Step | Hyp | Ref
| Expression |
1 | | csuppos 35129 |
. 2
class
suppos |
2 | | va |
. . 3
setvar 𝑎 |
3 | | cvv 3466 |
. . 3
class
V |
4 | | vn |
. . . 4
setvar 𝑛 |
5 | | vm |
. . . 4
setvar 𝑚 |
6 | | com 7848 |
. . . . 5
class
ω |
7 | | c1o 8454 |
. . . . 5
class
1o |
8 | 6, 7 | cdif 3937 |
. . . 4
class (ω
∖ 1o) |
9 | | vf |
. . . . 5
setvar 𝑓 |
10 | | vg |
. . . . 5
setvar 𝑔 |
11 | 2 | cv 1532 |
. . . . . 6
class 𝑎 |
12 | 4 | cv 1532 |
. . . . . . 7
class 𝑛 |
13 | | cmap 8815 |
. . . . . . 7
class
↑m |
14 | 11, 12, 13 | co 7401 |
. . . . . 6
class (𝑎 ↑m 𝑛) |
15 | 11, 14, 13 | co 7401 |
. . . . 5
class (𝑎 ↑m (𝑎 ↑m 𝑛)) |
16 | 5 | cv 1532 |
. . . . . . . 8
class 𝑚 |
17 | 11, 16, 13 | co 7401 |
. . . . . . 7
class (𝑎 ↑m 𝑚) |
18 | 11, 17, 13 | co 7401 |
. . . . . 6
class (𝑎 ↑m (𝑎 ↑m 𝑚)) |
19 | 18, 12, 13 | co 7401 |
. . . . 5
class ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) |
20 | | vx |
. . . . . 6
setvar 𝑥 |
21 | | vi |
. . . . . . . 8
setvar 𝑖 |
22 | 20 | cv 1532 |
. . . . . . . . 9
class 𝑥 |
23 | 21 | cv 1532 |
. . . . . . . . . 10
class 𝑖 |
24 | 10 | cv 1532 |
. . . . . . . . . 10
class 𝑔 |
25 | 23, 24 | cfv 6533 |
. . . . . . . . 9
class (𝑔‘𝑖) |
26 | 22, 25 | cfv 6533 |
. . . . . . . 8
class ((𝑔‘𝑖)‘𝑥) |
27 | 21, 12, 26 | cmpt 5221 |
. . . . . . 7
class (𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)) |
28 | 9 | cv 1532 |
. . . . . . 7
class 𝑓 |
29 | 27, 28 | cfv 6533 |
. . . . . 6
class (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))) |
30 | 20, 17, 29 | cmpt 5221 |
. . . . 5
class (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)))) |
31 | 9, 10, 15, 19, 30 | cmpo 7403 |
. . . 4
class (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))) |
32 | 4, 5, 8, 8, 31 | cmpo 7403 |
. . 3
class (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥)))))) |
33 | 2, 3, 32 | cmpt 5221 |
. 2
class (𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |
34 | 1, 33 | wceq 1533 |
1
wff suppos =
(𝑎 ∈ V ↦ (𝑛 ∈ (ω ∖
1o), 𝑚 ∈
(ω ∖ 1o) ↦ (𝑓 ∈ (𝑎 ↑m (𝑎 ↑m 𝑛)), 𝑔 ∈ ((𝑎 ↑m (𝑎 ↑m 𝑚)) ↑m 𝑛) ↦ (𝑥 ∈ (𝑎 ↑m 𝑚) ↦ (𝑓‘(𝑖 ∈ 𝑛 ↦ ((𝑔‘𝑖)‘𝑥))))))) |