Users' Mathboxes Mathbox for Andrew Salmon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  subrval Structured version   Visualization version   GIF version

Theorem subrval 42066
Description: Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
Assertion
Ref Expression
subrval ((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))))
Distinct variable groups:   𝑣,𝐴   𝑣,𝐵
Allowed substitution hints:   𝐶(𝑣)   𝐷(𝑣)

Proof of Theorem subrval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3447 . 2 (𝐴𝐶𝐴 ∈ V)
2 elex 3447 . 2 (𝐵𝐷𝐵 ∈ V)
3 fveq1 6765 . . . . 5 (𝑥 = 𝐴 → (𝑥𝑣) = (𝐴𝑣))
4 fveq1 6765 . . . . 5 (𝑦 = 𝐵 → (𝑦𝑣) = (𝐵𝑣))
53, 4oveqan12d 7286 . . . 4 ((𝑥 = 𝐴𝑦 = 𝐵) → ((𝑥𝑣) − (𝑦𝑣)) = ((𝐴𝑣) − (𝐵𝑣)))
65mpteq2dv 5175 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑣 ∈ ℝ ↦ ((𝑥𝑣) − (𝑦𝑣))) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))))
7 df-subr 42063 . . 3 -𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) − (𝑦𝑣))))
8 reex 10972 . . . 4 ℝ ∈ V
98mptex 7091 . . 3 (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))) ∈ V
106, 7, 9ovmpoa 7418 . 2 ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))))
111, 2, 10syl2an 596 1 ((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  Vcvv 3429  cmpt 5156  cfv 6426  (class class class)co 7267  cr 10880  cmin 11215  -𝑟cminusr 42057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5208  ax-sep 5221  ax-nul 5228  ax-pr 5350  ax-cnex 10937  ax-resscn 10938
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3071  df-rab 3073  df-v 3431  df-sbc 3716  df-csb 3832  df-dif 3889  df-un 3891  df-in 3893  df-ss 3903  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5074  df-opab 5136  df-mpt 5157  df-id 5484  df-xp 5590  df-rel 5591  df-cnv 5592  df-co 5593  df-dm 5594  df-rn 5595  df-res 5596  df-ima 5597  df-iota 6384  df-fun 6428  df-fn 6429  df-f 6430  df-f1 6431  df-fo 6432  df-f1o 6433  df-fv 6434  df-ov 7270  df-oprab 7271  df-mpo 7272  df-subr 42063
This theorem is referenced by:  subrfv  42069  subrfn  42072
  Copyright terms: Public domain W3C validator