Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sseqval Structured version   Visualization version   GIF version

Theorem sseqval 34353
Description: Value of the strong sequence builder function. The set 𝑊 represents here the words of length greater than or equal to the lenght of the initial sequence 𝑀. (Contributed by Thierry Arnoux, 21-Apr-2019.)
Hypotheses
Ref Expression
sseqval.1 (𝜑𝑆 ∈ V)
sseqval.2 (𝜑𝑀 ∈ Word 𝑆)
sseqval.3 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
sseqval.4 (𝜑𝐹:𝑊𝑆)
Assertion
Ref Expression
sseqval (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝑀,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝑆(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sseqval
Dummy variables 𝑓 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-sseq 34349 . . 3 seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))))
21a1i 11 . 2 (𝜑 → seqstr = (𝑚 ∈ V, 𝑓 ∈ V ↦ (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))))))
3 simprl 770 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑚 = 𝑀)
43fveq2d 6924 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (♯‘𝑚) = (♯‘𝑀))
5 simp1rr 1239 . . . . . . . . 9 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → 𝑓 = 𝐹)
65fveq1d 6922 . . . . . . . 8 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑓𝑥) = (𝐹𝑥))
76s1eqd 14649 . . . . . . 7 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → ⟨“(𝑓𝑥)”⟩ = ⟨“(𝐹𝑥)”⟩)
87oveq2d 7464 . . . . . 6 (((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) ∧ 𝑥 ∈ V ∧ 𝑦 ∈ V) → (𝑥 ++ ⟨“(𝑓𝑥)”⟩) = (𝑥 ++ ⟨“(𝐹𝑥)”⟩))
98mpoeq3dva 7527 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)) = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)))
10 simprr 772 . . . . . . . . . 10 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → 𝑓 = 𝐹)
1110, 3fveq12d 6927 . . . . . . . . 9 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑓𝑚) = (𝐹𝑀))
1211s1eqd 14649 . . . . . . . 8 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → ⟨“(𝑓𝑚)”⟩ = ⟨“(𝐹𝑀)”⟩)
133, 12oveq12d 7466 . . . . . . 7 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ++ ⟨“(𝑓𝑚)”⟩) = (𝑀 ++ ⟨“(𝐹𝑀)”⟩))
1413sneqd 4660 . . . . . 6 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)} = {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})
1514xpeq2d 5730 . . . . 5 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}) = (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))
164, 9, 15seqeq123d 14061 . . . 4 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})) = seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))
1716coeq2d 5887 . . 3 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)}))) = (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))))
183, 17uneq12d 4192 . 2 ((𝜑 ∧ (𝑚 = 𝑀𝑓 = 𝐹)) → (𝑚 ∪ (lastS ∘ seq(♯‘𝑚)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝑓𝑥)”⟩)), (ℕ0 × {(𝑚 ++ ⟨“(𝑓𝑚)”⟩)})))) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
19 sseqval.2 . . 3 (𝜑𝑀 ∈ Word 𝑆)
20 elex 3509 . . 3 (𝑀 ∈ Word 𝑆𝑀 ∈ V)
2119, 20syl 17 . 2 (𝜑𝑀 ∈ V)
22 sseqval.4 . . 3 (𝜑𝐹:𝑊𝑆)
23 sseqval.3 . . . 4 𝑊 = (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀))))
24 sseqval.1 . . . . 5 (𝜑𝑆 ∈ V)
25 wrdexg 14572 . . . . 5 (𝑆 ∈ V → Word 𝑆 ∈ V)
26 inex1g 5337 . . . . 5 (Word 𝑆 ∈ V → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2724, 25, 263syl 18 . . . 4 (𝜑 → (Word 𝑆 ∩ (♯ “ (ℤ‘(♯‘𝑀)))) ∈ V)
2823, 27eqeltrid 2848 . . 3 (𝜑𝑊 ∈ V)
2922, 28fexd 7264 . 2 (𝜑𝐹 ∈ V)
30 df-lsw 14611 . . . . . 6 lastS = (𝑥 ∈ V ↦ (𝑥‘((♯‘𝑥) − 1)))
3130funmpt2 6617 . . . . 5 Fun lastS
3231a1i 11 . . . 4 (𝜑 → Fun lastS)
33 seqex 14054 . . . . 5 seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V
3433a1i 11 . . . 4 (𝜑 → seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V)
35 cofunexg 7989 . . . 4 ((Fun lastS ∧ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})) ∈ V) → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
3632, 34, 35syl2anc 583 . . 3 (𝜑 → (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V)
37 unexg 7778 . . 3 ((𝑀 ∈ V ∧ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)}))) ∈ V) → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
3821, 36, 37syl2anc 583 . 2 (𝜑 → (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))) ∈ V)
392, 18, 21, 29, 38ovmpod 7602 1 (𝜑 → (𝑀seqstr𝐹) = (𝑀 ∪ (lastS ∘ seq(♯‘𝑀)((𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑥 ++ ⟨“(𝐹𝑥)”⟩)), (ℕ0 × {(𝑀 ++ ⟨“(𝐹𝑀)”⟩)})))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  Vcvv 3488  cun 3974  cin 3975  {csn 4648   × cxp 5698  ccnv 5699  cima 5703  ccom 5704  Fun wfun 6567  wf 6569  cfv 6573  (class class class)co 7448  cmpo 7450  1c1 11185  cmin 11520  0cn0 12553  cuz 12903  seqcseq 14052  chash 14379  Word cword 14562  lastSclsw 14610   ++ cconcat 14618  ⟨“cs1 14643  seqstrcsseq 34348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-1cn 11242  ax-addcl 11244
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-map 8886  df-nn 12294  df-n0 12554  df-seq 14053  df-word 14563  df-lsw 14611  df-s1 14644  df-sseq 34349
This theorem is referenced by:  sseqfv1  34354  sseqfn  34355  sseqf  34357  sseqfv2  34359
  Copyright terms: Public domain W3C validator