Detailed syntax breakdown of Definition df-spr
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cspr 47469 | . 2
class
Pairs | 
| 2 |  | vv | . . 3
setvar 𝑣 | 
| 3 |  | cvv 3479 | . . 3
class
V | 
| 4 |  | vp | . . . . . . . 8
setvar 𝑝 | 
| 5 | 4 | cv 1538 | . . . . . . 7
class 𝑝 | 
| 6 |  | va | . . . . . . . . 9
setvar 𝑎 | 
| 7 | 6 | cv 1538 | . . . . . . . 8
class 𝑎 | 
| 8 |  | vb | . . . . . . . . 9
setvar 𝑏 | 
| 9 | 8 | cv 1538 | . . . . . . . 8
class 𝑏 | 
| 10 | 7, 9 | cpr 4627 | . . . . . . 7
class {𝑎, 𝑏} | 
| 11 | 5, 10 | wceq 1539 | . . . . . 6
wff 𝑝 = {𝑎, 𝑏} | 
| 12 | 2 | cv 1538 | . . . . . 6
class 𝑣 | 
| 13 | 11, 8, 12 | wrex 3069 | . . . . 5
wff
∃𝑏 ∈
𝑣 𝑝 = {𝑎, 𝑏} | 
| 14 | 13, 6, 12 | wrex 3069 | . . . 4
wff
∃𝑎 ∈
𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} | 
| 15 | 14, 4 | cab 2713 | . . 3
class {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} | 
| 16 | 2, 3, 15 | cmpt 5224 | . 2
class (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | 
| 17 | 1, 16 | wceq 1539 | 1
wff Pairs =
(𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) |