Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxval Structured version   Visualization version   GIF version

Theorem sxval 34275
Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Hypothesis
Ref Expression
sxval.1 𝐴 = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
Assertion
Ref Expression
sxval ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴))
Distinct variable groups:   𝑥,𝑦,𝑆   𝑥,𝑇,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem sxval
Dummy variables 𝑡 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3458 . . 3 (𝑆𝑉𝑆 ∈ V)
2 elex 3458 . . 3 (𝑇𝑊𝑇 ∈ V)
3 id 22 . . . . . . 7 (𝑠 = 𝑆𝑠 = 𝑆)
4 eqidd 2734 . . . . . . 7 (𝑠 = 𝑆𝑡 = 𝑡)
5 eqidd 2734 . . . . . . 7 (𝑠 = 𝑆 → (𝑥 × 𝑦) = (𝑥 × 𝑦))
63, 4, 5mpoeq123dv 7430 . . . . . 6 (𝑠 = 𝑆 → (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)))
76rneqd 5884 . . . . 5 (𝑠 = 𝑆 → ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)))
87fveq2d 6835 . . . 4 (𝑠 = 𝑆 → (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
9 eqidd 2734 . . . . . . 7 (𝑡 = 𝑇𝑆 = 𝑆)
10 id 22 . . . . . . 7 (𝑡 = 𝑇𝑡 = 𝑇)
11 eqidd 2734 . . . . . . 7 (𝑡 = 𝑇 → (𝑥 × 𝑦) = (𝑥 × 𝑦))
129, 10, 11mpoeq123dv 7430 . . . . . 6 (𝑡 = 𝑇 → (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1312rneqd 5884 . . . . 5 (𝑡 = 𝑇 → ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦)) = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
1413fveq2d 6835 . . . 4 (𝑡 = 𝑇 → (sigaGen‘ran (𝑥𝑆, 𝑦𝑡 ↦ (𝑥 × 𝑦))) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
15 df-sx 34274 . . . 4 ×s = (𝑠 ∈ V, 𝑡 ∈ V ↦ (sigaGen‘ran (𝑥𝑠, 𝑦𝑡 ↦ (𝑥 × 𝑦))))
16 fvex 6844 . . . 4 (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))) ∈ V
178, 14, 15, 16ovmpo 7515 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
181, 2, 17syl2an 596 . 2 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))))
19 sxval.1 . . 3 𝐴 = ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦))
2019fveq2i 6834 . 2 (sigaGen‘𝐴) = (sigaGen‘ran (𝑥𝑆, 𝑦𝑇 ↦ (𝑥 × 𝑦)))
2118, 20eqtr4di 2786 1 ((𝑆𝑉𝑇𝑊) → (𝑆 ×s 𝑇) = (sigaGen‘𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437   × cxp 5619  ran crn 5622  cfv 6489  (class class class)co 7355  cmpo 7357  sigaGencsigagen 34223   ×s csx 34273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-iota 6445  df-fun 6491  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-sx 34274
This theorem is referenced by:  sxsiga  34276  sxsigon  34277  elsx  34279  mbfmco2  34350  sxbrsigalem5  34373  sxbrsiga  34375
  Copyright terms: Public domain W3C validator