Detailed syntax breakdown of Definition df-sseq
| Step | Hyp | Ref
| Expression |
| 1 | | csseq 34420 |
. 2
class
seqstr |
| 2 | | vm |
. . 3
setvar 𝑚 |
| 3 | | vf |
. . 3
setvar 𝑓 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | 2 | cv 1539 |
. . . 4
class 𝑚 |
| 6 | | clsw 14585 |
. . . . 5
class
lastS |
| 7 | | vx |
. . . . . . 7
setvar 𝑥 |
| 8 | | vy |
. . . . . . 7
setvar 𝑦 |
| 9 | 7 | cv 1539 |
. . . . . . . 8
class 𝑥 |
| 10 | 3 | cv 1539 |
. . . . . . . . . 10
class 𝑓 |
| 11 | 9, 10 | cfv 6536 |
. . . . . . . . 9
class (𝑓‘𝑥) |
| 12 | 11 | cs1 14618 |
. . . . . . . 8
class
〈“(𝑓‘𝑥)”〉 |
| 13 | | cconcat 14593 |
. . . . . . . 8
class
++ |
| 14 | 9, 12, 13 | co 7410 |
. . . . . . 7
class (𝑥 ++ 〈“(𝑓‘𝑥)”〉) |
| 15 | 7, 8, 4, 4, 14 | cmpo 7412 |
. . . . . 6
class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)) |
| 16 | | cn0 12506 |
. . . . . . 7
class
ℕ0 |
| 17 | 5, 10 | cfv 6536 |
. . . . . . . . . 10
class (𝑓‘𝑚) |
| 18 | 17 | cs1 14618 |
. . . . . . . . 9
class
〈“(𝑓‘𝑚)”〉 |
| 19 | 5, 18, 13 | co 7410 |
. . . . . . . 8
class (𝑚 ++ 〈“(𝑓‘𝑚)”〉) |
| 20 | 19 | csn 4606 |
. . . . . . 7
class {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)} |
| 21 | 16, 20 | cxp 5657 |
. . . . . 6
class
(ℕ0 × {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)}) |
| 22 | | chash 14353 |
. . . . . . 7
class
♯ |
| 23 | 5, 22 | cfv 6536 |
. . . . . 6
class
(♯‘𝑚) |
| 24 | 15, 21, 23 | cseq 14024 |
. . . . 5
class
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})) |
| 25 | 6, 24 | ccom 5663 |
. . . 4
class (lastS
∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))) |
| 26 | 5, 25 | cun 3929 |
. . 3
class (𝑚 ∪ (lastS ∘
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))) |
| 27 | 2, 3, 4, 4, 26 | cmpo 7412 |
. 2
class (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |
| 28 | 1, 27 | wceq 1540 |
1
wff
seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |