| Metamath
Proof Explorer Theorem List (p. 447 of 495) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30866) |
(30867-32389) |
(32390-49419) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | in3 44601 | The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ (𝜒 → 𝜃) ) | ||
| Theorem | iin3 44602 | in3 44601 without virtual deduction connectives. Special theorem needed for the Virtual Deduction translation tool. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) | ||
| Theorem | in3an 44603 | The virtual deduction introduction rule converting the second conjunct of the third virtual hypothesis into the antecedent of the conclusion. exp4a 431 is the non-virtual deduction form of in3an 44603. (Contributed by Alan Sare, 25-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , (𝜒 ∧ 𝜃) ▶ 𝜏 ) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ (𝜃 → 𝜏) ) | ||
| Theorem | int3 44604 | The virtual deduction introduction rule of converting the end virtual hypothesis of 3 virtual hypotheses into an antecedent. Conventional form of int3 44604 is 3expia 1121. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ( 𝜑 , 𝜓 , 𝜒 ) ▶ 𝜃 ) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ (𝜒 → 𝜃) ) | ||
| Theorem | idn2 44605 | Virtual deduction identity rule which is idd 24 with virtual deduction symbols. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜓 ) | ||
| Theorem | iden2 44606 | Virtual deduction identity rule. simpr 484 in conjunction form Virtual Deduction notation. (Contributed by Alan Sare, 5-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜓 ) | ||
| Theorem | idn3 44607 | Virtual deduction identity rule for three virtual hypotheses. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜒 ) | ||
| Theorem | gen11 44608* | Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis. alrimiv 1926 is gen11 44608 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) | ||
| Theorem | gen11nv 44609 | Virtual deduction generalizing rule for one quantifying variable and one virtual hypothesis without distinct variables. alrimih 1823 is gen11nv 44609 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥𝜓 ) | ||
| Theorem | gen12 44610* | Virtual deduction generalizing rule for two quantifying variables and one virtual hypothesis. gen12 44610 is alrimivv 1927 with virtual deductions. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) ⇒ ⊢ ( 𝜑 ▶ ∀𝑥∀𝑦𝜓 ) | ||
| Theorem | gen21 44611* | Virtual deduction generalizing rule for one quantifying variables and two virtual hypothesis. gen21 44611 is alrimdv 1928 with virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥𝜒 ) | ||
| Theorem | gen21nv 44612 | Virtual deduction form of alrimdh 1862. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥𝜒 ) | ||
| Theorem | gen31 44613* | Virtual deduction generalizing rule for one quantifying variable and three virtual hypothesis. gen31 44613 is ggen31 44537 with virtual deductions. (Contributed by Alan Sare, 22-Jun-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜒 ▶ ∀𝑥𝜃 ) | ||
| Theorem | gen22 44614* | Virtual deduction generalizing rule for two quantifying variables and two virtual hypothesis. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ ∀𝑥∀𝑦𝜒 ) | ||
| Theorem | ggen22 44615* | gen22 44614 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → (𝜓 → ∀𝑥∀𝑦𝜒)) | ||
| Theorem | exinst 44616 | Existential Instantiation. Virtual deduction form of exlimexi 44516. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜓 → ∀𝑥𝜓) & ⊢ ( ∃𝑥𝜑 , 𝜑 ▶ 𝜓 ) ⇒ ⊢ (∃𝑥𝜑 → 𝜓) | ||
| Theorem | exinst01 44617 | Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E ∃ in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ∃𝑥𝜓 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | exinst11 44618 | Existential Instantiation. Virtual Deduction rule corresponding to a special case of the Natural Deduction Sequent Calculus rule called Rule C in [Margaris] p. 79 and E ∃ in Table 1 on page 4 of the paper "Extracting information from intermediate T-systems" (2000) presented at IMLA99 by Mauro Ferrari, Camillo Fiorentini, and Pierangelo Miglioli. (Contributed by Alan Sare, 21-Apr-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ ∃𝑥𝜓 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → ∀𝑥𝜑) & ⊢ (𝜒 → ∀𝑥𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e1a 44619 | A Virtual deduction elimination rule. syl 17 is e1a 44619 without virtual deductions. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | el1 44620 | A Virtual deduction elimination rule. syl 17 is el1 44620 without virtual deductions. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 → 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e1bi 44621 | Biconditional form of e1a 44619. sylib 218 is e1bi 44621 without virtual deductions. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜓 ↔ 𝜒) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e1bir 44622 | Right biconditional form of e1a 44619. sylibr 234 is e1bir 44622 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
| Theorem | e2 44623 | A virtual deduction elimination rule. syl6 35 is e2 44623 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | e2bi 44624 | Biconditional form of e2 44623. imbitrdi 251 is e2bi 44624 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | e2bir 44625 | Right biconditional form of e2 44623. imbitrrdi 252 is e2bir 44625 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜃 ↔ 𝜒) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
| Theorem | ee223 44626 | e223 44627 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) | ||
| Theorem | e223 44627 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) | ||
| Theorem | e222 44628 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | e220 44629 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee220 44630 | e220 44629 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e202 44631 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee202 44632 | e202 44631 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e022 44633 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee022 44634 | e022 44633 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → (𝜒 → 𝜏)) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e002 44635 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜒 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee002 44636 | e002 44635 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜒 → (𝜃 → 𝜂)) | ||
| Theorem | e020 44637 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee020 44638 | e020 44637 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e200 44639 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee200 44640 | e200 44639 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e221 44641 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee221 44642 | e221 44641 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e212 44643 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee212 44644 | e212 44643 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e122 44645 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | e112 44646 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee112 44647 | e112 44646 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
| Theorem | e121 44648 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | e211 44649 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee211 44650 | e211 44649 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e210 44651 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee210 44652 | e210 44651 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e201 44653 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
| Theorem | ee201 44654 | e201 44653 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
| Theorem | e120 44655 | A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee120 44656 | Virtual deduction rule e120 44655 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
| Theorem | e021 44657 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
| Theorem | ee021 44658 | e021 44657 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → 𝜏) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
| Theorem | e012 44659 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee012 44660 | e012 44659 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜃 → 𝜂)) | ||
| Theorem | e102 44661 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
| Theorem | ee102 44662 | e102 44661 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
| Theorem | e22 44663 | A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | e22an 44664 | Conjunction form of e22 44663. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee22an 44665 | e22an 44664 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
| Theorem | e111 44666 | A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | e1111 44667 | A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ ( 𝜑 ▶ 𝜂 ) | ||
| Theorem | e110 44668 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee110 44669 | e110 44668 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e101 44670 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee101 44671 | e101 44670 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e011 44672 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee011 44673 | e011 44672 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | e100 44674 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
| Theorem | ee100 44675 | e100 44674 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
| Theorem | e010 44676 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
| Theorem | ee010 44677 | e010 44676 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | e001 44678 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜒 ▶ 𝜏 ) | ||
| Theorem | ee001 44679 | e001 44678 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜒 → 𝜏) | ||
| Theorem | e11 44680 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | e11an 44681 | Conjunction form of e11 44680. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | ee11an 44682 | e11an 44681 without virtual deductions. syl22anc 838 is also e11an 44681 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | e01 44683 | A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
| Theorem | e01an 44684 | Conjunction form of e01 44683. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
| Theorem | ee01an 44685 | e01an 44684 without virtual deductions. sylancr 587 is also a form of e01an 44684 without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| Theorem | e10 44686 | A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | e10an 44687 | Conjunction form of e10 44686. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
| Theorem | ee10an 44688 | e10an 44687 without virtual deductions. sylancl 586 is also e10an 44687 without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
| Theorem | e02 44689 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | e02an 44690 | Conjunction form of e02 44689. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
| Theorem | ee02an 44691 | e02an 44690 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → (𝜒 → 𝜏)) | ||
| Theorem | eel021old 44692 | el021old 44693 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜏) | ||
| Theorem | el021old 44693 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜏 ) | ||
| Theorem | eel132 44694 | syl2an 596 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
| ⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
| Theorem | eel000cT 44695 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (⊤ → 𝜃) | ||
| Theorem | eel0TT 44696 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelT00 44697 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelTTT 44698 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
| Theorem | eelT11 44699 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
| Theorem | eelT1 44700 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |