| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sxval | Structured version Visualization version GIF version | ||
| Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017.) |
| Ref | Expression |
|---|---|
| sxval.1 | ⊢ 𝐴 = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) |
| Ref | Expression |
|---|---|
| sxval | ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . . 3 ⊢ (𝑆 ∈ 𝑉 → 𝑆 ∈ V) | |
| 2 | elex 3468 | . . 3 ⊢ (𝑇 ∈ 𝑊 → 𝑇 ∈ V) | |
| 3 | id 22 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝑠 = 𝑆) | |
| 4 | eqidd 2730 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → 𝑡 = 𝑡) | |
| 5 | eqidd 2730 | . . . . . . 7 ⊢ (𝑠 = 𝑆 → (𝑥 × 𝑦) = (𝑥 × 𝑦)) | |
| 6 | 3, 4, 5 | mpoeq123dv 7464 | . . . . . 6 ⊢ (𝑠 = 𝑆 → (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) |
| 7 | 6 | rneqd 5902 | . . . . 5 ⊢ (𝑠 = 𝑆 → ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) |
| 8 | 7 | fveq2d 6862 | . . . 4 ⊢ (𝑠 = 𝑆 → (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) |
| 9 | eqidd 2730 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → 𝑆 = 𝑆) | |
| 10 | id 22 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → 𝑡 = 𝑇) | |
| 11 | eqidd 2730 | . . . . . . 7 ⊢ (𝑡 = 𝑇 → (𝑥 × 𝑦) = (𝑥 × 𝑦)) | |
| 12 | 9, 10, 11 | mpoeq123dv 7464 | . . . . . 6 ⊢ (𝑡 = 𝑇 → (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
| 13 | 12 | rneqd 5902 | . . . . 5 ⊢ (𝑡 = 𝑇 → ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
| 14 | 13 | fveq2d 6862 | . . . 4 ⊢ (𝑡 = 𝑇 → (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
| 15 | df-sx 34179 | . . . 4 ⊢ ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥 ∈ 𝑠, 𝑦 ∈ 𝑡 ↦ (𝑥 × 𝑦)))) | |
| 16 | fvex 6871 | . . . 4 ⊢ (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) ∈ V | |
| 17 | 8, 14, 15, 16 | ovmpo 7549 | . . 3 ⊢ ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
| 18 | 1, 2, 17 | syl2an 596 | . 2 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)))) |
| 19 | sxval.1 | . . 3 ⊢ 𝐴 = ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦)) | |
| 20 | 19 | fveq2i 6861 | . 2 ⊢ (sigaGen‘𝐴) = (sigaGen‘ran (𝑥 ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (𝑥 × 𝑦))) |
| 21 | 18, 20 | eqtr4di 2782 | 1 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ 𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3447 × cxp 5636 ran crn 5639 ‘cfv 6511 (class class class)co 7387 ∈ cmpo 7389 sigaGencsigagen 34128 ×s csx 34178 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-sx 34179 |
| This theorem is referenced by: sxsiga 34181 sxsigon 34182 elsx 34184 mbfmco2 34256 sxbrsigalem5 34279 sxbrsiga 34281 |
| Copyright terms: Public domain | W3C validator |