Detailed syntax breakdown of Definition df-sx
| Step | Hyp | Ref
| Expression |
| 1 | | csx 34189 |
. 2
class
×s |
| 2 | | vs |
. . 3
setvar 𝑠 |
| 3 | | vt |
. . 3
setvar 𝑡 |
| 4 | | cvv 3480 |
. . 3
class
V |
| 5 | | vx |
. . . . . 6
setvar 𝑥 |
| 6 | | vy |
. . . . . 6
setvar 𝑦 |
| 7 | 2 | cv 1539 |
. . . . . 6
class 𝑠 |
| 8 | 3 | cv 1539 |
. . . . . 6
class 𝑡 |
| 9 | 5 | cv 1539 |
. . . . . . 7
class 𝑥 |
| 10 | 6 | cv 1539 |
. . . . . . 7
class 𝑦 |
| 11 | 9, 10 | cxp 5683 |
. . . . . 6
class (𝑥 × 𝑦) |
| 12 | 5, 6, 7, 8, 11 | cmpo 7433 |
. . . . 5
class (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) |
| 13 | 12 | crn 5686 |
. . . 4
class ran
(𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) |
| 14 | | csigagen 34139 |
. . . 4
class
sigaGen |
| 15 | 13, 14 | cfv 6561 |
. . 3
class
(sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) |
| 16 | 2, 3, 4, 4, 15 | cmpo 7433 |
. 2
class (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |
| 17 | 1, 16 | wceq 1540 |
1
wff
×s = (𝑠
∈ V, 𝑡 ∈ V
↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |