Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Structured version   Visualization version   GIF version

Theorem axextprim 33636
Description: ax-ext 2711 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 10346 . 2 𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
2 dfbi2 475 . . . . . 6 ((𝑥𝑦𝑥𝑧) ↔ ((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)))
32imbi1i 350 . . . . 5 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ (((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧))
4 impexp 451 . . . . 5 ((((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
53, 4bitri 274 . . . 4 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
65exbii 1854 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
7 df-ex 1787 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
86, 7bitri 274 . 2 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
91, 8mpbi 229 1 ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wal 1540  wex 1786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-13 2374  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1545  df-ex 1787  df-nf 1791  df-clel 2818  df-nfc 2891
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator