Detailed syntax breakdown of Definition df-subr
| Step | Hyp | Ref
| Expression |
| 1 | | cminusr 44422 |
. 2
class
-𝑟 |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cvv 3464 |
. . 3
class
V |
| 5 | | vv |
. . . 4
setvar 𝑣 |
| 6 | | cr 11137 |
. . . 4
class
ℝ |
| 7 | 5 | cv 1538 |
. . . . . 6
class 𝑣 |
| 8 | 2 | cv 1538 |
. . . . . 6
class 𝑥 |
| 9 | 7, 8 | cfv 6542 |
. . . . 5
class (𝑥‘𝑣) |
| 10 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
| 11 | 7, 10 | cfv 6542 |
. . . . 5
class (𝑦‘𝑣) |
| 12 | | cmin 11475 |
. . . . 5
class
− |
| 13 | 9, 11, 12 | co 7414 |
. . . 4
class ((𝑥‘𝑣) − (𝑦‘𝑣)) |
| 14 | 5, 6, 13 | cmpt 5207 |
. . 3
class (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣))) |
| 15 | 2, 3, 4, 4, 14 | cmpo 7416 |
. 2
class (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) |
| 16 | 1, 15 | wceq 1539 |
1
wff
-𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) |