Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxval Structured version   Visualization version   GIF version

Theorem sxval 34180
Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Hypothesis
Ref Expression
sxval.1 𝐴 = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
sxval ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sxval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3468 . . 3 (𝑆𝑉𝑆 ∈ V)
2 elex 3468 . . 3 (𝑇𝑊𝑇 ∈ V)
3 id 22 . . . . . . 7 (𝑠 = 𝑆𝑠 = 𝑆)
4 eqidd 2730 . . . . . . 7 (𝑠 = 𝑆𝑡 = 𝑡)
5 eqidd 2730 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 × 𝑦) = (𝑥 × 𝑦))
63, 4, 5mpoeq123dv 7464 . . . . . 6 (𝑠 = 𝑆 → (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)))
76rneqd 5902 . . . . 5 (𝑠 = 𝑆 → ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)))
87fveq2d 6862 . . . 4 (𝑠 = 𝑆 → (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
9 eqidd 2730 . . . . . . 7 (𝑡 = 𝑇𝑆 = 𝑆)
10 id 22 . . . . . . 7 (𝑡 = 𝑇𝑡 = 𝑇)
11 eqidd 2730 . . . . . . 7 (𝑡 = 𝑇 → (𝑥 × 𝑦) = (𝑥 × 𝑦))
129, 10, 11mpoeq123dv 7464 . . . . . 6 (𝑡 = 𝑇 → (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1312rneqd 5902 . . . . 5 (𝑡 = 𝑇 → ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1413fveq2d 6862 . . . 4 (𝑡 = 𝑇 → (sigaGen‘ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
15 df-sx 34179 . . . 4 ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
16 fvex 6871 . . . 4 (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ V
178, 14, 15, 16ovmpo 7549 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
181, 2, 17syl2an 596 . 2 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
19 sxval.1 . . 3 𝐴 = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
2019fveq2i 6861 . 2 (sigaGen‘𝐴) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
2118, 20eqtr4di 2782 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3447   × cxp 5636  ran crn 5639  cfv 6511  (class class class)co 7387  cmpo 7389  sigaGencsigagen 34128   ×s csx 34178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6464  df-fun 6513  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-sx 34179
This theorem is referenced by:  sxsiga  34181  sxsigon  34182  elsx  34184  mbfmco2  34256  sxbrsigalem5  34279  sxbrsiga  34281
  Copyright terms: Public domain W3C validator