![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprval | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprval | ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-spr 45760 | . . 3 ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}})) |
3 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
4 | rexeq 3309 | . . . . 5 ⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) | |
5 | 3, 4 | rexeqbidv 3319 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
6 | 5 | adantl 483 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
7 | 6 | abbidv 2802 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
8 | elex 3465 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) | |
9 | zfpair2 5389 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ V | |
10 | eueq 3670 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏}) | |
11 | 9, 10 | mpbi 229 | . . . . . . 7 ⊢ ∃!𝑝 𝑝 = {𝑎, 𝑏} |
12 | euabex 5422 | . . . . . . 7 ⊢ (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
14 | 13 | ralrimivw 3144 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
15 | abrexex2g 7901 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
16 | 14, 15 | mpdan 686 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
17 | 16 | ralrimivw 3144 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
18 | abrexex2g 7901 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
19 | 17, 18 | mpdan 686 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
20 | 2, 7, 8, 19 | fvmptd 6959 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃!weu 2563 {cab 2710 ∀wral 3061 ∃wrex 3070 Vcvv 3447 {cpr 4592 ↦ cmpt 5192 ‘cfv 6500 Pairscspr 45759 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5246 ax-sep 5260 ax-nul 5267 ax-pr 5388 ax-un 7676 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-sbc 3744 df-csb 3860 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-uni 4870 df-iun 4960 df-br 5110 df-opab 5172 df-mpt 5193 df-id 5535 df-xp 5643 df-rel 5644 df-cnv 5645 df-co 5646 df-dm 5647 df-iota 6452 df-fun 6502 df-fv 6508 df-spr 45760 |
This theorem is referenced by: sprvalpw 45762 sprssspr 45763 prprspr2 45800 |
Copyright terms: Public domain | W3C validator |