Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sxval Structured version   Visualization version   GIF version

Theorem sxval 33176
Description: Value of the product sigma-algebra operation. (Contributed by Thierry Arnoux, 1-Jun-2017.)
Hypothesis
Ref Expression
sxval.1 𝐴 = ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))
Assertion
Ref Expression
sxval ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ π‘Š) β†’ (𝑆 Γ—s 𝑇) = (sigaGenβ€˜π΄))
Distinct variable groups:   π‘₯,𝑦,𝑆   π‘₯,𝑇,𝑦
Allowed substitution hints:   𝐴(π‘₯,𝑦)   𝑉(π‘₯,𝑦)   π‘Š(π‘₯,𝑦)

Proof of Theorem sxval
Dummy variables 𝑑 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3492 . . 3 (𝑆 ∈ 𝑉 β†’ 𝑆 ∈ V)
2 elex 3492 . . 3 (𝑇 ∈ π‘Š β†’ 𝑇 ∈ V)
3 id 22 . . . . . . 7 (𝑠 = 𝑆 β†’ 𝑠 = 𝑆)
4 eqidd 2733 . . . . . . 7 (𝑠 = 𝑆 β†’ 𝑑 = 𝑑)
5 eqidd 2733 . . . . . . 7 (𝑠 = 𝑆 β†’ (π‘₯ Γ— 𝑦) = (π‘₯ Γ— 𝑦))
63, 4, 5mpoeq123dv 7480 . . . . . 6 (𝑠 = 𝑆 β†’ (π‘₯ ∈ 𝑠, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)) = (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)))
76rneqd 5935 . . . . 5 (𝑠 = 𝑆 β†’ ran (π‘₯ ∈ 𝑠, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)) = ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)))
87fveq2d 6892 . . . 4 (𝑠 = 𝑆 β†’ (sigaGenβ€˜ran (π‘₯ ∈ 𝑠, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦))) = (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦))))
9 eqidd 2733 . . . . . . 7 (𝑑 = 𝑇 β†’ 𝑆 = 𝑆)
10 id 22 . . . . . . 7 (𝑑 = 𝑇 β†’ 𝑑 = 𝑇)
11 eqidd 2733 . . . . . . 7 (𝑑 = 𝑇 β†’ (π‘₯ Γ— 𝑦) = (π‘₯ Γ— 𝑦))
129, 10, 11mpoeq123dv 7480 . . . . . 6 (𝑑 = 𝑇 β†’ (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)) = (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦)))
1312rneqd 5935 . . . . 5 (𝑑 = 𝑇 β†’ ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦)) = ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦)))
1413fveq2d 6892 . . . 4 (𝑑 = 𝑇 β†’ (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦))) = (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))))
15 df-sx 33175 . . . 4 Γ—s = (𝑠 ∈ V, 𝑑 ∈ V ↦ (sigaGenβ€˜ran (π‘₯ ∈ 𝑠, 𝑦 ∈ 𝑑 ↦ (π‘₯ Γ— 𝑦))))
16 fvex 6901 . . . 4 (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))) ∈ V
178, 14, 15, 16ovmpo 7564 . . 3 ((𝑆 ∈ V ∧ 𝑇 ∈ V) β†’ (𝑆 Γ—s 𝑇) = (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))))
181, 2, 17syl2an 596 . 2 ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ π‘Š) β†’ (𝑆 Γ—s 𝑇) = (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))))
19 sxval.1 . . 3 𝐴 = ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦))
2019fveq2i 6891 . 2 (sigaGenβ€˜π΄) = (sigaGenβ€˜ran (π‘₯ ∈ 𝑆, 𝑦 ∈ 𝑇 ↦ (π‘₯ Γ— 𝑦)))
2118, 20eqtr4di 2790 1 ((𝑆 ∈ 𝑉 ∧ 𝑇 ∈ π‘Š) β†’ (𝑆 Γ—s 𝑇) = (sigaGenβ€˜π΄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   = wceq 1541   ∈ wcel 2106  Vcvv 3474   Γ— cxp 5673  ran crn 5676  β€˜cfv 6540  (class class class)co 7405   ∈ cmpo 7407  sigaGencsigagen 33124   Γ—s csx 33174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-iota 6492  df-fun 6542  df-fv 6548  df-ov 7408  df-oprab 7409  df-mpo 7410  df-sx 33175
This theorem is referenced by:  sxsiga  33177  sxsigon  33178  elsx  33180  mbfmco2  33252  sxbrsigalem5  33275  sxbrsiga  33277
  Copyright terms: Public domain W3C validator