Step | Hyp | Ref
| Expression |
1 | | csf1 34617 |
. 2
class
splitFld1 |
2 | | vr |
. . 3
setvar π |
3 | | vj |
. . 3
setvar π |
4 | | cvv 3474 |
. . 3
class
V |
5 | | vp |
. . . 4
setvar π |
6 | 2 | cv 1540 |
. . . . 5
class π |
7 | | cpl1 21700 |
. . . . 5
class
Poly1 |
8 | 6, 7 | cfv 6543 |
. . . 4
class
(Poly1βπ) |
9 | | c1 11110 |
. . . . . . 7
class
1 |
10 | 5 | cv 1540 |
. . . . . . . 8
class π |
11 | | cdg1 25568 |
. . . . . . . 8
class
deg1 |
12 | 6, 10, 11 | co 7408 |
. . . . . . 7
class (π deg1 π) |
13 | | cfz 13483 |
. . . . . . 7
class
... |
14 | 9, 12, 13 | co 7408 |
. . . . . 6
class
(1...(π
deg1 π)) |
15 | | ccrd 9929 |
. . . . . 6
class
card |
16 | 14, 15 | cfv 6543 |
. . . . 5
class
(cardβ(1...(π
deg1 π))) |
17 | | vs |
. . . . . . 7
setvar π |
18 | | vf |
. . . . . . 7
setvar π |
19 | | vm |
. . . . . . . 8
setvar π |
20 | 17 | cv 1540 |
. . . . . . . . 9
class π |
21 | | cmpl 21458 |
. . . . . . . . 9
class
mPoly |
22 | 20, 21 | cfv 6543 |
. . . . . . . 8
class ( mPoly
βπ ) |
23 | | vb |
. . . . . . . . 9
setvar π |
24 | | vg |
. . . . . . . . . . . . 13
setvar π |
25 | 24 | cv 1540 |
. . . . . . . . . . . 12
class π |
26 | 18 | cv 1540 |
. . . . . . . . . . . . 13
class π |
27 | 10, 26 | ccom 5680 |
. . . . . . . . . . . 12
class (π β π) |
28 | 19 | cv 1540 |
. . . . . . . . . . . . 13
class π |
29 | | cdsr 20167 |
. . . . . . . . . . . . 13
class
β₯r |
30 | 28, 29 | cfv 6543 |
. . . . . . . . . . . 12
class
(β₯rβπ) |
31 | 25, 27, 30 | wbr 5148 |
. . . . . . . . . . 11
wff π(β₯rβπ)(π β π) |
32 | 20, 25, 11 | co 7408 |
. . . . . . . . . . . 12
class (π deg1 π) |
33 | | clt 11247 |
. . . . . . . . . . . 12
class
< |
34 | 9, 32, 33 | wbr 5148 |
. . . . . . . . . . 11
wff 1 <
(π deg1 π) |
35 | 31, 34 | wa 396 |
. . . . . . . . . 10
wff (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π)) |
36 | | cmn1 25642 |
. . . . . . . . . . . 12
class
Monic1p |
37 | 20, 36 | cfv 6543 |
. . . . . . . . . . 11
class
(Monic1pβπ ) |
38 | | cir 20169 |
. . . . . . . . . . . 12
class
Irred |
39 | 28, 38 | cfv 6543 |
. . . . . . . . . . 11
class
(Irredβπ) |
40 | 37, 39 | cin 3947 |
. . . . . . . . . 10
class
((Monic1pβπ ) β© (Irredβπ)) |
41 | 35, 24, 40 | crab 3432 |
. . . . . . . . 9
class {π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} |
42 | | c0g 17384 |
. . . . . . . . . . . . 13
class
0g |
43 | 28, 42 | cfv 6543 |
. . . . . . . . . . . 12
class
(0gβπ) |
44 | 27, 43 | wceq 1541 |
. . . . . . . . . . 11
wff (π β π) = (0gβπ) |
45 | 23 | cv 1540 |
. . . . . . . . . . . 12
class π |
46 | | c0 4322 |
. . . . . . . . . . . 12
class
β
|
47 | 45, 46 | wceq 1541 |
. . . . . . . . . . 11
wff π = β
|
48 | 44, 47 | wo 845 |
. . . . . . . . . 10
wff ((π β π) = (0gβπ) β¨ π = β
) |
49 | 20, 26 | cop 4634 |
. . . . . . . . . 10
class
β¨π , πβ© |
50 | | vh |
. . . . . . . . . . 11
setvar β |
51 | | cglb 18262 |
. . . . . . . . . . . 12
class
glb |
52 | 45, 51 | cfv 6543 |
. . . . . . . . . . 11
class
(glbβπ) |
53 | | vt |
. . . . . . . . . . . 12
setvar π‘ |
54 | 50 | cv 1540 |
. . . . . . . . . . . . 13
class β |
55 | | cpfl 34616 |
. . . . . . . . . . . . 13
class
polyFld |
56 | 20, 54, 55 | co 7408 |
. . . . . . . . . . . 12
class (π polyFld β) |
57 | 53 | cv 1540 |
. . . . . . . . . . . . . 14
class π‘ |
58 | | c1st 7972 |
. . . . . . . . . . . . . 14
class
1st |
59 | 57, 58 | cfv 6543 |
. . . . . . . . . . . . 13
class
(1st βπ‘) |
60 | | c2nd 7973 |
. . . . . . . . . . . . . . 15
class
2nd |
61 | 57, 60 | cfv 6543 |
. . . . . . . . . . . . . 14
class
(2nd βπ‘) |
62 | 26, 61 | ccom 5680 |
. . . . . . . . . . . . 13
class (π β (2nd
βπ‘)) |
63 | 59, 62 | cop 4634 |
. . . . . . . . . . . 12
class
β¨(1st βπ‘), (π β (2nd βπ‘))β© |
64 | 53, 56, 63 | csb 3893 |
. . . . . . . . . . 11
class
β¦(π
polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β© |
65 | 50, 52, 64 | csb 3893 |
. . . . . . . . . 10
class
β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β© |
66 | 48, 49, 65 | cif 4528 |
. . . . . . . . 9
class
if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©) |
67 | 23, 41, 66 | csb 3893 |
. . . . . . . 8
class
β¦{π
β ((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©) |
68 | 19, 22, 67 | csb 3893 |
. . . . . . 7
class
β¦( mPoly βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©) |
69 | 17, 18, 4, 4, 68 | cmpo 7410 |
. . . . . 6
class (π β V, π β V β¦ β¦( mPoly
βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)) |
70 | 3 | cv 1540 |
. . . . . 6
class π |
71 | 69, 70 | crdg 8408 |
. . . . 5
class
rec((π β V,
π β V β¦
β¦( mPoly βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π) |
72 | 16, 71 | cfv 6543 |
. . . 4
class
(rec((π β V,
π β V β¦
β¦( mPoly βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π)β(cardβ(1...(π deg1 π)))) |
73 | 5, 8, 72 | cmpt 5231 |
. . 3
class (π β
(Poly1βπ)
β¦ (rec((π β V,
π β V β¦
β¦( mPoly βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π)β(cardβ(1...(π deg1 π))))) |
74 | 2, 3, 4, 4, 73 | cmpo 7410 |
. 2
class (π β V, π β V β¦ (π β (Poly1βπ) β¦ (rec((π β V, π β V β¦ β¦( mPoly
βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π)β(cardβ(1...(π deg1 π)))))) |
75 | 1, 74 | wceq 1541 |
1
wff
splitFld1 = (π
β V, π β V
β¦ (π β
(Poly1βπ)
β¦ (rec((π β V,
π β V β¦
β¦( mPoly βπ ) / πβ¦β¦{π β
((Monic1pβπ ) β© (Irredβπ)) β£ (π(β₯rβπ)(π β π) β§ 1 < (π deg1 π))} / πβ¦if(((π β π) = (0gβπ) β¨ π = β
), β¨π , πβ©, β¦(glbβπ) / ββ¦β¦(π polyFld β) / π‘β¦β¨(1st
βπ‘), (π β (2nd
βπ‘))β©)), π)β(cardβ(1...(π deg1 π)))))) |