Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 35633
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,,𝑗,𝑚,𝑝,𝑟,𝑠,𝑡

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 35620 . 2 class splitFld1
2 vr . . 3 setvar 𝑟
3 vj . . 3 setvar 𝑗
4 cvv 3455 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1539 . . . . 5 class 𝑟
7 cpl1 22067 . . . . 5 class Poly1
86, 7cfv 6519 . . . 4 class (Poly1𝑟)
9 c1 11087 . . . . . . 7 class 1
105cv 1539 . . . . . . . 8 class 𝑝
11 cdg1 25966 . . . . . . . 8 class deg1
126, 10, 11co 7394 . . . . . . 7 class (𝑟deg1𝑝)
13 cfz 13481 . . . . . . 7 class ...
149, 12, 13co 7394 . . . . . 6 class (1...(𝑟deg1𝑝))
15 ccrd 9906 . . . . . 6 class card
1614, 15cfv 6519 . . . . 5 class (card‘(1...(𝑟deg1𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar 𝑚
2017cv 1539 . . . . . . . . 9 class 𝑠
2120, 7cfv 6519 . . . . . . . 8 class (Poly1𝑠)
22 vb . . . . . . . . 9 setvar 𝑏
23 vg . . . . . . . . . . . . 13 setvar 𝑔
2423cv 1539 . . . . . . . . . . . 12 class 𝑔
2518cv 1539 . . . . . . . . . . . . 13 class 𝑓
2610, 25ccom 5650 . . . . . . . . . . . 12 class (𝑝𝑓)
2719cv 1539 . . . . . . . . . . . . 13 class 𝑚
28 cdsr 20269 . . . . . . . . . . . . 13 class r
2927, 28cfv 6519 . . . . . . . . . . . 12 class (∥r𝑚)
3024, 26, 29wbr 5115 . . . . . . . . . . 11 wff 𝑔(∥r𝑚)(𝑝𝑓)
3120, 24, 11co 7394 . . . . . . . . . . . 12 class (𝑠deg1𝑔)
32 clt 11226 . . . . . . . . . . . 12 class <
339, 31, 32wbr 5115 . . . . . . . . . . 11 wff 1 < (𝑠deg1𝑔)
3430, 33wa 395 . . . . . . . . . 10 wff (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))
35 cmn1 26038 . . . . . . . . . . . 12 class Monic1p
3620, 35cfv 6519 . . . . . . . . . . 11 class (Monic1p𝑠)
37 cir 20271 . . . . . . . . . . . 12 class Irred
3827, 37cfv 6519 . . . . . . . . . . 11 class (Irred‘𝑚)
3936, 38cin 3921 . . . . . . . . . 10 class ((Monic1p𝑠) ∩ (Irred‘𝑚))
4034, 23, 39crab 3411 . . . . . . . . 9 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))}
41 c0g 17408 . . . . . . . . . . . . 13 class 0g
4227, 41cfv 6519 . . . . . . . . . . . 12 class (0g𝑚)
4326, 42wceq 1540 . . . . . . . . . . 11 wff (𝑝𝑓) = (0g𝑚)
4422cv 1539 . . . . . . . . . . . 12 class 𝑏
45 c0 4304 . . . . . . . . . . . 12 class
4644, 45wceq 1540 . . . . . . . . . . 11 wff 𝑏 = ∅
4743, 46wo 847 . . . . . . . . . 10 wff ((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅)
4820, 25cop 4603 . . . . . . . . . 10 class 𝑠, 𝑓
49 vh . . . . . . . . . . 11 setvar
50 cglb 18277 . . . . . . . . . . . 12 class glb
5144, 50cfv 6519 . . . . . . . . . . 11 class (glb‘𝑏)
52 vt . . . . . . . . . . . 12 setvar 𝑡
5349cv 1539 . . . . . . . . . . . . 13 class
54 cpfl 35619 . . . . . . . . . . . . 13 class polyFld
5520, 53, 54co 7394 . . . . . . . . . . . 12 class (𝑠 polyFld )
5652cv 1539 . . . . . . . . . . . . . 14 class 𝑡
57 c1st 7975 . . . . . . . . . . . . . 14 class 1st
5856, 57cfv 6519 . . . . . . . . . . . . 13 class (1st𝑡)
59 c2nd 7976 . . . . . . . . . . . . . . 15 class 2nd
6056, 59cfv 6519 . . . . . . . . . . . . . 14 class (2nd𝑡)
6125, 60ccom 5650 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd𝑡))
6258, 61cop 4603 . . . . . . . . . . . 12 class ⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6352, 55, 62csb 3870 . . . . . . . . . . 11 class (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6449, 51, 63csb 3870 . . . . . . . . . 10 class (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6547, 48, 64cif 4496 . . . . . . . . 9 class if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6622, 40, 65csb 3870 . . . . . . . 8 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6719, 21, 66csb 3870 . . . . . . 7 class (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6817, 18, 4, 4, 67cmpo 7396 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩))
693cv 1539 . . . . . 6 class 𝑗
7068, 69crdg 8386 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)
7116, 70cfv 6519 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))
725, 8, 71cmpt 5196 . . 3 class (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝)))))
732, 3, 4, 4, 72cmpo 7396 . 2 class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
741, 73wceq 1540 1 wff splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ (Poly1𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠deg1𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟deg1𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator