| Step | Hyp | Ref
| Expression |
| 1 | | df-sseq 34421 |
. . 3
⊢
seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))))) |
| 3 | | simprl 770 |
. . 3
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 𝑚 = 𝑀) |
| 4 | 3 | fveq2d 6885 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (♯‘𝑚) = (♯‘𝑀)) |
| 5 | | simp1rr 1240 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹) |
| 6 | 5 | fveq1d 6883 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓‘𝑥) = (𝐹‘𝑥)) |
| 7 | 6 | s1eqd 14624 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 〈“(𝑓‘𝑥)”〉 = 〈“(𝐹‘𝑥)”〉) |
| 8 | 7 | oveq2d 7426 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ 〈“(𝑓‘𝑥)”〉) = (𝑥 ++ 〈“(𝐹‘𝑥)”〉)) |
| 9 | 8 | mpoeq3dva 7489 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉))) |
| 10 | | simprr 772 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 𝑓 = 𝐹) |
| 11 | 10, 3 | fveq12d 6888 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑓‘𝑚) = (𝐹‘𝑀)) |
| 12 | 11 | s1eqd 14624 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → 〈“(𝑓‘𝑚)”〉 = 〈“(𝐹‘𝑀)”〉) |
| 13 | 3, 12 | oveq12d 7428 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑚 ++ 〈“(𝑓‘𝑚)”〉) = (𝑀 ++ 〈“(𝐹‘𝑀)”〉)) |
| 14 | 13 | sneqd 4618 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → {(𝑚 ++ 〈“(𝑓‘𝑚)”〉)} = {(𝑀 ++ 〈“(𝐹‘𝑀)”〉)}) |
| 15 | 14 | xpeq2d 5689 |
. . . . 5
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (ℕ0 ×
{(𝑚 ++ 〈“(𝑓‘𝑚)”〉)}) = (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) |
| 16 | 4, 9, 15 | seqeq123d 14033 |
. . . 4
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})) =
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) |
| 17 | 16 | coeq2d 5847 |
. . 3
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (lastS ∘
seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)}))) = (lastS
∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) |
| 18 | 3, 17 | uneq12d 4149 |
. 2
⊢ ((𝜑 ∧ (𝑚 = 𝑀 ∧ 𝑓 = 𝐹)) → (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝑓‘𝑥)”〉)), (ℕ0
× {(𝑚 ++
〈“(𝑓‘𝑚)”〉)})))) = (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))))) |
| 19 | | sseqval.2 |
. . 3
⊢ (𝜑 → 𝑀 ∈ Word 𝑆) |
| 20 | | elex 3485 |
. . 3
⊢ (𝑀 ∈ Word 𝑆 → 𝑀 ∈ V) |
| 21 | 19, 20 | syl 17 |
. 2
⊢ (𝜑 → 𝑀 ∈ V) |
| 22 | | sseqval.4 |
. . 3
⊢ (𝜑 → 𝐹:𝑊⟶𝑆) |
| 23 | | sseqval.3 |
. . . 4
⊢ 𝑊 = (Word 𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) |
| 24 | | sseqval.1 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ V) |
| 25 | | wrdexg 14547 |
. . . . 5
⊢ (𝑆 ∈ V → Word 𝑆 ∈ V) |
| 26 | | inex1g 5294 |
. . . . 5
⊢ (Word
𝑆 ∈ V → (Word
𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) ∈ V) |
| 27 | 24, 25, 26 | 3syl 18 |
. . . 4
⊢ (𝜑 → (Word 𝑆 ∩ (◡♯ “
(ℤ≥‘(♯‘𝑀)))) ∈ V) |
| 28 | 23, 27 | eqeltrid 2839 |
. . 3
⊢ (𝜑 → 𝑊 ∈ V) |
| 29 | 22, 28 | fexd 7224 |
. 2
⊢ (𝜑 → 𝐹 ∈ V) |
| 30 | | df-lsw 14586 |
. . . . . 6
⊢ lastS =
(𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1))) |
| 31 | 30 | funmpt2 6580 |
. . . . 5
⊢ Fun
lastS |
| 32 | 31 | a1i 11 |
. . . 4
⊢ (𝜑 → Fun
lastS) |
| 33 | | seqex 14026 |
. . . . 5
⊢
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈
V |
| 34 | 33 | a1i 11 |
. . . 4
⊢ (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈
V) |
| 35 | | cofunexg 7952 |
. . . 4
⊢ ((Fun
lastS ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})) ∈ V)
→ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈
V) |
| 36 | 32, 34, 35 | syl2anc 584 |
. . 3
⊢ (𝜑 → (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈
V) |
| 37 | | unexg 7742 |
. . 3
⊢ ((𝑀 ∈ V ∧ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))) ∈ V)
→ (𝑀 ∪ (lastS
∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) ∈
V) |
| 38 | 21, 36, 37 | syl2anc 584 |
. 2
⊢ (𝜑 → (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)})))) ∈
V) |
| 39 | 2, 18, 21, 29, 38 | ovmpod 7564 |
1
⊢ (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘
seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ 〈“(𝐹‘𝑥)”〉)), (ℕ0
× {(𝑀 ++
〈“(𝐹‘𝑀)”〉)}))))) |