| Metamath
Proof Explorer Theorem List (p. 447 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | el1 44601 | A Virtual deduction elimination rule. syl 17 is el1 44601 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e1bi 44602 | Biconditional form of e1a 44600. sylib 218 is e1bi 44602 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e1bir 44603 | Right biconditional form of e1a 44600. sylibr 234 is e1bir 44603 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e2 44604 | A virtual deduction elimination rule. syl6 35 is e2 44604 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | e2bi 44605 | Biconditional form of e2 44604. imbitrdi 251 is e2bi 44605 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | e2bir 44606 | Right biconditional form of e2 44604. imbitrrdi 252 is e2bir 44606 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜃 ↔ 𝜒) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | ee223 44607 | e223 44608 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) | ||
| Theorem | e223 44608 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) | ||
| Theorem | e222 44609 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | e220 44610 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee220 44611 | e220 44610 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e202 44612 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee202 44613 | e202 44612 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e022 44614 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee022 44615 | e022 44614 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → (𝜒 → 𝜏)) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e002 44616 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee002 44617 | e002 44616 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜒 → (𝜃 → 𝜂)) | ||
| Theorem | e020 44618 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee020 44619 | e020 44618 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e200 44620 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee200 44621 | e200 44620 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e221 44622 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee221 44623 | e221 44622 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e212 44624 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee212 44625 | e212 44624 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e122 44626 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | e112 44627 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee112 44628 | e112 44627 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
| Theorem | e121 44629 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | e211 44630 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee211 44631 | e211 44630 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e210 44632 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee210 44633 | e210 44632 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e201 44634 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee201 44635 | e201 44634 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e120 44636 | A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee120 44637 | Virtual deduction rule e120 44636 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
| Theorem | e021 44638 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee021 44639 | e021 44638 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → 𝜏) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e012 44640 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee012 44641 | e012 44640 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜃 → 𝜂)) | ||
| Theorem | e102 44642 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee102 44643 | e102 44642 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
| Theorem | e22 44644 | A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | e22an 44645 | Conjunction form of e22 44644. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee22an 44646 | e22an 44645 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
| Theorem | e111 44647 | A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | e1111 44648 | A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ ( 𝜑 ▶ 𝜂 ) | ||
| Theorem | e110 44649 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee110 44650 | e110 44649 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e101 44651 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee101 44652 | e101 44651 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e011 44653 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee011 44654 | e011 44653 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | e100 44655 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee100 44656 | e100 44655 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e010 44657 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee010 44658 | e010 44657 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | e001 44659 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜒 ▶ 𝜏 ) | ||
| Theorem | ee001 44660 | e001 44659 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | e11 44661 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | e11an 44662 | Conjunction form of e11 44661. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | ee11an 44663 | e11an 44662 without virtual deductions. syl22anc 838 is also e11an 44662 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | e01 44664 | A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
| Theorem | e01an 44665 | Conjunction form of e01 44664. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
| Theorem | ee01an 44666 | e01an 44665 without virtual deductions. sylancr 587 is also a form of e01an 44665 without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | e10 44667 | A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | e10an 44668 | Conjunction form of e10 44667. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | ee10an 44669 | e10an 44668 without virtual deductions. sylancl 586 is also e10an 44668 without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | e02 44670 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e02an 44671 | Conjunction form of e02 44670. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | ee02an 44672 | e02an 44671 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → (𝜒 → 𝜏)) | ||
| Theorem | eel021old 44673 | el021old 44674 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜏) | ||
| Theorem | el021old 44674 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜏 ) | ||
| Theorem | eel000cT 44675 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (⊤ → 𝜃) | ||
| Theorem | eel0TT 44676 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelT00 44677 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelTTT 44678 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelT11 44679 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | eelT1 44680 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | eelT12 44681 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
| Theorem | eelTT1 44682 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | eelT01 44683 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | eel0T1 44684 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | eel12131 44685 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ (𝜑 → 𝜓) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | ||
| Theorem | eel2131 44686 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) | ||
| Theorem | eel3132 44687 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜂) | ||
| Theorem | eel0321old 44688 | el0321old 44689 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
| Theorem | el0321old 44689 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜂 ) | ||
| Theorem | eel2122old 44690 | el2122old 44691 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜓 → 𝜏) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
| Theorem | el2122old 44691 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 ) | ||
| Theorem | eel0000 44692 | Elimination rule similar to mp4an 693, except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ 𝜏 | ||
| Theorem | eel00001 44693 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜏 → 𝜂) & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜏 → 𝜁) | ||
| Theorem | eel00000 44694 | Elimination rule similar eel0000 44692, except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ 𝜂 | ||
| Theorem | eel11111 44695 | Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc 1384 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
| Theorem | e12 44696 | A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e12an 44697 | Conjunction form of e12 44696 (see syl6an 684). (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | el12 44698 | Virtual deduction form of syl2an 596. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜏 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) | ||
| Theorem | e20 44699 | A virtual deduction elimination rule (see syl6mpi 67). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | e20an 44700 | Conjunction form of e20 44699. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |