Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sprval Structured version   Visualization version   GIF version

Theorem sprval 46137
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.)
Assertion
Ref Expression
sprval (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Distinct variable groups:   𝑉,𝑎,𝑏,𝑝   𝑊,𝑎,𝑏,𝑝

Proof of Theorem sprval
Dummy variable 𝑣 is distinct from all other variables.
StepHypRef Expression
1 df-spr 46136 . . 3 Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}})
21a1i 11 . 2 (𝑉𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}}))
3 id 22 . . . . 5 (𝑣 = 𝑉𝑣 = 𝑉)
4 rexeq 3321 . . . . 5 (𝑣 = 𝑉 → (∃𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}))
53, 4rexeqbidv 3343 . . . 4 (𝑣 = 𝑉 → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
65adantl 482 . . 3 ((𝑉𝑊𝑣 = 𝑉) → (∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}))
76abbidv 2801 . 2 ((𝑉𝑊𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎𝑣𝑏𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
8 elex 3492 . 2 (𝑉𝑊𝑉 ∈ V)
9 zfpair2 5428 . . . . . . . 8 {𝑎, 𝑏} ∈ V
10 eueq 3704 . . . . . . . 8 ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏})
119, 10mpbi 229 . . . . . . 7 ∃!𝑝 𝑝 = {𝑎, 𝑏}
12 euabex 5461 . . . . . . 7 (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1311, 12mp1i 13 . . . . . 6 (𝑉𝑊 → {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
1413ralrimivw 3150 . . . . 5 (𝑉𝑊 → ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V)
15 abrexex2g 7950 . . . . 5 ((𝑉𝑊 ∧ ∀𝑏𝑉 {𝑝𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1614, 15mpdan 685 . . . 4 (𝑉𝑊 → {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1716ralrimivw 3150 . . 3 (𝑉𝑊 → ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
18 abrexex2g 7950 . . 3 ((𝑉𝑊 ∧ ∀𝑎𝑉 {𝑝 ∣ ∃𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
1917, 18mpdan 685 . 2 (𝑉𝑊 → {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}} ∈ V)
202, 7, 8, 19fvmptd 7005 1 (𝑉𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎𝑉𝑏𝑉 𝑝 = {𝑎, 𝑏}})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  ∃!weu 2562  {cab 2709  wral 3061  wrex 3070  Vcvv 3474  {cpr 4630  cmpt 5231  cfv 6543  Pairscspr 46135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-spr 46136
This theorem is referenced by:  sprvalpw  46138  sprssspr  46139  prprspr2  46176
  Copyright terms: Public domain W3C validator