Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-plfl Structured version   Visualization version   GIF version

Definition df-plfl 35465
Description: Define the field extension that augments a field with the root of the given irreducible polynomial, and extends the norm if one exists and the extension is unique. (Contributed by Mario Carneiro, 2-Dec-2014.) (Revised by Thierry Arnoux and Steven Nguyen, 21-Jun-2025.)
Assertion
Ref Expression
df-plfl polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
Distinct variable group:   𝑓,𝑐,𝑔,𝑖,𝑛,𝑝,𝑞,𝑟,𝑠,𝑡,𝑧

Detailed syntax breakdown of Definition df-plfl
StepHypRef Expression
1 cpfl 35458 . 2 class polyFld
2 vr . . 3 setvar 𝑟
3 vp . . 3 setvar 𝑝
4 cvv 3462 . . 3 class V
5 vs . . . 4 setvar 𝑠
62cv 1533 . . . . 5 class 𝑟
7 cpl1 22166 . . . . 5 class Poly1
86, 7cfv 6554 . . . 4 class (Poly1𝑟)
9 vi . . . . 5 setvar 𝑖
103cv 1533 . . . . . . 7 class 𝑝
1110csn 4633 . . . . . 6 class {𝑝}
125cv 1533 . . . . . . 7 class 𝑠
13 crsp 21196 . . . . . . 7 class RSpan
1412, 13cfv 6554 . . . . . 6 class (RSpan‘𝑠)
1511, 14cfv 6554 . . . . 5 class ((RSpan‘𝑠)‘{𝑝})
16 vf . . . . . 6 setvar 𝑓
17 vc . . . . . . 7 setvar 𝑐
18 cbs 17213 . . . . . . . 8 class Base
196, 18cfv 6554 . . . . . . 7 class (Base‘𝑟)
2017cv 1533 . . . . . . . . 9 class 𝑐
21 cur 20164 . . . . . . . . . 10 class 1r
2212, 21cfv 6554 . . . . . . . . 9 class (1r𝑠)
23 cvsca 17270 . . . . . . . . . 10 class ·𝑠
2412, 23cfv 6554 . . . . . . . . 9 class ( ·𝑠𝑠)
2520, 22, 24co 7424 . . . . . . . 8 class (𝑐( ·𝑠𝑠)(1r𝑠))
269cv 1533 . . . . . . . . 9 class 𝑖
27 cqg 19116 . . . . . . . . 9 class ~QG
2812, 26, 27co 7424 . . . . . . . 8 class (𝑠 ~QG 𝑖)
2925, 28cec 8732 . . . . . . 7 class [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)
3017, 19, 29cmpt 5236 . . . . . 6 class (𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖))
31 vt . . . . . . . 8 setvar 𝑡
32 cqus 17520 . . . . . . . . 9 class /s
3312, 28, 32co 7424 . . . . . . . 8 class (𝑠 /s (𝑠 ~QG 𝑖))
3431cv 1533 . . . . . . . . . 10 class 𝑡
35 vn . . . . . . . . . . . . . 14 setvar 𝑛
3635cv 1533 . . . . . . . . . . . . 13 class 𝑛
3716cv 1533 . . . . . . . . . . . . 13 class 𝑓
3836, 37ccom 5686 . . . . . . . . . . . 12 class (𝑛𝑓)
39 cnm 24576 . . . . . . . . . . . . 13 class norm
406, 39cfv 6554 . . . . . . . . . . . 12 class (norm‘𝑟)
4138, 40wceq 1534 . . . . . . . . . . 11 wff (𝑛𝑓) = (norm‘𝑟)
42 cabv 20787 . . . . . . . . . . . 12 class AbsVal
4334, 42cfv 6554 . . . . . . . . . . 11 class (AbsVal‘𝑡)
4441, 35, 43crio 7379 . . . . . . . . . 10 class (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))
45 ctng 24578 . . . . . . . . . 10 class toNrmGrp
4634, 44, 45co 7424 . . . . . . . . 9 class (𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟)))
47 cnx 17195 . . . . . . . . . . 11 class ndx
48 cple 17273 . . . . . . . . . . 11 class le
4947, 48cfv 6554 . . . . . . . . . 10 class (le‘ndx)
50 vg . . . . . . . . . . 11 setvar 𝑔
51 vz . . . . . . . . . . . 12 setvar 𝑧
5234, 18cfv 6554 . . . . . . . . . . . 12 class (Base‘𝑡)
53 vq . . . . . . . . . . . . . . . 16 setvar 𝑞
5453cv 1533 . . . . . . . . . . . . . . 15 class 𝑞
55 cr1p 26156 . . . . . . . . . . . . . . . 16 class rem1p
566, 55cfv 6554 . . . . . . . . . . . . . . 15 class (rem1p𝑟)
5754, 10, 56co 7424 . . . . . . . . . . . . . 14 class (𝑞(rem1p𝑟)𝑝)
5857, 54wceq 1534 . . . . . . . . . . . . 13 wff (𝑞(rem1p𝑟)𝑝) = 𝑞
5951cv 1533 . . . . . . . . . . . . 13 class 𝑧
6058, 53, 59crio 7379 . . . . . . . . . . . 12 class (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)
6151, 52, 60cmpt 5236 . . . . . . . . . . 11 class (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞))
6250cv 1533 . . . . . . . . . . . . 13 class 𝑔
6362ccnv 5681 . . . . . . . . . . . 12 class 𝑔
6412, 48cfv 6554 . . . . . . . . . . . . 13 class (le‘𝑠)
6564, 62ccom 5686 . . . . . . . . . . . 12 class ((le‘𝑠) ∘ 𝑔)
6663, 65ccom 5686 . . . . . . . . . . 11 class (𝑔 ∘ ((le‘𝑠) ∘ 𝑔))
6750, 61, 66csb 3892 . . . . . . . . . 10 class (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))
6849, 67cop 4639 . . . . . . . . 9 class ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩
69 csts 17165 . . . . . . . . 9 class sSet
7046, 68, 69co 7424 . . . . . . . 8 class ((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩)
7131, 33, 70csb 3892 . . . . . . 7 class (𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩)
7271, 37cop 4639 . . . . . 6 class (𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓
7316, 30, 72csb 3892 . . . . 5 class (𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓
749, 15, 73csb 3892 . . . 4 class ((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓
755, 8, 74csb 3892 . . 3 class (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓
762, 3, 4, 4, 75cmpo 7426 . 2 class (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
771, 76wceq 1534 1 wff polyFld = (𝑟 ∈ V, 𝑝 ∈ V ↦ (Poly1𝑟) / 𝑠((RSpan‘𝑠)‘{𝑝}) / 𝑖(𝑐 ∈ (Base‘𝑟) ↦ [(𝑐( ·𝑠𝑠)(1r𝑠))](𝑠 ~QG 𝑖)) / 𝑓(𝑠 /s (𝑠 ~QG 𝑖)) / 𝑡((𝑡 toNrmGrp (𝑛 ∈ (AbsVal‘𝑡)(𝑛𝑓) = (norm‘𝑟))) sSet ⟨(le‘ndx), (𝑧 ∈ (Base‘𝑡) ↦ (𝑞𝑧 (𝑞(rem1p𝑟)𝑝) = 𝑞)) / 𝑔(𝑔 ∘ ((le‘𝑠) ∘ 𝑔))⟩), 𝑓⟩)
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator