑗,𝑚,𝑝,𝑟,𝑠,𝑡

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 35618 . 2 class splitFld1
2 vr . . 3 setvar 𝑟
3 vj . . 3 setvar 𝑗
4 cvv 3447 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1539 . . . . 5 class 𝑟
7 cpl1 22061 . . . . 5 class Poly1
86, 7cfv 6511 . . . 4 class (Poly1𝑟)
9 c1 11069 . . . . . . 7 class 1
105cv 1539 . . . . . . . 8 class 𝑝
11 cdg1 25959 . . . . . . . 8 class deg1
126, 10, 11co 7387 . . . . . . 7 class (𝑟deg1𝑝)
13 cfz 13468 . . . . . . 7 class ...
149, 12, 13co 7387 . . . . . 6 class (1...(𝑟deg1𝑝))
15 ccrd 9888 . . . . . 6 class card
1614, 15cfv 6511 . . . . 5 class (card‘(1...(𝑟deg1𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar 𝑚
2017cv 1539 . . . . . . . . 9 class 𝑠
2120, 7cfv 6511 . . . . . . . 8 class (Poly1𝑠)
22 vb . . . . . . . . 9 setvar 𝑏
23 vg . . . . . . . . . . . . 13 setvar 𝑔
2423cv 1539 . . . . . . . . . . . 12 class 𝑔
2518cv 1539 . . . . . . . . . . . . 13 class 𝑓
2610, 25ccom 5642 . . . . . . . . . . . 12 class (𝑝𝑓)
2719cv 1539 . . . . . . . . . . . . 13 class 𝑚
28 cdsr 20263 . . . . . . . . . . . . 13 class r
2927, 28cfv 6511 . . . . . . . . . . . 12 class (∥r𝑚)
3024, 26, 29wbr 5107 . . . . . . . . . . 11 wff 𝑔(∥r𝑚)(𝑝𝑓)
3120, 24, 11co 7387 . . . . . . . . . . . 12 class (𝑠deg1𝑔)
32 clt 11208 . . . . . . . . . . . 12 class <
339, 31, 32wbr 5107 . . . . . . . . . . 11 wff 1 < (𝑠deg1𝑔)
3430, 33wa 395 . . . . . . . . . 10 wff (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))
35 cmn1 26031 . . . . . . . . . . . 12 class Monic1p
3620, 35cfv 6511 . . . . . . . . . . 11 class (Monic1p𝑠)
37 cir 20265 . . . . . . . . . . . 12 class Irred
3827, 37cfv 6511 . . . . . . . . . . 11 class (Irred‘𝑚)
3936, 38cin 3913 . . . . . . . . . 10 class ((Monic1p𝑠) ∩ (Irred‘𝑚))
4034, 23, 39crab 3405 . . . . . . . . 9 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))}
41 c0g 17402 . . . . . . . . . . . . 13 class 0g
4227, 41cfv 6511 . . . . . . . . . . . 12 class (0g𝑚)
4326, 42wceq 1540 . . . . . . . . . . 11 wff (𝑝𝑓) = (0g𝑚)
4422cv 1539 . . . . . . . . . . . 12 class 𝑏
45 c0 4296 . . . . . . . . . . . 12 class
4644, 45wceq 1540 . . . . . . . . . . 11 wff 𝑏 = ∅
4743, 46wo 847 . . . . . . . . . 10 wff ((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅)
4820, 25cop 4595 . . . . . . . . . 10 class 𝑠, 𝑓
49 vh . . . . . . . . . . 11 setvar
50 cglb 18271 . . . . . . . . . . . 12 class glb
5144, 50cfv 6511 . . . . . . . . . . 11 class (glb‘𝑏)
52 vt . . . . . . . . . . . 12 setvar 𝑡
5349cv 1539 . . . . . . . . . . . . 13 class
54 cpfl 35617 . . . . . . . . . . . . 13 class polyFld
5520, 53, 54co 7387 . . . . . . . . . . . 12 class (𝑠 polyFld )
5652cv 1539 . . . . . . . . . . . . . 14 class 𝑡
57 c1st 7966 . . . . . . . . . . . . . 14 class 1st
5856, 57cfv 6511 . . . . . . . . . . . . 13 class (1st𝑡)
59 c2nd 7967 . . . . . . . . . . . . . . 15 class 2nd
6056, 59cfv 6511 . . . . . . . . . . . . . 14 class (2nd𝑡)
6125, 60ccom 5642 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd𝑡))
6258, 61cop 4595 . . . . . . . . . . . 12 class ⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6352, 55, 62csb 3862 . . . . . . . . . . 11 class (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6449, 51, 63csb 3862 . . . . . . . . . 10 class (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6547, 48, 64cif 4488 . . . . . . . . 9 class if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6622, 40, 65csb 3862 . . . . . . . 8 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6719, 21, 66csb 3862 . . . . . . 7 class (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6817, 18, 4, 4, 67cmpo 7389 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩))
693cv 1539 . . . . . 6 class 𝑗
7068, 69crdg 8377 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)
7116, 70cfv 6511 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))
725, 8, 71cmpt 5188 . . 3 class (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))
732, 3, 4, 4, 72cmpo 7389 . 2 class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
741, 73wceq 1540 1 wff splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator