| Metamath
Proof Explorer Theorem List (p. 465 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | sge0iun 46401* | Sum of nonnegative extended reals over a disjoint indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ 𝑋 = ∪ 𝑥 ∈ 𝐴 𝐵 & ⊢ (𝜑 → 𝐹:𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = (Σ^‘(𝑥 ∈ 𝐴 ↦ (Σ^‘(𝐹 ↾ 𝐵))))) | ||
| Theorem | sge0nemnf 46402 | The generalized sum of nonnegative extended reals is not minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:𝐴⟶(0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) ≠ -∞) | ||
| Theorem | sge0rpcpnf 46403* | The sum of an infinite number of a positive constant, is +∞ (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → ¬ 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ ℝ+) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
| Theorem | sge0rernmpt 46404* | If the sum of nonnegative extended reals is not +∞ then no term is +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) | ||
| Theorem | sge0lefimpt 46405* | A sum of nonnegative extended reals is smaller than a given extended real if and only if every finite subsum is smaller than it. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ*) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ≤ 𝐶 ↔ ∀𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝑦 ↦ 𝐵)) ≤ 𝐶)) | ||
| Theorem | nn0ssge0 46406 | Nonnegative integers are nonnegative reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ ℕ0 ⊆ (0[,)+∞) | ||
| Theorem | sge0clmpt 46407* | The generalized sum of nonnegative extended reals is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ (0[,]+∞)) | ||
| Theorem | sge0ltfirpmpt2 46408* | If the extended sum of nonnegative reals is not +∞, then it can be approximated from below by finite subsums. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → 𝑌 ∈ ℝ+) & ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)(Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑥 ∈ 𝑦 𝐵 + 𝑌)) | ||
| Theorem | sge0isum 46409 | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) & ⊢ (𝜑 → 𝐺 ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = 𝐵) | ||
| Theorem | sge0xrclmpt 46410* | The generalized sum of nonnegative extended reals is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑥 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ*) | ||
| Theorem | sge0xp 46411* | Combine two generalized sums of nonnegative extended reals into a single generalized sum over the cartesian product. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝑧 = 〈𝑗, 𝑘〉 → 𝐷 = 𝐶) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑗 ∈ 𝐴 ↦ (Σ^‘(𝑘 ∈ 𝐵 ↦ 𝐶)))) = (Σ^‘(𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐷))) | ||
| Theorem | sge0isummpt 46412* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = 𝐵) | ||
| Theorem | sge0ad2en 46413* | The value of the infinite geometric series 2↑-1 + 2↑-2 +... , multiplied by a constant. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑛 ∈ ℕ ↦ (𝐴 / (2↑𝑛)))) = 𝐴) | ||
| Theorem | sge0isummpt2 46414* | If a series of nonnegative reals is convergent, then it agrees with the generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → seq𝑀( + , (𝑘 ∈ 𝑍 ↦ 𝐴)) ⇝ 𝐵) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐴)) = Σ𝑘 ∈ 𝑍 𝐴) | ||
| Theorem | sge0xaddlem1 46415* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐸 ∈ ℝ+) & ⊢ (𝜑 → 𝑈 ⊆ 𝐴) & ⊢ (𝜑 → 𝑈 ∈ Fin) & ⊢ (𝜑 → 𝑊 ⊆ 𝐴) & ⊢ (𝜑 → 𝑊 ∈ Fin) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) < (Σ𝑘 ∈ 𝑈 𝐵 + (𝐸 / 2))) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) < (Σ𝑘 ∈ 𝑊 𝐶 + (𝐸 / 2))) & ⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) + (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶))) ≤ (sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ Σ𝑘 ∈ 𝑥 (𝐵 + 𝐶)), ℝ*, < ) +𝑒 𝐸)) | ||
| Theorem | sge0xaddlem2 46416* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) ∈ ℝ) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
| Theorem | sge0xadd 46417* | The extended addition of two generalized sums of nonnegative extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝐵 +𝑒 𝐶))) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) +𝑒 (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)))) | ||
| Theorem | sge0fsummptf 46418* | The generalized sum of a finite set of nonnegative extended real numbers is equal to the sum of those numbers, when none of them is +∞ (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ𝑘 ∈ 𝐴 𝐵) | ||
| Theorem | sge0snmptf 46419* | A sum of a nonnegative extended real is the term. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐴 → 𝐵 = 𝐶) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ {𝐴} ↦ 𝐵)) = 𝐶) | ||
| Theorem | sge0ge0mpt 46420* | The sum of nonnegative extended reals is nonnegative. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → 0 ≤ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) | ||
| Theorem | sge0repnfmpt 46421* | The of nonnegative extended reals is a real number if and only if it is not +∞. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ ↔ ¬ (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞)) | ||
| Theorem | sge0pnffigtmpt 46422* | If the generalized sum of nonnegative reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < (Σ^‘(𝑘 ∈ 𝑥 ↦ 𝐵))) | ||
| Theorem | sge0splitsn 46423* | Separate out a term in a generalized sum of nonnegative extended reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → ¬ 𝐵 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐶 ∈ (0[,]+∞)) & ⊢ (𝑘 = 𝐵 → 𝐶 = 𝐷) & ⊢ (𝜑 → 𝐷 ∈ (0[,]+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ (𝐴 ∪ {𝐵}) ↦ 𝐶)) = ((Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐶)) +𝑒 𝐷)) | ||
| Theorem | sge0pnffsumgt 46424* | If the sum of nonnegative extended reals is +∞, then any real number can be dominated by finite subsums. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) & ⊢ (𝜑 → 𝑌 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)𝑌 < Σ𝑘 ∈ 𝑥 𝐵) | ||
| Theorem | sge0gtfsumgt 46425* | If the generalized sum of nonnegative reals is larger than a given number, then that number can be dominated by a finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑦 ∈ (𝒫 𝐴 ∩ Fin)𝐶 < Σ𝑘 ∈ 𝑦 𝐵) | ||
| Theorem | sge0uzfsumgt 46426* | If a real number is smaller than a generalized sum of nonnegative reals, then it is smaller than some finite subsum. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝐾) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) & ⊢ (𝜑 → 𝐶 < (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵))) ⇒ ⊢ (𝜑 → ∃𝑚 ∈ 𝑍 𝐶 < Σ𝑘 ∈ (𝐾...𝑚)𝐵) | ||
| Theorem | sge0pnfmpt 46427* | If a term in the sum of nonnegative extended reals is +∞, then the value of the sum is +∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝐴 𝐵 = +∞) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝐴 ↦ 𝐵)) = +∞) | ||
| Theorem | sge0seq 46428 | A series of nonnegative reals agrees with the generalized sum of nonnegative reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ (𝜑 → 𝐹:𝑍⟶(0[,)+∞)) & ⊢ 𝐺 = seq𝑀( + , 𝐹) ⇒ ⊢ (𝜑 → (Σ^‘𝐹) = sup(ran 𝐺, ℝ*, < )) | ||
| Theorem | sge0reuz 46429* | Value of the generalized sum of nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ*, < )) | ||
| Theorem | sge0reuzb 46430* | Value of the generalized sum of uniformly bounded nonnegative reals, when the domain is a set of upper integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑀) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐵 ∈ (0[,)+∞)) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 Σ𝑘 ∈ (𝑀...𝑛)𝐵 ≤ 𝑥) ⇒ ⊢ (𝜑 → (Σ^‘(𝑘 ∈ 𝑍 ↦ 𝐵)) = sup(ran (𝑛 ∈ 𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐵), ℝ, < )) | ||
Proofs for most of the theorems in section 112 of [Fremlin1] | ||
| Syntax | cmea 46431 | Extend class notation with the class of measures. |
| class Meas | ||
| Definition | df-mea 46432* | Define the class of measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Meas = {𝑥 ∣ (((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 ∈ SAlg) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥((𝑦 ≼ ω ∧ Disj 𝑤 ∈ 𝑦 𝑤) → (𝑥‘∪ 𝑦) = (Σ^‘(𝑥 ↾ 𝑦))))} | ||
| Theorem | ismea 46433* | Express the predicate "𝑀 is a measure." Definition 112A of [Fremlin1] p. 14. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑀 ∈ Meas ↔ (((𝑀:dom 𝑀⟶(0[,]+∞) ∧ dom 𝑀 ∈ SAlg) ∧ (𝑀‘∅) = 0) ∧ ∀𝑥 ∈ 𝒫 dom 𝑀((𝑥 ≼ ω ∧ Disj 𝑦 ∈ 𝑥 𝑦) → (𝑀‘∪ 𝑥) = (Σ^‘(𝑀 ↾ 𝑥))))) | ||
| Theorem | dmmeasal 46434 | The domain of a measure is a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑆 ∈ SAlg) | ||
| Theorem | meaf 46435 | A measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 ⇒ ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) | ||
| Theorem | mea0 46436 | The measure of the empty set is always 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) ⇒ ⊢ (𝜑 → (𝑀‘∅) = 0) | ||
| Theorem | nnfoctbdjlem 46437* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ ℕ) & ⊢ (𝜑 → 𝐺:𝐴–1-1-onto→𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) & ⊢ 𝐹 = (𝑛 ∈ ℕ ↦ if((𝑛 = 1 ∨ ¬ (𝑛 − 1) ∈ 𝐴), ∅, (𝐺‘(𝑛 − 1)))) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
| Theorem | nnfoctbdj 46438* | There exists a mapping from ℕ onto any (nonempty) countable set of disjoint sets, such that elements in the range of the map are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → 𝑋 ≠ ∅) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑋 𝑦) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:ℕ–onto→(𝑋 ∪ {∅}) ∧ Disj 𝑛 ∈ ℕ (𝑓‘𝑛))) | ||
| Theorem | meadjuni 46439* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ⊆ 𝑆) & ⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝑋 𝑥) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑋) = (Σ^‘(𝑀 ↾ 𝑋))) | ||
| Theorem | meacl 46440 | The measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ (0[,]+∞)) | ||
| Theorem | iundjiunlem 46441* | The sets in the sequence 𝐹 are disjoint. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) & ⊢ (𝜑 → 𝐽 ∈ 𝑍) & ⊢ (𝜑 → 𝐾 ∈ 𝑍) & ⊢ (𝜑 → 𝐽 < 𝐾) ⇒ ⊢ (𝜑 → ((𝐹‘𝐽) ∩ (𝐹‘𝐾)) = ∅) | ||
| Theorem | iundjiun 46442* | Given a sequence 𝐸 of sets, a sequence 𝐹 of disjoint sets is built, such that the indexed union stays the same. As in the proof of Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑉) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → ((∀𝑚 ∈ 𝑍 ∪ 𝑛 ∈ (𝑁...𝑚)(𝐹‘𝑛) = ∪ 𝑛 ∈ (𝑁...𝑚)(𝐸‘𝑛) ∧ ∪ 𝑛 ∈ 𝑍 (𝐹‘𝑛) = ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∧ Disj 𝑛 ∈ 𝑍 (𝐹‘𝑛))) | ||
| Theorem | meaxrcl 46443 | The measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ*) | ||
| Theorem | meadjun 46444 | The measure of the union of two disjoint sets is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
| Theorem | meassle 46445 | The measure of a set is greater than or equal to the measure of a subset, Property 112C (b) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) | ||
| Theorem | meaunle 46446 | The measure of the union of two sets is less than or equal to the sum of the measures, Property 112C (c) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) ≤ ((𝑀‘𝐴) +𝑒 (𝑀‘𝐵))) | ||
| Theorem | meadjiunlem 46447* | The sum of nonnegative extended reals, restricted to the range of another function. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐺:𝑋⟶𝑆) & ⊢ 𝑌 = {𝑖 ∈ 𝑋 ∣ (𝐺‘𝑖) ≠ ∅} & ⊢ (𝜑 → Disj 𝑖 ∈ 𝑋 (𝐺‘𝑖)) ⇒ ⊢ (𝜑 → (Σ^‘(𝑀 ↾ ran 𝐺)) = (Σ^‘(𝑀 ∘ 𝐺))) | ||
| Theorem | meadjiun 46448* | The measure of the disjoint union of a countable set is the extended sum of the measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → Disj 𝑘 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑘 ∈ 𝐴 𝐵) = (Σ^‘(𝑘 ∈ 𝐴 ↦ (𝑀‘𝐵)))) | ||
| Theorem | ismeannd 46449* | Sufficient condition to prove that 𝑀 is a measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑆 ∈ SAlg) & ⊢ (𝜑 → 𝑀:𝑆⟶(0[,]+∞)) & ⊢ (𝜑 → (𝑀‘∅) = 0) & ⊢ ((𝜑 ∧ 𝑒:ℕ⟶𝑆 ∧ Disj 𝑛 ∈ ℕ (𝑒‘𝑛)) → (𝑀‘∪ 𝑛 ∈ ℕ (𝑒‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (𝑀‘(𝑒‘𝑛))))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
| Theorem | meaiunlelem 46450* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
| Theorem | meaiunle 46451* | The measure of the union of countable sets is less than or equal to the sum of the measures, Property 112C (d) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝑆) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))))) | ||
| Theorem | psmeasurelem 46452* | 𝑀 applied to a disjoint union of subsets of its domain is the sum of 𝑀 applied to such subset. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) & ⊢ (𝜑 → 𝑀:𝒫 𝑋⟶(0[,]+∞)) & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → Disj 𝑦 ∈ 𝑌 𝑦) ⇒ ⊢ (𝜑 → (𝑀‘∪ 𝑌) = (Σ^‘(𝑀 ↾ 𝑌))) | ||
| Theorem | psmeasure 46453* | Point supported measure, Remark 112B (d) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐻:𝑋⟶(0[,]+∞)) & ⊢ 𝑀 = (𝑥 ∈ 𝒫 𝑋 ↦ (Σ^‘(𝐻 ↾ 𝑥))) ⇒ ⊢ (𝜑 → 𝑀 ∈ Meas) | ||
| Theorem | voliunsge0lem 46454* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ 𝑆 = seq1( + , 𝐺) & ⊢ 𝐺 = (𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))) & ⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
| Theorem | voliunsge0 46455* | The Lebesgue measure function is countably additive. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → 𝐸:ℕ⟶dom vol) & ⊢ (𝜑 → Disj 𝑛 ∈ ℕ (𝐸‘𝑛)) ⇒ ⊢ (𝜑 → (vol‘∪ 𝑛 ∈ ℕ (𝐸‘𝑛)) = (Σ^‘(𝑛 ∈ ℕ ↦ (vol‘(𝐸‘𝑛))))) | ||
| Theorem | volmea 46456 | The Lebesgue measure on the Reals is actually a measure. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
| ⊢ (𝜑 → vol ∈ Meas) | ||
| Theorem | meage0 46457 | If the measure of a measurable set is greater than or equal to 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → 0 ≤ (𝑀‘𝐴)) | ||
| Theorem | meadjunre 46458 | The measure of the union of two disjoint sets, with finite measure, is the sum of the measures, Property 112C (a) of [Fremlin1] p. 15. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ 𝑆 = dom 𝑀 & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ (𝜑 → 𝐵 ∈ 𝑆) & ⊢ (𝜑 → (𝐴 ∩ 𝐵) = ∅) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∪ 𝐵)) = ((𝑀‘𝐴) + (𝑀‘𝐵))) | ||
| Theorem | meassre 46459 | If the measure of a measurable set is real, then the measure of any of its measurable subsets is real. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) ⇒ ⊢ (𝜑 → (𝑀‘𝐵) ∈ ℝ) | ||
| Theorem | meale0eq0 46460 | A measure that is less than or equal to 0 is 0. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ≤ 0) ⇒ ⊢ (𝜑 → (𝑀‘𝐴) = 0) | ||
| Theorem | meadif 46461 | The measure of the difference of two sets. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝐴 ∈ dom 𝑀) & ⊢ (𝜑 → (𝑀‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ∈ dom 𝑀) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑀‘(𝐴 ∖ 𝐵)) = ((𝑀‘𝐴) − (𝑀‘𝐵))) | ||
| Theorem | meaiuninclem 46462* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of increasing measurable sets (with uniformly bounded measure) then the measure of the union is the union of the measure. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐹 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝑛) ∖ ∪ 𝑖 ∈ (𝑁..^𝑛)(𝐸‘𝑖))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiuninc 46463* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiuninc2 46464* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑀‘(𝐸‘𝑛)) ≤ 𝐵) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiunincf 46465* | Measures are continuous from below (bounded case): if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is Proposition 112C (e) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑛 ∈ 𝑍 (𝑀‘(𝐸‘𝑛)) ≤ 𝑥) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiuninc3v 46466* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46463 and meaiuninc2 46464 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiuninc3 46467* | Measures are continuous from below: if 𝐸 is a sequence of nondecreasing measurable sets (with bounded measure) then the measure of the union is the limit of the measures. This is the general case of Proposition 112C (e) of [Fremlin1] p. 16 . This theorem generalizes meaiuninc 46463 and meaiuninc2 46464 where the sequence is required to be bounded. (Contributed by Glauco Siliprandi, 13-Feb-2022.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ (𝐸‘(𝑛 + 1))) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆~~>*(𝑀‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiininclem 46468* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) & ⊢ 𝐺 = (𝑛 ∈ 𝑍 ↦ ((𝐸‘𝐾) ∖ (𝐸‘𝑛))) & ⊢ 𝐹 = ∪ 𝑛 ∈ 𝑍 (𝐺‘𝑛) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiininc 46469* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → 𝐾 ∈ (ℤ≥‘𝑁)) & ⊢ (𝜑 → (𝑀‘(𝐸‘𝐾)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
| Theorem | meaiininc2 46470* | Measures are continuous from above: if 𝐸 is a nonincreasing sequence of measurable sets, and any of the sets has finite measure, then the measure of the intersection is the limit of the measures. This is Proposition 112C (f) of [Fremlin1] p. 16. (Contributed by Glauco Siliprandi, 8-Apr-2021.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑀 ∈ Meas) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶dom 𝑀) & ⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘(𝑛 + 1)) ⊆ (𝐸‘𝑛)) & ⊢ (𝜑 → ∃𝑘 ∈ 𝑍 (𝑀‘(𝐸‘𝑘)) ∈ ℝ) & ⊢ 𝑆 = (𝑛 ∈ 𝑍 ↦ (𝑀‘(𝐸‘𝑛))) ⇒ ⊢ (𝜑 → 𝑆 ⇝ (𝑀‘∩ 𝑛 ∈ 𝑍 (𝐸‘𝑛))) | ||
Proofs for most of the theorems in section 113 of [Fremlin1] | ||
| Syntax | come 46471 | Extend class notation with the class of outer measures. |
| class OutMeas | ||
| Definition | df-ome 46472* | Define the class of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ OutMeas = {𝑥 ∣ ((((𝑥:dom 𝑥⟶(0[,]+∞) ∧ dom 𝑥 = 𝒫 ∪ dom 𝑥) ∧ (𝑥‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑥∀𝑧 ∈ 𝒫 𝑦(𝑥‘𝑧) ≤ (𝑥‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑥(𝑦 ≼ ω → (𝑥‘∪ 𝑦) ≤ (Σ^‘(𝑥 ↾ 𝑦))))} | ||
| Syntax | ccaragen 46473 | Extend class notation with a function that takes an outer measure and generates a sigma-algebra and a measure. |
| class CaraGen | ||
| Definition | df-caragen 46474* | Define the sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ CaraGen = (𝑜 ∈ OutMeas ↦ {𝑒 ∈ 𝒫 ∪ dom 𝑜 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑜((𝑜‘(𝑎 ∩ 𝑒)) +𝑒 (𝑜‘(𝑎 ∖ 𝑒))) = (𝑜‘𝑎)}) | ||
| Theorem | caragenval 46475* | The sigma-algebra generated by an outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | ||
| Theorem | isome 46476* | Express the predicate "𝑂 is an outer measure." Definition 113A of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑂 ∈ 𝑉 → (𝑂 ∈ OutMeas ↔ ((((𝑂:dom 𝑂⟶(0[,]+∞) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂) ∧ (𝑂‘∅) = 0) ∧ ∀𝑦 ∈ 𝒫 ∪ dom 𝑂∀𝑧 ∈ 𝒫 𝑦(𝑂‘𝑧) ≤ (𝑂‘𝑦)) ∧ ∀𝑦 ∈ 𝒫 dom 𝑂(𝑦 ≼ ω → (𝑂‘∪ 𝑦) ≤ (Σ^‘(𝑂 ↾ 𝑦)))))) | ||
| Theorem | caragenel 46477* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) | ||
| Theorem | omef 46478 | An outer measure is a function that maps to nonnegative extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) | ||
| Theorem | ome0 46479 | The outer measure of the empty set is 0 . (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) ⇒ ⊢ (𝜑 → (𝑂‘∅) = 0) | ||
| Theorem | omessle 46480 | The outer measure of a set is greater than or equal to the measure of a subset, Definition 113A (ii) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ (𝑂‘𝐵)) | ||
| Theorem | omedm 46481 | The domain of an outer measure is a power set. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝑂 ∈ OutMeas → dom 𝑂 = 𝒫 ∪ dom 𝑂) | ||
| Theorem | caragensplit 46482 | If 𝐸 is in the set generated by the Caratheodory's method, then it splits any set 𝐴 in two parts such that the sum of the outer measures of the two parts is equal to the outer measure of the whole set 𝐴. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸))) = (𝑂‘𝐴)) | ||
| Theorem | caragenelss 46483 | An element of the Caratheodory's construction is a subset of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | ||
| Theorem | carageneld 46484* | Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝒫 𝑋) & ⊢ ((𝜑 ∧ 𝑎 ∈ 𝒫 𝑋) → ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)) ⇒ ⊢ (𝜑 → 𝐸 ∈ 𝑆) | ||
| Theorem | omecl 46485 | The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) | ||
| Theorem | caragenss 46486 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the domain of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂) | ||
| Theorem | omeunile 46487 | The outer measure of the union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝑌 ⊆ 𝒫 𝑋) & ⊢ (𝜑 → 𝑌 ≼ ω) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑌) ≤ (Σ^‘(𝑂 ↾ 𝑌))) | ||
| Theorem | caragen0 46488 | The empty set belongs to any Caratheodory's construction. First part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∅ ∈ 𝑆) | ||
| Theorem | omexrcl 46489 | The outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ*) | ||
| Theorem | caragenunidm 46490 | The base set of an outer measure belongs to the sigma-algebra generated by the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑋 ∈ 𝑆) | ||
| Theorem | caragensspw 46491 | The sigma-algebra generated from an outer measure, by the Caratheodory's construction, is a subset of the power set of the base set of the outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → 𝑆 ⊆ 𝒫 𝑋) | ||
| Theorem | omessre 46492 | If the outer measure of a set is real, then the outer measure of any of its subset is real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → (𝑂‘𝐴) ∈ ℝ) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → (𝑂‘𝐵) ∈ ℝ) | ||
| Theorem | caragenuni 46493 | The base set of the sigma-algebra generated by the Caratheodory's construction is the whole base set of the original outer measure. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) ⇒ ⊢ (𝜑 → ∪ 𝑆 = ∪ dom 𝑂) | ||
| Theorem | caragenuncllem 46494 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂‘(𝐴 ∩ (𝐸 ∪ 𝐹))) +𝑒 (𝑂‘(𝐴 ∖ (𝐸 ∪ 𝐹)))) = (𝑂‘𝐴)) | ||
| Theorem | caragenuncl 46495 | The Caratheodory's construction is closed under the union. Step (c) in the proof of Theorem 113C of [Fremlin1] p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) & ⊢ (𝜑 → 𝐹 ∈ 𝑆) ⇒ ⊢ (𝜑 → (𝐸 ∪ 𝐹) ∈ 𝑆) | ||
| Theorem | caragendifcl 46496 | The Caratheodory's construction is closed under the complement operation. Second part of Step (b) in the proof of Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐸 ∈ 𝑆) ⇒ ⊢ (𝜑 → (∪ 𝑆 ∖ 𝐸) ∈ 𝑆) | ||
| Theorem | caragenfiiuncl 46497* | The Caratheodory's construction is closed under finite indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑘𝜑 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑆 = (CaraGen‘𝑂) & ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ 𝑆) ⇒ ⊢ (𝜑 → ∪ 𝑘 ∈ 𝐴 𝐵 ∈ 𝑆) | ||
| Theorem | omeunle 46498 | The outer measure of the union of two sets is less than or equal to the sum of the measures, Remark 113B (c) of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → 𝐵 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘(𝐴 ∪ 𝐵)) ≤ ((𝑂‘𝐴) +𝑒 (𝑂‘𝐵))) | ||
| Theorem | omeiunle 46499* | The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ Ⅎ𝑛𝜑 & ⊢ Ⅎ𝑛𝐸 & ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ 𝑍 = (ℤ≥‘𝑁) & ⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤ (Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) | ||
| Theorem | omelesplit 46500 | The outer measure of a set 𝐴 is less than or equal to the extended addition of the outer measures of the decomposition induced on 𝐴 by any 𝐸. Step (a) in the proof of Caratheodory's Method, Theorem 113C of [Fremlin1] p. 19. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| ⊢ (𝜑 → 𝑂 ∈ OutMeas) & ⊢ 𝑋 = ∪ dom 𝑂 & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) ⇒ ⊢ (𝜑 → (𝑂‘𝐴) ≤ ((𝑂‘(𝐴 ∩ 𝐸)) +𝑒 (𝑂‘(𝐴 ∖ 𝐸)))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |