Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprval | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprval | ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-spr 44818 | . . 3 ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}})) |
3 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
4 | rexeq 3334 | . . . . 5 ⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) | |
5 | 3, 4 | rexeqbidv 3328 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
7 | 6 | abbidv 2808 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
8 | elex 3440 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) | |
9 | zfpair2 5348 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ V | |
10 | eueq 3638 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏}) | |
11 | 9, 10 | mpbi 229 | . . . . . . 7 ⊢ ∃!𝑝 𝑝 = {𝑎, 𝑏} |
12 | euabex 5370 | . . . . . . 7 ⊢ (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
14 | 13 | ralrimivw 3108 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
15 | abrexex2g 7780 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
16 | 14, 15 | mpdan 683 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
17 | 16 | ralrimivw 3108 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
18 | abrexex2g 7780 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
19 | 17, 18 | mpdan 683 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
20 | 2, 7, 8, 19 | fvmptd 6864 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃!weu 2568 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 {cpr 4560 ↦ cmpt 5153 ‘cfv 6418 Pairscspr 44817 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-spr 44818 |
This theorem is referenced by: sprvalpw 44820 sprssspr 44821 prprspr2 44858 |
Copyright terms: Public domain | W3C validator |