![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprval | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprval | ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-spr 46809 | . . 3 ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}})) |
3 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
4 | rexeq 3317 | . . . . 5 ⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) | |
5 | 3, 4 | rexeqbidv 3339 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
6 | 5 | adantl 481 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
7 | 6 | abbidv 2797 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
8 | elex 3489 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) | |
9 | zfpair2 5425 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ V | |
10 | eueq 3702 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏}) | |
11 | 9, 10 | mpbi 229 | . . . . . . 7 ⊢ ∃!𝑝 𝑝 = {𝑎, 𝑏} |
12 | euabex 5458 | . . . . . . 7 ⊢ (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
14 | 13 | ralrimivw 3146 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
15 | abrexex2g 7963 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
16 | 14, 15 | mpdan 686 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
17 | 16 | ralrimivw 3146 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
18 | abrexex2g 7963 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
19 | 17, 18 | mpdan 686 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
20 | 2, 7, 8, 19 | fvmptd 7007 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃!weu 2558 {cab 2705 ∀wral 3057 ∃wrex 3066 Vcvv 3470 {cpr 4627 ↦ cmpt 5226 ‘cfv 6543 Pairscspr 46808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4320 df-if 4526 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-iota 6495 df-fun 6545 df-fv 6551 df-spr 46809 |
This theorem is referenced by: sprvalpw 46811 sprssspr 46812 prprspr2 46849 |
Copyright terms: Public domain | W3C validator |