Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprval Structured version   Visualization version   GIF version

Theorem sprval 47353
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprval (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-spr 47352 . . 3 Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}})
21a1i 11 . 2 (𝑉𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}}))
3 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
4 rexeq 3330 . . . . 5 (𝑣 = 𝑉 → (∃𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}))
53, 4rexeqbidv 3355 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
65adantl 481 . . 3 ((𝑉𝑊𝑣 = 𝑉) → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
76abbidv 2811 . 2 ((𝑉𝑊𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
8 elex 3509 . 2 (𝑉𝑊𝑉 ∈ V)
9 zfpair2 5448 . . . . . . . 8 {𝑎, 𝑏} ∈ V
10 eueq 3730 . . . . . . . 8 ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏})
119, 10mpbi 230 . . . . . . 7 ∃!𝑝 𝑝 = {𝑎, 𝑏}
12 euabex 5481 . . . . . . 7 (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1311, 12mp1i 13 . . . . . 6 (𝑉𝑊 → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1413ralrimivw 3156 . . . . 5 (𝑉𝑊 → ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
15 abrexex2g 8005 . . . . 5 ((𝑉𝑊 ∧ ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1614, 15mpdan 686 . . . 4 (𝑉𝑊 → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1716ralrimivw 3156 . . 3 (𝑉𝑊 → ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
18 abrexex2g 8005 . . 3 ((𝑉𝑊 ∧ ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1917, 18mpdan 686 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
202, 7, 8, 19fvmptd 7036 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  ∃!weu 2571  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  {cpr 4650  cmpt 5249  cfv 6573  Pairscspr 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-spr 47352
This theorem is referenced by:  sprvalpw  47354  sprssspr  47355  prprspr2  47392
  Copyright terms: Public domain W3C validator