Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqval Structured version   Visualization version   GIF version

Theorem sseqval 31641
Description: Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqval (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sseqval
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sseq 31637 . . 3 seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
21a1i 11 . 2 (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))))))
3 simprl 769 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑚 = 𝑀)
43fveq2d 6668 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (♯‘𝑚) = (♯‘𝑀))
5 simp1rr 1235 . . . . . . . . 9 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹)
65fveq1d 6666 . . . . . . . 8 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓𝑥) = (𝐹𝑥))
76s1eqd 13949 . . . . . . 7 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → ⟨“(𝑓𝑥)”⟩ = ⟨“(𝐹𝑥)”⟩)
87oveq2d 7166 . . . . . 6 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ ⟨“(𝑓𝑥)”⟩) = (𝑥 ++ ⟨“(𝐹𝑥)”⟩))
98mpoeq3dva 7225 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
10 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110, 3fveq12d 6671 . . . . . . . . 9 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑓𝑚) = (𝐹𝑀))
1211s1eqd 13949 . . . . . . . 8 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → ⟨“(𝑓𝑚)”⟩ = ⟨“(𝐹𝑀)”⟩)
133, 12oveq12d 7168 . . . . . . 7 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ++ ⟨“(𝑓𝑚)”⟩) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
1413sneqd 4572 . . . . . 6 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)} = {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})
1514xpeq2d 5579 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}) = (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))
164, 9, 15seqeq123d 13372 . . . 4 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})) = seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
1716coeq2d 5727 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))) = (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))
183, 17uneq12d 4139 . 2 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
19 sseqval.2 . . 3 (𝜑𝑀 ∈ Word 𝑆)
20 elex 3512 . . 3 (𝑀 ∈ Word 𝑆𝑀 ∈ V)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ V)
22 sseqval.4 . . 3 (𝜑𝐹:𝑊𝑆)
23 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
24 sseqval.1 . . . . 5 (𝜑𝑆 ∈ V)
25 wrdexg 13865 . . . . 5 (𝑆 ∈ V → Word 𝑆 ∈ V)
26 inex1g 5215 . . . . 5 (Word 𝑆 ∈ V → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2724, 25, 263syl 18 . . . 4 (𝜑 → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2823, 27eqeltrid 2917 . . 3 (𝜑𝑊 ∈ V)
29 fex 6983 . . 3 ((𝐹:𝑊𝑆𝑊 ∈ V) → 𝐹 ∈ V)
3022, 28, 29syl2anc 586 . 2 (𝜑𝐹 ∈ V)
31 df-lsw 13909 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
3231funmpt2 6388 . . . . 5 Fun lastS
3332a1i 11 . . . 4 (𝜑 → Fun lastS)
34 seqex 13365 . . . . 5 seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V
3534a1i 11 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V)
36 cofunexg 7644 . . . 4 ((Fun lastS ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
3733, 35, 36syl2anc 586 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
38 unexg 7466 . . 3 ((𝑀 ∈ V ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
3921, 37, 38syl2anc 586 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
402, 18, 21, 30, 39ovmpod 7296 1 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  Vcvv 3494  cun 3933  cin 3934  {csn 4560   × cxp 5547  ccnv 5548  cima 5552  ccom 5553  Fun wfun 6343  wf 6345  cfv 6349  (class class class)co 7150  cmpo 7152  1c1 10532  cmin 10864  0cn0 11891  cuz 12237  seqcseq 13363  chash 13684  Word cword 13855  lastSclsw 13908   ++ cconcat 13916  ⟨“cs1 13943  seqstrcsseq 31636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-1cn 10589  ax-addcl 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-map 8402  df-nn 11633  df-n0 11892  df-seq 13364  df-word 13856  df-lsw 13909  df-s1 13944  df-sseq 31637
This theorem is referenced by:  sseqfv1  31642  sseqfn  31643  sseqf  31645  sseqfv2  31647
  Copyright terms: Public domain W3C validator