Detailed syntax breakdown of Definition df-sseq
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | csseq 34386 | . 2
class
seqstr | 
| 2 |  | vm | . . 3
setvar 𝑚 | 
| 3 |  | vf | . . 3
setvar 𝑓 | 
| 4 |  | cvv 3479 | . . 3
class
V | 
| 5 | 2 | cv 1538 | . . . 4
class 𝑚 | 
| 6 |  | clsw 14601 | . . . . 5
class
lastS | 
| 7 |  | vx | . . . . . . 7
setvar 𝑥 | 
| 8 |  | vy | . . . . . . 7
setvar 𝑦 | 
| 9 | 7 | cv 1538 | . . . . . . . 8
class 𝑥 | 
| 10 | 3 | cv 1538 | . . . . . . . . . 10
class 𝑓 | 
| 11 | 9, 10 | cfv 6560 | . . . . . . . . 9
class (𝑓‘𝑥) | 
| 12 | 11 | cs1 14634 | . . . . . . . 8
class
〈“(𝑓‘𝑥)”〉 | 
| 13 |  | cconcat 14609 | . . . . . . . 8
class 
++ | 
| 14 | 9, 12, 13 | co 7432 | . . . . . . 7
class (𝑥 ++ 〈“(𝑓‘𝑥)”〉) | 
| 15 | 7, 8, 4, 4, 14 | cmpo 7434 | . . . . . 6
class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)) | 
| 16 |  | cn0 12528 | . . . . . . 7
class
ℕ0 | 
| 17 | 5, 10 | cfv 6560 | . . . . . . . . . 10
class (𝑓‘𝑚) | 
| 18 | 17 | cs1 14634 | . . . . . . . . 9
class
〈“(𝑓‘𝑚)”〉 | 
| 19 | 5, 18, 13 | co 7432 | . . . . . . . 8
class (𝑚 ++ 〈“(𝑓‘𝑚)”〉) | 
| 20 | 19 | csn 4625 | . . . . . . 7
class {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)} | 
| 21 | 16, 20 | cxp 5682 | . . . . . 6
class
(ℕ0 × {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)}) | 
| 22 |  | chash 14370 | . . . . . . 7
class
♯ | 
| 23 | 5, 22 | cfv 6560 | . . . . . 6
class
(♯‘𝑚) | 
| 24 | 15, 21, 23 | cseq 14043 | . . . . 5
class
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})) | 
| 25 | 6, 24 | ccom 5688 | . . . 4
class (lastS
∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))) | 
| 26 | 5, 25 | cun 3948 | . . 3
class (𝑚 ∪ (lastS ∘
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))) | 
| 27 | 2, 3, 4, 4, 26 | cmpo 7434 | . 2
class (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) | 
| 28 | 1, 27 | wceq 1539 | 1
wff
seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |