![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sprval | Structured version Visualization version GIF version |
Description: The set of all unordered pairs over a given set 𝑉. (Contributed by AV, 21-Nov-2021.) |
Ref | Expression |
---|---|
sprval | ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-spr 46136 | . . 3 ⊢ Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}}) | |
2 | 1 | a1i 11 | . 2 ⊢ (𝑉 ∈ 𝑊 → Pairs = (𝑣 ∈ V ↦ {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}})) |
3 | id 22 | . . . . 5 ⊢ (𝑣 = 𝑉 → 𝑣 = 𝑉) | |
4 | rexeq 3321 | . . . . 5 ⊢ (𝑣 = 𝑉 → (∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) | |
5 | 3, 4 | rexeqbidv 3343 | . . . 4 ⊢ (𝑣 = 𝑉 → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
6 | 5 | adantl 482 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → (∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏} ↔ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏})) |
7 | 6 | abbidv 2801 | . 2 ⊢ ((𝑉 ∈ 𝑊 ∧ 𝑣 = 𝑉) → {𝑝 ∣ ∃𝑎 ∈ 𝑣 ∃𝑏 ∈ 𝑣 𝑝 = {𝑎, 𝑏}} = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
8 | elex 3492 | . 2 ⊢ (𝑉 ∈ 𝑊 → 𝑉 ∈ V) | |
9 | zfpair2 5428 | . . . . . . . 8 ⊢ {𝑎, 𝑏} ∈ V | |
10 | eueq 3704 | . . . . . . . 8 ⊢ ({𝑎, 𝑏} ∈ V ↔ ∃!𝑝 𝑝 = {𝑎, 𝑏}) | |
11 | 9, 10 | mpbi 229 | . . . . . . 7 ⊢ ∃!𝑝 𝑝 = {𝑎, 𝑏} |
12 | euabex 5461 | . . . . . . 7 ⊢ (∃!𝑝 𝑝 = {𝑎, 𝑏} → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) | |
13 | 11, 12 | mp1i 13 | . . . . . 6 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
14 | 13 | ralrimivw 3150 | . . . . 5 ⊢ (𝑉 ∈ 𝑊 → ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) |
15 | abrexex2g 7950 | . . . . 5 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑏 ∈ 𝑉 {𝑝 ∣ 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
16 | 14, 15 | mpdan 685 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
17 | 16 | ralrimivw 3150 | . . 3 ⊢ (𝑉 ∈ 𝑊 → ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
18 | abrexex2g 7950 | . . 3 ⊢ ((𝑉 ∈ 𝑊 ∧ ∀𝑎 ∈ 𝑉 {𝑝 ∣ ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) | |
19 | 17, 18 | mpdan 685 | . 2 ⊢ (𝑉 ∈ 𝑊 → {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}} ∈ V) |
20 | 2, 7, 8, 19 | fvmptd 7005 | 1 ⊢ (𝑉 ∈ 𝑊 → (Pairs‘𝑉) = {𝑝 ∣ ∃𝑎 ∈ 𝑉 ∃𝑏 ∈ 𝑉 𝑝 = {𝑎, 𝑏}}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∃!weu 2562 {cab 2709 ∀wral 3061 ∃wrex 3070 Vcvv 3474 {cpr 4630 ↦ cmpt 5231 ‘cfv 6543 Pairscspr 46135 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fv 6551 df-spr 46136 |
This theorem is referenced by: sprvalpw 46138 sprssspr 46139 prprspr2 46176 |
Copyright terms: Public domain | W3C validator |