Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqval Structured version   Visualization version   GIF version

Theorem sseqval 34078
Description: Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqval (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sseqval
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sseq 34074 . . 3 seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
21a1i 11 . 2 (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))))))
3 simprl 769 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑚 = 𝑀)
43fveq2d 6898 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (♯‘𝑚) = (♯‘𝑀))
5 simp1rr 1236 . . . . . . . . 9 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹)
65fveq1d 6896 . . . . . . . 8 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓𝑥) = (𝐹𝑥))
76s1eqd 14583 . . . . . . 7 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → ⟨“(𝑓𝑥)”⟩ = ⟨“(𝐹𝑥)”⟩)
87oveq2d 7433 . . . . . 6 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ ⟨“(𝑓𝑥)”⟩) = (𝑥 ++ ⟨“(𝐹𝑥)”⟩))
98mpoeq3dva 7495 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
10 simprr 771 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110, 3fveq12d 6901 . . . . . . . . 9 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑓𝑚) = (𝐹𝑀))
1211s1eqd 14583 . . . . . . . 8 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → ⟨“(𝑓𝑚)”⟩ = ⟨“(𝐹𝑀)”⟩)
133, 12oveq12d 7435 . . . . . . 7 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ++ ⟨“(𝑓𝑚)”⟩) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
1413sneqd 4641 . . . . . 6 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)} = {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})
1514xpeq2d 5707 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}) = (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))
164, 9, 15seqeq123d 14007 . . . 4 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})) = seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
1716coeq2d 5864 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))) = (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))
183, 17uneq12d 4162 . 2 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
19 sseqval.2 . . 3 (𝜑𝑀 ∈ Word 𝑆)
20 elex 3482 . . 3 (𝑀 ∈ Word 𝑆𝑀 ∈ V)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ V)
22 sseqval.4 . . 3 (𝜑𝐹:𝑊𝑆)
23 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
24 sseqval.1 . . . . 5 (𝜑𝑆 ∈ V)
25 wrdexg 14506 . . . . 5 (𝑆 ∈ V → Word 𝑆 ∈ V)
26 inex1g 5319 . . . . 5 (Word 𝑆 ∈ V → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2724, 25, 263syl 18 . . . 4 (𝜑 → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2823, 27eqeltrid 2829 . . 3 (𝜑𝑊 ∈ V)
2922, 28fexd 7237 . 2 (𝜑𝐹 ∈ V)
30 df-lsw 14545 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
3130funmpt2 6591 . . . . 5 Fun lastS
3231a1i 11 . . . 4 (𝜑 → Fun lastS)
33 seqex 14000 . . . . 5 seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V
3433a1i 11 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V)
35 cofunexg 7951 . . . 4 ((Fun lastS ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
3632, 34, 35syl2anc 582 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
37 unexg 7750 . . 3 ((𝑀 ∈ V ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
3821, 36, 37syl2anc 582 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
392, 18, 21, 29, 38ovmpod 7571 1 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  Vcvv 3463  cun 3943  cin 3944  {csn 4629   × cxp 5675  ccnv 5676  cima 5680  ccom 5681  Fun wfun 6541  wf 6543  cfv 6547  (class class class)co 7417  cmpo 7419  1c1 11139  cmin 11474  0cn0 12502  cuz 12852  seqcseq 13998  chash 14321  Word cword 14496  lastSclsw 14544   ++ cconcat 14552  ⟨“cs1 14577  seqstrcsseq 34073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-map 8845  df-nn 12243  df-n0 12503  df-seq 13999  df-word 14497  df-lsw 14545  df-s1 14578  df-sseq 34074
This theorem is referenced by:  sseqfv1  34079  sseqfn  34080  sseqf  34082  sseqfv2  34084
  Copyright terms: Public domain W3C validator