Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprval | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprval | ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-spr 44930 | . . 3 ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}})) |
3 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
4 | rexeq 3343 | . . . . 5 ⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) | |
5 | 3, 4 | rexeqbidv 3337 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
7 | 6 | abbidv 2807 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
8 | elex 3450 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) | |
9 | zfpair2 5353 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ V | |
10 | eueq 3643 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏}) | |
11 | 9, 10 | mpbi 229 | . . . . . . 7 ⊢ ∃!𝑝 𝑝 = {𝑎, 𝑏} |
12 | euabex 5376 | . . . . . . 7 ⊢ (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
14 | 13 | ralrimivw 3104 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
15 | abrexex2g 7807 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
16 | 14, 15 | mpdan 684 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
17 | 16 | ralrimivw 3104 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
18 | abrexex2g 7807 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
19 | 17, 18 | mpdan 684 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
20 | 2, 7, 8, 19 | fvmptd 6882 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃!weu 2568 {cab 2715 ∀wral 3064 ∃wrex 3065 Vcvv 3432 {cpr 4563 ↦ cmpt 5157 ‘cfv 6433 Pairscspr 44929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fv 6441 df-spr 44930 |
This theorem is referenced by: sprvalpw 44932 sprssspr 44933 prprspr2 44970 |
Copyright terms: Public domain | W3C validator |