Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprval Structured version   Visualization version   GIF version

Theorem sprval 44819
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprval (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-spr 44818 . . 3 Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}})
21a1i 11 . 2 (𝑉𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}}))
3 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
4 rexeq 3334 . . . . 5 (𝑣 = 𝑉 → (∃𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}))
53, 4rexeqbidv 3328 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
65adantl 481 . . 3 ((𝑉𝑊𝑣 = 𝑉) → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
76abbidv 2808 . 2 ((𝑉𝑊𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
8 elex 3440 . 2 (𝑉𝑊𝑉 ∈ V)
9 zfpair2 5348 . . . . . . . 8 {𝑎, 𝑏} ∈ V
10 eueq 3638 . . . . . . . 8 ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏})
119, 10mpbi 229 . . . . . . 7 ∃!𝑝 𝑝 = {𝑎, 𝑏}
12 euabex 5370 . . . . . . 7 (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1311, 12mp1i 13 . . . . . 6 (𝑉𝑊 → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1413ralrimivw 3108 . . . . 5 (𝑉𝑊 → ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
15 abrexex2g 7780 . . . . 5 ((𝑉𝑊 ∧ ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1614, 15mpdan 683 . . . 4 (𝑉𝑊 → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1716ralrimivw 3108 . . 3 (𝑉𝑊 → ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
18 abrexex2g 7780 . . 3 ((𝑉𝑊 ∧ ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1917, 18mpdan 683 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
202, 7, 8, 19fvmptd 6864 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  ∃!weu 2568  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  {cpr 4560  cmpt 5153  cfv 6418  Pairscspr 44817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-spr 44818
This theorem is referenced by:  sprvalpw  44820  sprssspr  44821  prprspr2  44858
  Copyright terms: Public domain W3C validator