Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > axextprim | Structured version Visualization version GIF version |
Description: ax-ext 2709 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
Ref | Expression |
---|---|
axextprim | ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | axextnd 10347 | . 2 ⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
2 | dfbi2 475 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦))) | |
3 | 2 | imbi1i 350 | . . . . 5 ⊢ (((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ (((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) → 𝑦 = 𝑧)) |
4 | impexp 451 | . . . . 5 ⊢ ((((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) → 𝑦 = 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) | |
5 | 3, 4 | bitri 274 | . . . 4 ⊢ (((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
6 | 5 | exbii 1850 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ∃𝑥((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
7 | df-ex 1783 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) ↔ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) | |
8 | 6, 7 | bitri 274 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
9 | 1, 8 | mpbi 229 | 1 ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∀wal 1537 ∃wex 1782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-clel 2816 df-nfc 2889 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |