| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > axextprim | Structured version Visualization version GIF version | ||
| Description: ax-ext 2708 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.) |
| Ref | Expression |
|---|---|
| axextprim | ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axextnd 10631 | . 2 ⊢ ∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) | |
| 2 | dfbi2 474 | . . . . . 6 ⊢ ((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦))) | |
| 3 | 2 | imbi1i 349 | . . . . 5 ⊢ (((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ (((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) → 𝑦 = 𝑧)) |
| 4 | impexp 450 | . . . . 5 ⊢ ((((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) ∧ (𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦)) → 𝑦 = 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) | |
| 5 | 3, 4 | bitri 275 | . . . 4 ⊢ (((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
| 6 | 5 | exbii 1848 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ∃𝑥((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
| 7 | df-ex 1780 | . . 3 ⊢ (∃𝑥((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) ↔ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) | |
| 8 | 6, 7 | bitri 275 | . 2 ⊢ (∃𝑥((𝑥 ∈ 𝑦 ↔ 𝑥 ∈ 𝑧) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧))) |
| 9 | 1, 8 | mpbi 230 | 1 ⊢ ¬ ∀𝑥 ¬ ((𝑥 ∈ 𝑦 → 𝑥 ∈ 𝑧) → ((𝑥 ∈ 𝑧 → 𝑥 ∈ 𝑦) → 𝑦 = 𝑧)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 ∃wex 1779 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-13 2377 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-clel 2816 df-nfc 2892 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |