Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 34624
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field π‘Ÿ and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple βŸ¨π‘†, 𝐹⟩ where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field π‘Ÿ.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (π‘Ÿ ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1β€˜π‘Ÿ) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,β„Ž,𝑗,π‘š,𝑝,π‘Ÿ,𝑠,𝑑

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 34617 . 2 class splitFld1
2 vr . . 3 setvar π‘Ÿ
3 vj . . 3 setvar 𝑗
4 cvv 3474 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1540 . . . . 5 class π‘Ÿ
7 cpl1 21700 . . . . 5 class Poly1
86, 7cfv 6543 . . . 4 class (Poly1β€˜π‘Ÿ)
9 c1 11110 . . . . . . 7 class 1
105cv 1540 . . . . . . . 8 class 𝑝
11 cdg1 25568 . . . . . . . 8 class deg1
126, 10, 11co 7408 . . . . . . 7 class (π‘Ÿ deg1 𝑝)
13 cfz 13483 . . . . . . 7 class ...
149, 12, 13co 7408 . . . . . 6 class (1...(π‘Ÿ deg1 𝑝))
15 ccrd 9929 . . . . . 6 class card
1614, 15cfv 6543 . . . . 5 class (cardβ€˜(1...(π‘Ÿ deg1 𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar π‘š
2017cv 1540 . . . . . . . . 9 class 𝑠
21 cmpl 21458 . . . . . . . . 9 class mPoly
2220, 21cfv 6543 . . . . . . . 8 class ( mPoly β€˜π‘ )
23 vb . . . . . . . . 9 setvar 𝑏
24 vg . . . . . . . . . . . . 13 setvar 𝑔
2524cv 1540 . . . . . . . . . . . 12 class 𝑔
2618cv 1540 . . . . . . . . . . . . 13 class 𝑓
2710, 26ccom 5680 . . . . . . . . . . . 12 class (𝑝 ∘ 𝑓)
2819cv 1540 . . . . . . . . . . . . 13 class π‘š
29 cdsr 20167 . . . . . . . . . . . . 13 class βˆ₯r
3028, 29cfv 6543 . . . . . . . . . . . 12 class (βˆ₯rβ€˜π‘š)
3125, 27, 30wbr 5148 . . . . . . . . . . 11 wff 𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓)
3220, 25, 11co 7408 . . . . . . . . . . . 12 class (𝑠 deg1 𝑔)
33 clt 11247 . . . . . . . . . . . 12 class <
349, 32, 33wbr 5148 . . . . . . . . . . 11 wff 1 < (𝑠 deg1 𝑔)
3531, 34wa 396 . . . . . . . . . 10 wff (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))
36 cmn1 25642 . . . . . . . . . . . 12 class Monic1p
3720, 36cfv 6543 . . . . . . . . . . 11 class (Monic1pβ€˜π‘ )
38 cir 20169 . . . . . . . . . . . 12 class Irred
3928, 38cfv 6543 . . . . . . . . . . 11 class (Irredβ€˜π‘š)
4037, 39cin 3947 . . . . . . . . . 10 class ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š))
4135, 24, 40crab 3432 . . . . . . . . 9 class {𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))}
42 c0g 17384 . . . . . . . . . . . . 13 class 0g
4328, 42cfv 6543 . . . . . . . . . . . 12 class (0gβ€˜π‘š)
4427, 43wceq 1541 . . . . . . . . . . 11 wff (𝑝 ∘ 𝑓) = (0gβ€˜π‘š)
4523cv 1540 . . . . . . . . . . . 12 class 𝑏
46 c0 4322 . . . . . . . . . . . 12 class βˆ…
4745, 46wceq 1541 . . . . . . . . . . 11 wff 𝑏 = βˆ…
4844, 47wo 845 . . . . . . . . . 10 wff ((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…)
4920, 26cop 4634 . . . . . . . . . 10 class βŸ¨π‘ , π‘“βŸ©
50 vh . . . . . . . . . . 11 setvar β„Ž
51 cglb 18262 . . . . . . . . . . . 12 class glb
5245, 51cfv 6543 . . . . . . . . . . 11 class (glbβ€˜π‘)
53 vt . . . . . . . . . . . 12 setvar 𝑑
5450cv 1540 . . . . . . . . . . . . 13 class β„Ž
55 cpfl 34616 . . . . . . . . . . . . 13 class polyFld
5620, 54, 55co 7408 . . . . . . . . . . . 12 class (𝑠 polyFld β„Ž)
5753cv 1540 . . . . . . . . . . . . . 14 class 𝑑
58 c1st 7972 . . . . . . . . . . . . . 14 class 1st
5957, 58cfv 6543 . . . . . . . . . . . . 13 class (1st β€˜π‘‘)
60 c2nd 7973 . . . . . . . . . . . . . . 15 class 2nd
6157, 60cfv 6543 . . . . . . . . . . . . . 14 class (2nd β€˜π‘‘)
6226, 61ccom 5680 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd β€˜π‘‘))
6359, 62cop 4634 . . . . . . . . . . . 12 class ⟨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩
6453, 56, 63csb 3893 . . . . . . . . . . 11 class ⦋(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩
6550, 52, 64csb 3893 . . . . . . . . . 10 class ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩
6648, 49, 65cif 4528 . . . . . . . . 9 class if(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)
6723, 41, 66csb 3893 . . . . . . . 8 class ⦋{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)
6819, 22, 67csb 3893 . . . . . . 7 class ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)
6917, 18, 4, 4, 68cmpo 7410 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩))
703cv 1540 . . . . . 6 class 𝑗
7169, 70crdg 8408 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)
7216, 71cfv 6543 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝))))
735, 8, 72cmpt 5231 . . 3 class (𝑝 ∈ (Poly1β€˜π‘Ÿ) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝)))))
742, 3, 4, 4, 73cmpo 7410 . 2 class (π‘Ÿ ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1β€˜π‘Ÿ) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝))))))
751, 74wceq 1541 1 wff splitFld1 = (π‘Ÿ ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1β€˜π‘Ÿ) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ⦋( mPoly β€˜π‘ ) / π‘šβ¦Œβ¦‹{𝑔 ∈ ((Monic1pβ€˜π‘ ) ∩ (Irredβ€˜π‘š)) ∣ (𝑔(βˆ₯rβ€˜π‘š)(𝑝 ∘ 𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / π‘β¦Œif(((𝑝 ∘ 𝑓) = (0gβ€˜π‘š) ∨ 𝑏 = βˆ…), βŸ¨π‘ , π‘“βŸ©, ⦋(glbβ€˜π‘) / β„Žβ¦Œβ¦‹(𝑠 polyFld β„Ž) / π‘‘β¦ŒβŸ¨(1st β€˜π‘‘), (𝑓 ∘ (2nd β€˜π‘‘))⟩)), 𝑗)β€˜(cardβ€˜(1...(π‘Ÿ deg1 𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator