Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  axextprim Structured version   Visualization version   GIF version

Theorem axextprim 32175
Description: ax-ext 2754 without distinct variable conditions or defined symbols. (Contributed by Scott Fenton, 13-Oct-2010.)
Assertion
Ref Expression
axextprim ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))

Proof of Theorem axextprim
StepHypRef Expression
1 axextnd 9748 . 2 𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧)
2 dfbi2 468 . . . . . 6 ((𝑥𝑦𝑥𝑧) ↔ ((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)))
32imbi1i 341 . . . . 5 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ (((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧))
4 impexp 443 . . . . 5 ((((𝑥𝑦𝑥𝑧) ∧ (𝑥𝑧𝑥𝑦)) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
53, 4bitri 267 . . . 4 (((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
65exbii 1892 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
7 df-ex 1824 . . 3 (∃𝑥((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
86, 7bitri 267 . 2 (∃𝑥((𝑥𝑦𝑥𝑧) → 𝑦 = 𝑧) ↔ ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧)))
91, 8mpbi 222 1 ¬ ∀𝑥 ¬ ((𝑥𝑦𝑥𝑧) → ((𝑥𝑧𝑥𝑦) → 𝑦 = 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386  wal 1599  wex 1823
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-tru 1605  df-ex 1824  df-nf 1828  df-nfc 2921
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator