![]() |
Metamath
Proof Explorer Theorem List (p. 447 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | e1bir 44601 | Right biconditional form of e1a 44598. sylibr 234 is e1bir 44601 without virtual deductions. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ (𝜒 ↔ 𝜓) ⇒ ⊢ ( 𝜑 ▶ 𝜒 ) | ||
Theorem | e2 44602 | A virtual deduction elimination rule. syl6 35 is e2 44602 without virtual deductions. (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 → 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | e2bi 44603 | Biconditional form of e2 44602. imbitrdi 251 is e2bi 44603 without virtual deductions. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜒 ↔ 𝜃) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | e2bir 44604 | Right biconditional form of e2 44602. imbitrrdi 252 is e2bir 44604 without virtual deductions. (Contributed by Alan Sare, 29-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ (𝜃 ↔ 𝜒) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) | ||
Theorem | ee223 44605 | e223 44606 without virtual deductions. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜁))) | ||
Theorem | e223 44606 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜂 ) & ⊢ (𝜒 → (𝜃 → (𝜂 → 𝜁))) ⇒ ⊢ ( 𝜑 , 𝜓 , 𝜏 ▶ 𝜁 ) | ||
Theorem | e222 44607 | A virtual deduction elimination rule. (Contributed by Alan Sare, 12-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | e220 44608 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee220 44609 | e220 44608 without virtual deductions. (Contributed by Alan Sare, 12-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e202 44610 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee202 44611 | e202 44610 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e022 44612 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee022 44613 | e022 44612 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → (𝜒 → 𝜏)) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e002 44614 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜒 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee002 44615 | e002 44614 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜓 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜒 → (𝜃 → 𝜂)) | ||
Theorem | e020 44616 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee020 44617 | e020 44616 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e200 44618 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee200 44619 | e200 44618 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e221 44620 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee221 44621 | e221 44620 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e212 44622 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee212 44623 | e212 44622 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → (𝜓 → 𝜏)) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e122 44624 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e112 44625 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee112 44626 | e112 44625 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
Theorem | e121 44627 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | e211 44628 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee211 44629 | e211 44628 without virtual deductions. (Contributed by Alan Sare, 13-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e210 44630 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee210 44631 | e210 44630 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → 𝜃) & ⊢ 𝜏 & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e201 44632 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜂 ) | ||
Theorem | ee201 44633 | e201 44632 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ (𝜑 → 𝜏) & ⊢ (𝜒 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜓 → 𝜂)) | ||
Theorem | e120 44634 | A virtual deduction elimination rule. (Contributed by Alan Sare, 10-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee120 44635 | Virtual deduction rule e120 44634 without virtual deduction symbols. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → (𝜒 → 𝜃)) & ⊢ 𝜏 & ⊢ (𝜓 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜒 → 𝜂)) | ||
Theorem | e021 44636 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜂 ) | ||
Theorem | ee021 44637 | e021 44636 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ (𝜓 → 𝜏) & ⊢ (𝜑 → (𝜃 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜒 → 𝜂)) | ||
Theorem | e012 44638 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜓 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee012 44639 | e012 44638 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → (𝜃 → 𝜏)) & ⊢ (𝜑 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜓 → (𝜃 → 𝜂)) | ||
Theorem | e102 44640 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 , 𝜃 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ ( 𝜑 , 𝜃 ▶ 𝜂 ) | ||
Theorem | ee102 44641 | e102 44640 without virtual deductions. (Contributed by Alan Sare, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → (𝜃 → 𝜏)) & ⊢ (𝜓 → (𝜒 → (𝜏 → 𝜂))) ⇒ ⊢ (𝜑 → (𝜃 → 𝜂)) | ||
Theorem | e22 44642 | A virtual deduction elimination rule. (Contributed by Alan Sare, 2-May-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e22an 44643 | Conjunction form of e22 44642. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜑 , 𝜓 ▶ 𝜃 ) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee22an 44644 | e22an 44643 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ (𝜑 → (𝜓 → 𝜃)) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) | ||
Theorem | e111 44645 | A virtual deduction elimination rule (see syl3c 66). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | e1111 44646 | A virtual deduction elimination rule. (Contributed by Alan Sare, 6-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ ( 𝜑 ▶ 𝜏 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → (𝜏 → 𝜂)))) ⇒ ⊢ ( 𝜑 ▶ 𝜂 ) | ||
Theorem | e110 44647 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee110 44648 | e110 44647 without virtual deductions. (Contributed by Alan Sare, 22-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e101 44649 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ( 𝜑 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee101 44650 | e101 44649 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ (𝜑 → 𝜃) & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e011 44651 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee011 44652 | e011 44651 without virtual deductions. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e100 44653 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜑 ▶ 𝜏 ) | ||
Theorem | ee100 44654 | e100 44653 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜓 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜑 → 𝜏) | ||
Theorem | e010 44655 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜓 ▶ 𝜏 ) | ||
Theorem | ee010 44656 | e010 44655 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ 𝜃 & ⊢ (𝜑 → (𝜒 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | e001 44657 | A virtual deduction elimination rule. (Contributed by Alan Sare, 24-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ ( 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ ( 𝜒 ▶ 𝜏 ) | ||
Theorem | ee001 44658 | e001 44657 without virtual deductions. (Contributed by Alan Sare, 23-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ (𝜑 → (𝜓 → (𝜃 → 𝜏))) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | e11 44659 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | e11an 44660 | Conjunction form of e11 44659. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | ee11an 44661 | e11an 44660 without virtual deductions. syl22anc 838 is also e11an 44660 without virtual deductions, exept with a different order of hypotheses. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | e01 44662 | A virtual deduction elimination rule. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ (𝜑 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
Theorem | e01an 44663 | Conjunction form of e01 44662. (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 ▶ 𝜒 ) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜓 ▶ 𝜃 ) | ||
Theorem | ee01an 44664 | e01an 44663 without virtual deductions. sylancr 586 is also a form of e01an 44663 without virtual deduction, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | e10 44665 | A virtual deduction elimination rule (see mpisyl 21). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ (𝜓 → (𝜒 → 𝜃)) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | e10an 44666 | Conjunction form of e10 44665. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( 𝜑 ▶ 𝜃 ) | ||
Theorem | ee10an 44667 | e10an 44666 without virtual deductions. sylancl 585 is also e10an 44666 without virtual deductions, except the order of the hypotheses is different. (Contributed by Alan Sare, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝜓) & ⊢ 𝜒 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜑 → 𝜃) | ||
Theorem | e02 44668 | A virtual deduction elimination rule. (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜑 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e02an 44669 | Conjunction form of e02 44668. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( 𝜓 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜓 , 𝜒 ▶ 𝜏 ) | ||
Theorem | ee02an 44670 | e02an 44669 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (𝜓 → (𝜒 → 𝜃)) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → (𝜒 → 𝜏)) | ||
Theorem | eel021old 44671 | el021old 44672 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ((𝜓 ∧ 𝜒) → 𝜏) | ||
Theorem | el021old 44672 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜃 ) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( ( 𝜓 , 𝜒 ) ▶ 𝜏 ) | ||
Theorem | eel132 44673 | syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜓 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
Theorem | eel000cT 44674 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ (⊤ → 𝜃) | ||
Theorem | eel0TT 44675 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelT00 44676 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelTTT 44677 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (⊤ → 𝜒) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ 𝜃 | ||
Theorem | eelT11 44678 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜓 → 𝜏) | ||
Theorem | eelT1 44679 | Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Alan Sare, 23-Dec-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) ⇒ ⊢ (𝜓 → 𝜃) | ||
Theorem | eelT12 44680 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (𝜓 → 𝜒) & ⊢ (𝜃 → 𝜏) & ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | eelTT1 44681 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eelT01 44682 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (⊤ → 𝜑) & ⊢ 𝜓 & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eel0T1 44683 | An elimination deduction. (Contributed by Alan Sare, 4-Feb-2017.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ (⊤ → 𝜓) & ⊢ (𝜒 → 𝜃) & ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜒 → 𝜏) | ||
Theorem | eel12131 44684 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → 𝜓) & ⊢ ((𝜑 ∧ 𝜒) → 𝜃) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) & ⊢ ((𝜓 ∧ 𝜃 ∧ 𝜂) → 𝜁) ⇒ ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜏) → 𝜁) | ||
Theorem | eel2131 44685 | syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 26-Aug-2016.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜑 ∧ 𝜃) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜃) → 𝜂) | ||
Theorem | eel3132 44686 | syl2an 595 with antecedents in standard conjunction form. (Contributed by Alan Sare, 27-Aug-2016.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ ((𝜃 ∧ 𝜓) → 𝜏) & ⊢ ((𝜒 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜃 ∧ 𝜓) → 𝜂) | ||
Theorem | eel0321old 44687 | el0321old 44688 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜏) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜓 ∧ 𝜒 ∧ 𝜃) → 𝜂) | ||
Theorem | el0321old 44688 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝜑 & ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜏 ) & ⊢ ((𝜑 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜓 , 𝜒 , 𝜃 ) ▶ 𝜂 ) | ||
Theorem | eel2122old 44689 | el2122old 44690 without virtual deductions. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝜑 ∧ 𝜓) → 𝜒) & ⊢ (𝜓 → 𝜃) & ⊢ (𝜓 → 𝜏) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ((𝜑 ∧ 𝜓) → 𝜂) | ||
Theorem | el2122old 44690 | A virtual deduction elimination rule. (Contributed by Alan Sare, 13-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜒 ) & ⊢ ( 𝜓 ▶ 𝜃 ) & ⊢ ( 𝜓 ▶ 𝜏 ) & ⊢ ((𝜒 ∧ 𝜃 ∧ 𝜏) → 𝜂) ⇒ ⊢ ( ( 𝜑 , 𝜓 ) ▶ 𝜂 ) | ||
Theorem | eel0000 44691 | Elimination rule similar to mp4an 692, except with a left-nested conjunction unification theorem. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏) ⇒ ⊢ 𝜏 | ||
Theorem | eel00001 44692 | An elimination deduction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ (𝜏 → 𝜂) & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜏 → 𝜁) | ||
Theorem | eel00000 44693 | Elimination rule similar eel0000 44691, except with five hpothesis steps. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ 𝜑 & ⊢ 𝜓 & ⊢ 𝜒 & ⊢ 𝜃 & ⊢ 𝜏 & ⊢ (((((𝜑 ∧ 𝜓) ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂) ⇒ ⊢ 𝜂 | ||
Theorem | eel11111 44694 | Five-hypothesis elimination deduction for an assertion with a singleton virtual hypothesis collection. Similar to syl113anc 1382 except the unification theorem uses left-nested conjunction. (Contributed by Alan Sare, 17-Oct-2017.) |
⊢ (𝜑 → 𝜓) & ⊢ (𝜑 → 𝜒) & ⊢ (𝜑 → 𝜃) & ⊢ (𝜑 → 𝜏) & ⊢ (𝜑 → 𝜂) & ⊢ (((((𝜓 ∧ 𝜒) ∧ 𝜃) ∧ 𝜏) ∧ 𝜂) → 𝜁) ⇒ ⊢ (𝜑 → 𝜁) | ||
Theorem | e12 44695 | A virtual deduction elimination rule (see sylsyld 61). (Contributed by Alan Sare, 21-Apr-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ (𝜓 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
Theorem | e12an 44696 | Conjunction form of e12 44695 (see syl6an 683). (Contributed by Alan Sare, 11-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜑 , 𝜒 ▶ 𝜃 ) & ⊢ ((𝜓 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜒 ▶ 𝜏 ) | ||
Theorem | el12 44697 | Virtual deduction form of syl2an 595. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 ▶ 𝜓 ) & ⊢ ( 𝜏 ▶ 𝜒 ) & ⊢ ((𝜓 ∧ 𝜒) → 𝜃) ⇒ ⊢ ( ( 𝜑 , 𝜏 ) ▶ 𝜃 ) | ||
Theorem | e20 44698 | A virtual deduction elimination rule (see syl6mpi 67). (Contributed by Alan Sare, 14-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ (𝜒 → (𝜃 → 𝜏)) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | e20an 44699 | Conjunction form of e20 44698. (Contributed by Alan Sare, 15-Jun-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ( 𝜑 , 𝜓 ▶ 𝜒 ) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ ( 𝜑 , 𝜓 ▶ 𝜏 ) | ||
Theorem | ee20an 44700 | e20an 44699 without virtual deductions. (Contributed by Alan Sare, 8-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → (𝜓 → 𝜒)) & ⊢ 𝜃 & ⊢ ((𝜒 ∧ 𝜃) → 𝜏) ⇒ ⊢ (𝜑 → (𝜓 → 𝜏)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |