Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-sfl1 Structured version   Visualization version   GIF version

Definition df-sfl1 33581
Description: Temporary construction for the splitting field of a polynomial. The inputs are a field 𝑟 and a polynomial 𝑝 that we want to split, along with a tuple 𝑗 in the same format as the output. The output is a tuple 𝑆, 𝐹 where 𝑆 is the splitting field and 𝐹 is an injective homomorphism from the original field 𝑟.

The function works by repeatedly finding the smallest monic irreducible factor, and extending the field by that factor using the polyFld construction. We keep track of a total order in each of the splitting fields so that we can pick an element definably without needing global choice. (Contributed by Mario Carneiro, 2-Dec-2014.)

Assertion
Ref Expression
df-sfl1 splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))))
Distinct variable group:   𝑓,𝑏,𝑔,,𝑗,𝑚,𝑝,𝑟,𝑠,𝑡

Detailed syntax breakdown of Definition df-sfl1
StepHypRef Expression
1 csf1 33573 . 2 class splitFld1
2 vr . . 3 setvar 𝑟
3 vj . . 3 setvar 𝑗
4 cvv 3430 . . 3 class V
5 vp . . . 4 setvar 𝑝
62cv 1540 . . . . 5 class 𝑟
7 cpl1 21329 . . . . 5 class Poly1
86, 7cfv 6430 . . . 4 class (Poly1𝑟)
9 c1 10856 . . . . . . 7 class 1
105cv 1540 . . . . . . . 8 class 𝑝
11 cdg1 25197 . . . . . . . 8 class deg1
126, 10, 11co 7268 . . . . . . 7 class (𝑟 deg1 𝑝)
13 cfz 13221 . . . . . . 7 class ...
149, 12, 13co 7268 . . . . . 6 class (1...(𝑟 deg1 𝑝))
15 ccrd 9677 . . . . . 6 class card
1614, 15cfv 6430 . . . . 5 class (card‘(1...(𝑟 deg1 𝑝)))
17 vs . . . . . . 7 setvar 𝑠
18 vf . . . . . . 7 setvar 𝑓
19 vm . . . . . . . 8 setvar 𝑚
2017cv 1540 . . . . . . . . 9 class 𝑠
21 cmpl 21090 . . . . . . . . 9 class mPoly
2220, 21cfv 6430 . . . . . . . 8 class ( mPoly ‘𝑠)
23 vb . . . . . . . . 9 setvar 𝑏
24 vg . . . . . . . . . . . . 13 setvar 𝑔
2524cv 1540 . . . . . . . . . . . 12 class 𝑔
2618cv 1540 . . . . . . . . . . . . 13 class 𝑓
2710, 26ccom 5592 . . . . . . . . . . . 12 class (𝑝𝑓)
2819cv 1540 . . . . . . . . . . . . 13 class 𝑚
29 cdsr 19861 . . . . . . . . . . . . 13 class r
3028, 29cfv 6430 . . . . . . . . . . . 12 class (∥r𝑚)
3125, 27, 30wbr 5078 . . . . . . . . . . 11 wff 𝑔(∥r𝑚)(𝑝𝑓)
3220, 25, 11co 7268 . . . . . . . . . . . 12 class (𝑠 deg1 𝑔)
33 clt 10993 . . . . . . . . . . . 12 class <
349, 32, 33wbr 5078 . . . . . . . . . . 11 wff 1 < (𝑠 deg1 𝑔)
3531, 34wa 395 . . . . . . . . . 10 wff (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))
36 cmn1 25271 . . . . . . . . . . . 12 class Monic1p
3720, 36cfv 6430 . . . . . . . . . . 11 class (Monic1p𝑠)
38 cir 19863 . . . . . . . . . . . 12 class Irred
3928, 38cfv 6430 . . . . . . . . . . 11 class (Irred‘𝑚)
4037, 39cin 3890 . . . . . . . . . 10 class ((Monic1p𝑠) ∩ (Irred‘𝑚))
4135, 24, 40crab 3069 . . . . . . . . 9 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))}
42 c0g 17131 . . . . . . . . . . . . 13 class 0g
4328, 42cfv 6430 . . . . . . . . . . . 12 class (0g𝑚)
4427, 43wceq 1541 . . . . . . . . . . 11 wff (𝑝𝑓) = (0g𝑚)
4523cv 1540 . . . . . . . . . . . 12 class 𝑏
46 c0 4261 . . . . . . . . . . . 12 class
4745, 46wceq 1541 . . . . . . . . . . 11 wff 𝑏 = ∅
4844, 47wo 843 . . . . . . . . . 10 wff ((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅)
4920, 26cop 4572 . . . . . . . . . 10 class 𝑠, 𝑓
50 vh . . . . . . . . . . 11 setvar
51 cglb 18009 . . . . . . . . . . . 12 class glb
5245, 51cfv 6430 . . . . . . . . . . 11 class (glb‘𝑏)
53 vt . . . . . . . . . . . 12 setvar 𝑡
5450cv 1540 . . . . . . . . . . . . 13 class
55 cpfl 33572 . . . . . . . . . . . . 13 class polyFld
5620, 54, 55co 7268 . . . . . . . . . . . 12 class (𝑠 polyFld )
5753cv 1540 . . . . . . . . . . . . . 14 class 𝑡
58 c1st 7815 . . . . . . . . . . . . . 14 class 1st
5957, 58cfv 6430 . . . . . . . . . . . . 13 class (1st𝑡)
60 c2nd 7816 . . . . . . . . . . . . . . 15 class 2nd
6157, 60cfv 6430 . . . . . . . . . . . . . 14 class (2nd𝑡)
6226, 61ccom 5592 . . . . . . . . . . . . 13 class (𝑓 ∘ (2nd𝑡))
6359, 62cop 4572 . . . . . . . . . . . 12 class ⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6453, 56, 63csb 3836 . . . . . . . . . . 11 class (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6550, 52, 64csb 3836 . . . . . . . . . 10 class (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩
6648, 49, 65cif 4464 . . . . . . . . 9 class if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6723, 41, 66csb 3836 . . . . . . . 8 class {𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6819, 22, 67csb 3836 . . . . . . 7 class ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)
6917, 18, 4, 4, 68cmpo 7270 . . . . . 6 class (𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩))
703cv 1540 . . . . . 6 class 𝑗
7169, 70crdg 8224 . . . . 5 class rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)
7216, 71cfv 6430 . . . 4 class (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))
735, 8, 72cmpt 5161 . . 3 class (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝)))))
742, 3, 4, 4, 73cmpo 7270 . 2 class (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))))
751, 74wceq 1541 1 wff splitFld1 = (𝑟 ∈ V, 𝑗 ∈ V ↦ (𝑝 ∈ (Poly1𝑟) ↦ (rec((𝑠 ∈ V, 𝑓 ∈ V ↦ ( mPoly ‘𝑠) / 𝑚{𝑔 ∈ ((Monic1p𝑠) ∩ (Irred‘𝑚)) ∣ (𝑔(∥r𝑚)(𝑝𝑓) ∧ 1 < (𝑠 deg1 𝑔))} / 𝑏if(((𝑝𝑓) = (0g𝑚) ∨ 𝑏 = ∅), ⟨𝑠, 𝑓⟩, (glb‘𝑏) / (𝑠 polyFld ) / 𝑡⟨(1st𝑡), (𝑓 ∘ (2nd𝑡))⟩)), 𝑗)‘(card‘(1...(𝑟 deg1 𝑝))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator