Detailed syntax breakdown of Definition df-sfl1
| Step | Hyp | Ref
| Expression |
| 1 | | csf1 35577 |
. 2
class
splitFld1 |
| 2 | | vr |
. . 3
setvar 𝑟 |
| 3 | | vj |
. . 3
setvar 𝑗 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vp |
. . . 4
setvar 𝑝 |
| 6 | 2 | cv 1538 |
. . . . 5
class 𝑟 |
| 7 | | cpl1 22145 |
. . . . 5
class
Poly1 |
| 8 | 6, 7 | cfv 6542 |
. . . 4
class
(Poly1‘𝑟) |
| 9 | | c1 11139 |
. . . . . . 7
class
1 |
| 10 | 5 | cv 1538 |
. . . . . . . 8
class 𝑝 |
| 11 | | cdg1 26048 |
. . . . . . . 8
class
deg1 |
| 12 | 6, 10, 11 | co 7414 |
. . . . . . 7
class (𝑟deg1𝑝) |
| 13 | | cfz 13530 |
. . . . . . 7
class
... |
| 14 | 9, 12, 13 | co 7414 |
. . . . . 6
class
(1...(𝑟deg1𝑝)) |
| 15 | | ccrd 9958 |
. . . . . 6
class
card |
| 16 | 14, 15 | cfv 6542 |
. . . . 5
class
(card‘(1...(𝑟deg1𝑝))) |
| 17 | | vs |
. . . . . . 7
setvar 𝑠 |
| 18 | | vf |
. . . . . . 7
setvar 𝑓 |
| 19 | | vm |
. . . . . . . 8
setvar 𝑚 |
| 20 | 17 | cv 1538 |
. . . . . . . . 9
class 𝑠 |
| 21 | 20, 7 | cfv 6542 |
. . . . . . . 8
class
(Poly1‘𝑠) |
| 22 | | vb |
. . . . . . . . 9
setvar 𝑏 |
| 23 | | vg |
. . . . . . . . . . . . 13
setvar 𝑔 |
| 24 | 23 | cv 1538 |
. . . . . . . . . . . 12
class 𝑔 |
| 25 | 18 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑓 |
| 26 | 10, 25 | ccom 5671 |
. . . . . . . . . . . 12
class (𝑝 ∘ 𝑓) |
| 27 | 19 | cv 1538 |
. . . . . . . . . . . . 13
class 𝑚 |
| 28 | | cdsr 20327 |
. . . . . . . . . . . . 13
class
∥r |
| 29 | 27, 28 | cfv 6542 |
. . . . . . . . . . . 12
class
(∥r‘𝑚) |
| 30 | 24, 26, 29 | wbr 5125 |
. . . . . . . . . . 11
wff 𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) |
| 31 | 20, 24, 11 | co 7414 |
. . . . . . . . . . . 12
class (𝑠deg1𝑔) |
| 32 | | clt 11278 |
. . . . . . . . . . . 12
class
< |
| 33 | 9, 31, 32 | wbr 5125 |
. . . . . . . . . . 11
wff 1 <
(𝑠deg1𝑔) |
| 34 | 30, 33 | wa 395 |
. . . . . . . . . 10
wff (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔)) |
| 35 | | cmn1 26120 |
. . . . . . . . . . . 12
class
Monic1p |
| 36 | 20, 35 | cfv 6542 |
. . . . . . . . . . 11
class
(Monic1p‘𝑠) |
| 37 | | cir 20329 |
. . . . . . . . . . . 12
class
Irred |
| 38 | 27, 37 | cfv 6542 |
. . . . . . . . . . 11
class
(Irred‘𝑚) |
| 39 | 36, 38 | cin 3932 |
. . . . . . . . . 10
class
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) |
| 40 | 34, 23, 39 | crab 3420 |
. . . . . . . . 9
class {𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} |
| 41 | | c0g 17460 |
. . . . . . . . . . . . 13
class
0g |
| 42 | 27, 41 | cfv 6542 |
. . . . . . . . . . . 12
class
(0g‘𝑚) |
| 43 | 26, 42 | wceq 1539 |
. . . . . . . . . . 11
wff (𝑝 ∘ 𝑓) = (0g‘𝑚) |
| 44 | 22 | cv 1538 |
. . . . . . . . . . . 12
class 𝑏 |
| 45 | | c0 4315 |
. . . . . . . . . . . 12
class
∅ |
| 46 | 44, 45 | wceq 1539 |
. . . . . . . . . . 11
wff 𝑏 = ∅ |
| 47 | 43, 46 | wo 847 |
. . . . . . . . . 10
wff ((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅) |
| 48 | 20, 25 | cop 4614 |
. . . . . . . . . 10
class
〈𝑠, 𝑓〉 |
| 49 | | vh |
. . . . . . . . . . 11
setvar ℎ |
| 50 | | cglb 18331 |
. . . . . . . . . . . 12
class
glb |
| 51 | 44, 50 | cfv 6542 |
. . . . . . . . . . 11
class
(glb‘𝑏) |
| 52 | | vt |
. . . . . . . . . . . 12
setvar 𝑡 |
| 53 | 49 | cv 1538 |
. . . . . . . . . . . . 13
class ℎ |
| 54 | | cpfl 35576 |
. . . . . . . . . . . . 13
class
polyFld |
| 55 | 20, 53, 54 | co 7414 |
. . . . . . . . . . . 12
class (𝑠 polyFld ℎ) |
| 56 | 52 | cv 1538 |
. . . . . . . . . . . . . 14
class 𝑡 |
| 57 | | c1st 7995 |
. . . . . . . . . . . . . 14
class
1st |
| 58 | 56, 57 | cfv 6542 |
. . . . . . . . . . . . 13
class
(1st ‘𝑡) |
| 59 | | c2nd 7996 |
. . . . . . . . . . . . . . 15
class
2nd |
| 60 | 56, 59 | cfv 6542 |
. . . . . . . . . . . . . 14
class
(2nd ‘𝑡) |
| 61 | 25, 60 | ccom 5671 |
. . . . . . . . . . . . 13
class (𝑓 ∘ (2nd
‘𝑡)) |
| 62 | 58, 61 | cop 4614 |
. . . . . . . . . . . 12
class
〈(1st ‘𝑡), (𝑓 ∘ (2nd ‘𝑡))〉 |
| 63 | 52, 55, 62 | csb 3881 |
. . . . . . . . . . 11
class
⦋(𝑠
polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉 |
| 64 | 49, 51, 63 | csb 3881 |
. . . . . . . . . 10
class
⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉 |
| 65 | 47, 48, 64 | cif 4507 |
. . . . . . . . 9
class
if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉) |
| 66 | 22, 40, 65 | csb 3881 |
. . . . . . . 8
class
⦋{𝑔
∈ ((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉) |
| 67 | 19, 21, 66 | csb 3881 |
. . . . . . 7
class
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉) |
| 68 | 17, 18, 4, 4, 67 | cmpo 7416 |
. . . . . 6
class (𝑠 ∈ V, 𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)) |
| 69 | 3 | cv 1538 |
. . . . . 6
class 𝑗 |
| 70 | 68, 69 | crdg 8432 |
. . . . 5
class
rec((𝑠 ∈ V,
𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗) |
| 71 | 16, 70 | cfv 6542 |
. . . 4
class
(rec((𝑠 ∈ V,
𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))) |
| 72 | 5, 8, 71 | cmpt 5207 |
. . 3
class (𝑝 ∈
(Poly1‘𝑟)
↦ (rec((𝑠 ∈ V,
𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))) |
| 73 | 2, 3, 4, 4, 72 | cmpo 7416 |
. 2
class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1‘𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) |
| 74 | 1, 73 | wceq 1539 |
1
wff
splitFld1 = (𝑟
∈ V, 𝑗 ∈ V
↦ (𝑝 ∈
(Poly1‘𝑟)
↦ (rec((𝑠 ∈ V,
𝑓 ∈ V ↦
⦋(Poly1‘𝑠) / 𝑚⦌⦋{𝑔 ∈
((Monic1p‘𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r‘𝑚)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏⦌if(((𝑝 ∘ 𝑓) = (0g‘𝑚) ∨ 𝑏 = ∅), 〈𝑠, 𝑓〉, ⦋(glb‘𝑏) / ℎ⦌⦋(𝑠 polyFld ℎ) / 𝑡⦌〈(1st
‘𝑡), (𝑓 ∘ (2nd
‘𝑡))〉)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))) |