| Mathbox for Andrew Salmon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > subrval | Structured version Visualization version GIF version | ||
| Description: Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.) |
| Ref | Expression |
|---|---|
| subrval | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3458 | . 2 ⊢ (𝐴 ∈ 𝐶 → 𝐴 ∈ V) | |
| 2 | elex 3458 | . 2 ⊢ (𝐵 ∈ 𝐷 → 𝐵 ∈ V) | |
| 3 | fveq1 6827 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥‘𝑣) = (𝐴‘𝑣)) | |
| 4 | fveq1 6827 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝑦‘𝑣) = (𝐵‘𝑣)) | |
| 5 | 3, 4 | oveqan12d 7371 | . . . 4 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ((𝑥‘𝑣) − (𝑦‘𝑣)) = ((𝐴‘𝑣) − (𝐵‘𝑣))) |
| 6 | 5 | mpteq2dv 5187 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣))) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) |
| 7 | df-subr 44580 | . . 3 ⊢ -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥‘𝑣) − (𝑦‘𝑣)))) | |
| 8 | reex 11104 | . . . 4 ⊢ ℝ ∈ V | |
| 9 | 8 | mptex 7163 | . . 3 ⊢ (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣))) ∈ V |
| 10 | 6, 7, 9 | ovmpoa 7507 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) |
| 11 | 1, 2, 10 | syl2an 596 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴‘𝑣) − (𝐵‘𝑣)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 − cmin 11351 -𝑟cminusr 44574 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-cnex 11069 ax-resscn 11070 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-subr 44580 |
| This theorem is referenced by: subrfv 44586 subrfn 44589 |
| Copyright terms: Public domain | W3C validator |