Detailed syntax breakdown of Definition df-suppos
| Step | Hyp | Ref
| Expression |
| 1 | | csuppos 35699 |
. 2
class
suppos |
| 2 | | va |
. . 3
setvar 𝑎 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vn |
. . . 4
setvar 𝑛 |
| 5 | | vm |
. . . 4
setvar 𝑚 |
| 6 | | com 7887 |
. . . . 5
class
ω |
| 7 | | c1o 8499 |
. . . . 5
class
1o |
| 8 | 6, 7 | cdif 3948 |
. . . 4
class (ω
∖ 1o) |
| 9 | | vf |
. . . . 5
setvar 𝑓 |
| 10 | | vg |
. . . . 5
setvar 𝑔 |
| 11 | 2 | cv 1539 |
. . . . . 6
class 𝑎 |
| 12 | 4 | cv 1539 |
. . . . . . 7
class 𝑛 |
| 13 | | cmap 8866 |
. . . . . . 7
class
↑m |
| 14 | 11, 12, 13 | co 7431 |
. . . . . 6
class (𝑎 ↑m 𝑛) |
| 15 | 11, 14, 13 | co 7431 |
. . . . 5
class (𝑎 ↑m (𝑎 ↑m 𝑛)) |
| 16 | 5 | cv 1539 |
. . . . . . . 8
class 𝑚 |
| 17 | 11, 16, 13 | co 7431 |
. . . . . . 7
class (𝑎 ↑m 𝑚) |
| 18 | 11, 17, 13 | co 7431 |
. . . . . 6
class (𝑎 ↑m (𝑎 ↑m 𝑚)) |
| 19 | 18, 12, 13 | co 7431 |
. . . . 5
class ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) |
| 20 | | vx |
. . . . . 6
setvar 𝑥 |
| 21 | | vi |
. . . . . . . 8
setvar 𝑖 |
| 22 | 20 | cv 1539 |
. . . . . . . . 9
class 𝑥 |
| 23 | 21 | cv 1539 |
. . . . . . . . . 10
class 𝑖 |
| 24 | 10 | cv 1539 |
. . . . . . . . . 10
class 𝑔 |
| 25 | 23, 24 | cfv 6561 |
. . . . . . . . 9
class (𝑔‘𝑖) |
| 26 | 22, 25 | cfv 6561 |
. . . . . . . 8
class ((𝑔‘𝑖)‘𝑥) |
| 27 | 21, 12, 26 | cmpt 5225 |
. . . . . . 7
class (𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)) |
| 28 | 9 | cv 1539 |
. . . . . . 7
class 𝑓 |
| 29 | 27, 28 | cfv 6561 |
. . . . . 6
class (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))) |
| 30 | 20, 17, 29 | cmpt 5225 |
. . . . 5
class (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)))) |
| 31 | 9, 10, 15, 19, 30 | cmpo 7433 |
. . . 4
class (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))) |
| 32 | 4, 5, 8, 8, 31 | cmpo 7433 |
. . 3
class (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)))))) |
| 33 | 2, 3, 32 | cmpt 5225 |
. 2
class (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |
| 34 | 1, 33 | wceq 1540 |
1
wff suppos =
(𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |