Step | Hyp | Ref
| Expression |
1 | | df-sseq 31863 |
. . 3
⊢
seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))))) |
3 | | simprl 771 |
. . 3
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 𝑚 = 𝑀) |
4 | 3 | fveq2d 6663 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (♯‘𝑚) = (♯‘𝑀)) |
5 | | simp1rr 1237 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹) |
6 | 5 | fveq1d 6661 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
7 | 6 | s1eqd 13995 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 〈“(𝑓‘𝑥)”〉 = 〈“(𝐹‘𝑥)”〉) |
8 | 7 | oveq2d 7167 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ 〈“(𝑓‘𝑥)”〉) = (𝑥 ++ 〈“(𝐹‘𝑥)”〉)) |
9 | 8 | mpoeq3dva 7226 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉))) |
10 | | simprr 773 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
11 | 10, 3 | fveq12d 6666 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑚) = (𝐹‘𝑀)) |
12 | 11 | s1eqd 13995 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 〈“(𝑓‘𝑚)”〉 = 〈“(𝐹‘𝑀)”〉) |
13 | 3, 12 | oveq12d 7169 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑚 ++ 〈“(𝑓‘𝑚)”〉) = (𝑀 ++ 〈“(𝐹‘𝑀)”〉)) |
14 | 13 | sneqd 4535 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)} = {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}) |
15 | 14 | xpeq2d 5555 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (ℕ0 ×
{(𝑚 ++ 〈“(𝑓‘𝑚)”〉)}) = (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) |
16 | 4, 9, 15 | seqeq123d 13420 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})) =
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) |
17 | 16 | coeq2d 5703 |
. . 3
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (lastS ∘
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))) = (lastS
∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) |
18 | 3, 17 | uneq12d 4070 |
. 2
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))) = (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))))) |
19 | | sseqval.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
20 | | elex 3429 |
. . 3
⊢ (𝑀 ∈ Word 𝑆 → 𝑀 ∈ V) |
21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ V) |
22 | | sseqval.4 |
. . 3
⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
23 | | sseqval.3 |
. . . 4
⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) |
24 | | sseqval.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
25 | | wrdexg 13916 |
. . . . 5
⊢ (𝑆 ∈ V → Word 𝑆 ∈ V) |
26 | | inex1g 5190 |
. . . . 5
⊢ (Word
𝑆 ∈ V → (Word
𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) ∈ V) |
27 | 24, 25, 26 | 3syl 18 |
. . . 4
⊢ (𝜑 → (Word 𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) ∈ V) |
28 | 23, 27 | eqeltrid 2857 |
. . 3
⊢ (𝜑 → 𝑊 ∈ V) |
29 | | fex 6981 |
. . 3
⊢ ((𝐹:𝑊⟶𝑆 ∧ 𝑊 ∈ V) → 𝐹 ∈ V) |
30 | 22, 28, 29 | syl2anc 588 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
31 | | df-lsw 13955 |
. . . . . 6
⊢ lastS =
(𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) |
32 | 31 | funmpt2 6375 |
. . . . 5
⊢ Fun
lastS |
33 | 32 | a1i 11 |
. . . 4
⊢ (𝜑 → Fun
lastS) |
34 | | seqex 13413 |
. . . . 5
⊢
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈
V |
35 | 34 | a1i 11 |
. . . 4
⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈
V) |
36 | | cofunexg 7655 |
. . . 4
⊢ ((Fun
lastS ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈ V)
→ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈
V) |
37 | 33, 35, 36 | syl2anc 588 |
. . 3
⊢ (𝜑 → (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈
V) |
38 | | unexg 7471 |
. . 3
⊢ ((𝑀 ∈ V ∧ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈ V)
→ (𝑀 ∪ (lastS
∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) ∈
V) |
39 | 21, 37, 38 | syl2anc 588 |
. 2
⊢ (𝜑 → (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) ∈
V) |
40 | 2, 18, 21, 30, 39 | ovmpod 7298 |
1
⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))))) |