Users' Mathboxes Mathbox for Adrian Ducourtial < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-suppos Structured version   Visualization version   GIF version

Definition df-suppos 35130
Description: Define the function that, when given an 𝑛-ary operation 𝑓 and 𝑛 many 𝑚-ary operations (𝑔‘∅), ..., (𝑔 𝑛), returns the superposition of 𝑓 with the (𝑔𝑖), itself another 𝑚-ary operation on 𝑎. Given 𝑥 (a sequence of 𝑚 arguments in 𝑎), the superposition effectively applies each of the (𝑔𝑖) to 𝑥, then applies 𝑓 to the resulting sequence of 𝑛 function values. This can be seen as a generalized version of function composition; see paragraph 3 of [Szendrei] p. 11. (Contributed by Adrian Ducourtial, 3-Apr-2025.)
Assertion
Ref Expression
df-suppos suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))))))
Distinct variable group:   𝑓,𝑎,𝑔,𝑖,𝑚,𝑛,𝑥

Detailed syntax breakdown of Definition df-suppos
StepHypRef Expression
1 csuppos 35129 . 2 class suppos
2 va . . 3 setvar 𝑎
3 cvv 3466 . . 3 class V
4 vn . . . 4 setvar 𝑛
5 vm . . . 4 setvar 𝑚
6 com 7848 . . . . 5 class ω
7 c1o 8454 . . . . 5 class 1o
86, 7cdif 3937 . . . 4 class (ω ∖ 1o)
9 vf . . . . 5 setvar 𝑓
10 vg . . . . 5 setvar 𝑔
112cv 1532 . . . . . 6 class 𝑎
124cv 1532 . . . . . . 7 class 𝑛
13 cmap 8815 . . . . . . 7 class m
1411, 12, 13co 7401 . . . . . 6 class (𝑎m 𝑛)
1511, 14, 13co 7401 . . . . 5 class (𝑎m (𝑎m 𝑛))
165cv 1532 . . . . . . . 8 class 𝑚
1711, 16, 13co 7401 . . . . . . 7 class (𝑎m 𝑚)
1811, 17, 13co 7401 . . . . . 6 class (𝑎m (𝑎m 𝑚))
1918, 12, 13co 7401 . . . . 5 class ((𝑎m (𝑎m 𝑚)) ↑m 𝑛)
20 vx . . . . . 6 setvar 𝑥
21 vi . . . . . . . 8 setvar 𝑖
2220cv 1532 . . . . . . . . 9 class 𝑥
2321cv 1532 . . . . . . . . . 10 class 𝑖
2410cv 1532 . . . . . . . . . 10 class 𝑔
2523, 24cfv 6533 . . . . . . . . 9 class (𝑔𝑖)
2622, 25cfv 6533 . . . . . . . 8 class ((𝑔𝑖)‘𝑥)
2721, 12, 26cmpt 5221 . . . . . . 7 class (𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥))
289cv 1532 . . . . . . 7 class 𝑓
2927, 28cfv 6533 . . . . . 6 class (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))
3020, 17, 29cmpt 5221 . . . . 5 class (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥))))
319, 10, 15, 19, 30cmpo 7403 . . . 4 class (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))))
324, 5, 8, 8, 31cmpo 7403 . . 3 class (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥))))))
332, 3, 32cmpt 5221 . 2 class (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))))))
341, 33wceq 1533 1 wff suppos = (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖ 1o), 𝑚 ∈ (ω ∖ 1o) ↦ (𝑓 ∈ (𝑎m (𝑎m 𝑛)), 𝑔 ∈ ((𝑎m (𝑎m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎m 𝑚) ↦ (𝑓‘(𝑖𝑛 ↦ ((𝑔𝑖)‘𝑥)))))))
Colors of variables: wff setvar class
This definition is referenced by: (None)
  Copyright terms: Public domain W3C validator