| Metamath
Proof Explorer Theorem List (p. 339 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49791) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | qtopt1 33801* | If every equivalence class is closed, then the quotient space is T1 . (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐽 ∈ Fre) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑌) → (◡𝐹 “ {𝑥}) ∈ (Clsd‘𝐽)) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Fre) | ||
| Theorem | qtophaus 33802* | If an open map's graph in the product space (𝐽 ×t 𝐽) is closed, then its quotient topology is Hausdorff. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ ∼ = (◡𝐹 ∘ 𝐹) & ⊢ 𝐻 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ 〈(𝐹‘𝑥), (𝐹‘𝑦)〉) & ⊢ (𝜑 → 𝐽 ∈ Haus) & ⊢ (𝜑 → 𝐹:𝑋–onto→𝑌) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝑥) ∈ (𝐽 qTop 𝐹)) & ⊢ (𝜑 → ∼ ∈ (Clsd‘(𝐽 ×t 𝐽))) ⇒ ⊢ (𝜑 → (𝐽 qTop 𝐹) ∈ Haus) | ||
| Theorem | circtopn 33803* | The topology of the unit circle is generated by open intervals of the polar coordinate. (Contributed by Thierry Arnoux, 4-Jan-2020.) |
| ⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ (𝐽 qTop 𝐹) = (TopOpen‘(𝐹 “s ℝfld)) | ||
| Theorem | circcn 33804* | The function gluing the real line into the unit circle is continuous. (Contributed by Thierry Arnoux, 5-Jan-2020.) |
| ⊢ 𝐼 = (0[,](2 · π)) & ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐹 = (𝑥 ∈ ℝ ↦ (exp‘(i · 𝑥))) & ⊢ 𝐶 = (◡abs “ {1}) ⇒ ⊢ 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)) | ||
| Theorem | reff 33805* | For any cover refinement, there exists a function associating with each set in the refinement a set in the original cover containing it. This is sometimes used as a definition of refinement. Note that this definition uses the axiom of choice through ac6sg 10401. (Contributed by Thierry Arnoux, 12-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝑉 → (𝐴Ref𝐵 ↔ (∪ 𝐵 ⊆ ∪ 𝐴 ∧ ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑣 ∈ 𝐴 𝑣 ⊆ (𝑓‘𝑣))))) | ||
| Theorem | locfinreflem 33806* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) | ||
| Theorem | locfinref 33807* | A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝑈 ⊆ 𝐽) & ⊢ (𝜑 → 𝑋 = ∪ 𝑈) & ⊢ (𝜑 → 𝑉 ⊆ 𝐽) & ⊢ (𝜑 → 𝑉Ref𝑈) & ⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
| Syntax | ccref 33808 | The "every open cover has an 𝐴 refinement" predicate. |
| class CovHasRef𝐴 | ||
| Definition | df-cref 33809* | Define a statement "every open cover has an 𝐴 refinement" , where 𝐴 is a property for refinements like "finite", "countable", "point finite" or "locally finite". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ CovHasRef𝐴 = {𝑗 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑗(∪ 𝑗 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑗 ∩ 𝐴)𝑧Ref𝑦)} | ||
| Theorem | iscref 33810* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ (𝐽 ∈ CovHasRef𝐴 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝑦))) | ||
| Theorem | crefeq 33811 | Equality theorem for the "every open cover has an A refinement" predicate. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝐴 = 𝐵 → CovHasRef𝐴 = CovHasRef𝐵) | ||
| Theorem | creftop 33812 | A space where every open cover has an 𝐴 refinement is a topological space. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝐽 ∈ CovHasRef𝐴 → 𝐽 ∈ Top) | ||
| Theorem | crefi 33813* | The property that every open cover has an 𝐴 refinement for the topological space 𝐽. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ CovHasRef𝐴 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ (𝒫 𝐽 ∩ 𝐴)𝑧Ref𝐶) | ||
| Theorem | crefdf 33814* | A formulation of crefi 33813 easier to use for definitions. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ 𝐵 = CovHasRef𝐴 & ⊢ (𝑧 ∈ 𝐴 → 𝜑) ⇒ ⊢ ((𝐽 ∈ 𝐵 ∧ 𝐶 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝐶) → ∃𝑧 ∈ 𝒫 𝐽(𝜑 ∧ 𝑧Ref𝐶)) | ||
| Theorem | crefss 33815 | The "every open cover has an 𝐴 refinement" predicate respects inclusion. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝐴 ⊆ 𝐵 → CovHasRef𝐴 ⊆ CovHasRef𝐵) | ||
| Theorem | cmpcref 33816 | Equivalent definition of compact space in terms of open cover refinements. Compact spaces are topologies with finite open cover refinements. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ Comp = CovHasRefFin | ||
| Theorem | cmpfiref 33817* | Every open cover of a Compact space has a finite refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Comp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ Fin ∧ 𝑣Ref𝑈)) | ||
| Syntax | cldlf 33818 | Extend class notation with the class of all Lindelöf spaces. |
| class Ldlf | ||
| Definition | df-ldlf 33819 | Definition of a Lindelöf space. A Lindelöf space is a topological space in which every open cover has a countable subcover. Definition 1 of [BourbakiTop2] p. 195. (Contributed by Thierry Arnoux, 30-Jan-2020.) |
| ⊢ Ldlf = CovHasRef{𝑥 ∣ 𝑥 ≼ ω} | ||
| Theorem | ldlfcntref 33820* | Every open cover of a Lindelöf space has a countable refinement. (Contributed by Thierry Arnoux, 1-Feb-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Ldlf ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ≼ ω ∧ 𝑣Ref𝑈)) | ||
| Syntax | cpcmp 33821 | Extend class notation with the class of all paracompact topologies. |
| class Paracomp | ||
| Definition | df-pcmp 33822 | Definition of a paracompact topology. A topology is said to be paracompact iff every open cover has an open refinement that is locally finite. The definition 6 of [BourbakiTop1] p. I.69. also requires the topology to be Hausdorff, but this is dropped here. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ Paracomp = {𝑗 ∣ 𝑗 ∈ CovHasRef(LocFin‘𝑗)} | ||
| Theorem | ispcmp 33823 | The predicate "is a paracompact topology". (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝐽 ∈ Paracomp ↔ 𝐽 ∈ CovHasRef(LocFin‘𝐽)) | ||
| Theorem | cmppcmp 33824 | Every compact space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝐽 ∈ Comp → 𝐽 ∈ Paracomp) | ||
| Theorem | dispcmp 33825 | Every discrete space is paracompact. (Contributed by Thierry Arnoux, 7-Jan-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → 𝒫 𝑋 ∈ Paracomp) | ||
| Theorem | pcmplfin 33826* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement 𝑣 that is locally finite. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑣 ∈ 𝒫 𝐽(𝑣 ∈ (LocFin‘𝐽) ∧ 𝑣Ref𝑈)) | ||
| Theorem | pcmplfinf 33827* | Given a paracompact topology 𝐽 and an open cover 𝑈, there exists an open refinement ran 𝑓 that is locally finite, using the same index as the original cover 𝑈. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ((𝐽 ∈ Paracomp ∧ 𝑈 ⊆ 𝐽 ∧ 𝑋 = ∪ 𝑈) → ∃𝑓(𝑓:𝑈⟶𝐽 ∧ ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) | ||
The prime ideals of a ring 𝑅 can be endowed with the Zariski topology. This is done by defining a function 𝑉 which maps ideals of 𝑅 to closed sets (see for example zarcls0 33834 for the definition of 𝑉). The closed sets of the topology are in the range of 𝑉 (see zartopon 33843). The correspondence with the open sets is made in zarcls 33840. As proved in zart0 33845, the Zariski topology is T0 , but generally not T1 . | ||
| Syntax | crspec 33828 | Extend class notation with the spectrum of a ring. |
| class Spec | ||
| Definition | df-rspec 33829 | Define the spectrum of a ring. (Contributed by Thierry Arnoux, 21-Jan-2024.) |
| ⊢ Spec = (𝑟 ∈ Ring ↦ ((IDLsrg‘𝑟) ↾s (PrmIdeal‘𝑟))) | ||
| Theorem | rspecval 33830 | Value of the spectrum of the ring 𝑅. Notation 1.1.1 of [EGA] p. 80. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| ⊢ (𝑅 ∈ Ring → (Spec‘𝑅) = ((IDLsrg‘𝑅) ↾s (PrmIdeal‘𝑅))) | ||
| Theorem | rspecbas 33831 | The prime ideals form the base of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (PrmIdeal‘𝑅) = (Base‘𝑆)) | ||
| Theorem | rspectset 33832* | Topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 2-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝐼 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ Ring → 𝐽 = (TopSet‘𝑆)) | ||
| Theorem | rspectopn 33833* | The topology component of the spectrum of a ring. (Contributed by Thierry Arnoux, 4-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐼 = (LIdeal‘𝑅) & ⊢ 𝑃 = (PrmIdeal‘𝑅) & ⊢ 𝐽 = ran (𝑖 ∈ 𝐼 ↦ {𝑗 ∈ 𝑃 ∣ ¬ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ Ring → 𝐽 = (TopOpen‘𝑆)) | ||
| Theorem | zarcls0 33834* | The closure of the identity ideal in the Zariski topology. Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) & ⊢ 𝑃 = (PrmIdeal‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ (𝑅 ∈ Ring → (𝑉‘{ 0 }) = 𝑃) | ||
| Theorem | zarcls1 33835* | The unit ideal 𝐵 is the only ideal whose closure in the Zariski topology is the empty set. Stronger form of the Proposition 1.1.2(i) of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝐼 ∈ (LIdeal‘𝑅)) → ((𝑉‘𝐼) = ∅ ↔ 𝐼 = 𝐵)) | ||
| Theorem | zarclsun 33836* | The union of two closed sets of the Zariski topology is closed. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑋 ∈ ran 𝑉 ∧ 𝑌 ∈ ran 𝑉) → (𝑋 ∪ 𝑌) ∈ ran 𝑉) | ||
| Theorem | zarclsiin 33837* | In a Zariski topology, the intersection of the closures of a family of ideals is the closure of the span of their union. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) & ⊢ 𝐾 = (RSpan‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ 𝑇 ⊆ (LIdeal‘𝑅) ∧ 𝑇 ≠ ∅) → ∩ 𝑙 ∈ 𝑇 (𝑉‘𝑙) = (𝑉‘(𝐾‘∪ 𝑇))) | ||
| Theorem | zarclsint 33838* | The intersection of a family of closed sets is closed in the Zariski topology. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑆 ⊆ ran 𝑉 ∧ 𝑆 ≠ ∅) → ∩ 𝑆 ∈ ran 𝑉) | ||
| Theorem | zarclssn 33839* | The closed points of Zariski topology are the maximal ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) & ⊢ 𝐵 = (LIdeal‘𝑅) ⇒ ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ({𝑀} = (𝑉‘𝑀) ↔ 𝑀 ∈ (MaxIdeal‘𝑅))) | ||
| Theorem | zarcls 33840* | The open sets of the Zariski topology are the complements of the closed sets. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝑃 = (PrmIdeal‘𝑅) & ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ Ring → 𝐽 = {𝑠 ∈ 𝒫 𝑃 ∣ (𝑃 ∖ 𝑠) ∈ ran 𝑉}) | ||
| Theorem | zartopn 33841* | The Zariski topology is a topology, and its closed sets are images by 𝑉 of the ideals of 𝑅. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝑃 = (PrmIdeal‘𝑅) & ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ 𝑃 ∣ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ CRing → (𝐽 ∈ (TopOn‘𝑃) ∧ ran 𝑉 = (Clsd‘𝐽))) | ||
| Theorem | zartop 33842 | The Zariski topology is a topology. Proposition 1.1.2 of [EGA] p. 80. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Top) | ||
| Theorem | zartopon 33843 | The points of the Zariski topology are the prime ideals. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝑃 = (PrmIdeal‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽 ∈ (TopOn‘𝑃)) | ||
| Theorem | zar0ring 33844 | The Zariski Topology of the trivial ring. (Contributed by Thierry Arnoux, 1-Jul-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝑅 ∈ Ring ∧ (♯‘𝐵) = 1) → 𝐽 = {∅}) | ||
| Theorem | zart0 33845 | The Zariski topology is T0 . Corollary 1.1.8 of [EGA] p. 81. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Kol2) | ||
| Theorem | zarmxt1 33846 | The Zariski topology restricted to maximal ideals is T1 . (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝑀 = (MaxIdeal‘𝑅) & ⊢ 𝑇 = (𝐽 ↾t 𝑀) ⇒ ⊢ (𝑅 ∈ CRing → 𝑇 ∈ Fre) | ||
| Theorem | zarcmplem 33847* | Lemma for zarcmp 33848. (Contributed by Thierry Arnoux, 2-Jul-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) & ⊢ 𝑉 = (𝑖 ∈ (LIdeal‘𝑅) ↦ {𝑗 ∈ (PrmIdeal‘𝑅) ∣ 𝑖 ⊆ 𝑗}) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Comp) | ||
| Theorem | zarcmp 33848 | The Zariski topology is compact. Proposition 1.1.10(ii) of [EGA], p. 82. (Contributed by Thierry Arnoux, 2-Jul-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑆) ⇒ ⊢ (𝑅 ∈ CRing → 𝐽 ∈ Comp) | ||
| Theorem | rspectps 33849 | The spectrum of a ring 𝑅 is a topological space. (Contributed by Thierry Arnoux, 16-Jun-2024.) |
| ⊢ 𝑆 = (Spec‘𝑅) ⇒ ⊢ (𝑅 ∈ CRing → 𝑆 ∈ TopSp) | ||
| Theorem | rhmpreimacnlem 33850* | Lemma for rhmpreimacn 33851. (Contributed by Thierry Arnoux, 7-Jul-2024.) |
| ⊢ 𝑇 = (Spec‘𝑅) & ⊢ 𝑈 = (Spec‘𝑆) & ⊢ 𝐴 = (PrmIdeal‘𝑅) & ⊢ 𝐵 = (PrmIdeal‘𝑆) & ⊢ 𝐽 = (TopOpen‘𝑇) & ⊢ 𝐾 = (TopOpen‘𝑈) & ⊢ 𝐺 = (𝑖 ∈ 𝐵 ↦ (◡𝐹 “ 𝑖)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝑆)) & ⊢ (𝜑 → 𝐼 ∈ (LIdeal‘𝑅)) & ⊢ 𝑉 = (𝑗 ∈ (LIdeal‘𝑅) ↦ {𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘}) & ⊢ 𝑊 = (𝑗 ∈ (LIdeal‘𝑆) ↦ {𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘}) ⇒ ⊢ (𝜑 → (𝑊‘(𝐹 “ 𝐼)) = (◡𝐺 “ (𝑉‘𝐼))) | ||
| Theorem | rhmpreimacn 33851* | The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of [EGA], p. 83. Notice that the direction of the continuous map 𝐺 is reverse: the original ring homomorphism 𝐹 goes from 𝑅 to 𝑆, but the continuous map 𝐺 goes from 𝐵 to 𝐴. This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024.) |
| ⊢ 𝑇 = (Spec‘𝑅) & ⊢ 𝑈 = (Spec‘𝑆) & ⊢ 𝐴 = (PrmIdeal‘𝑅) & ⊢ 𝐵 = (PrmIdeal‘𝑆) & ⊢ 𝐽 = (TopOpen‘𝑇) & ⊢ 𝐾 = (TopOpen‘𝑈) & ⊢ 𝐺 = (𝑖 ∈ 𝐵 ↦ (◡𝐹 “ 𝑖)) & ⊢ (𝜑 → 𝑅 ∈ CRing) & ⊢ (𝜑 → 𝑆 ∈ CRing) & ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝑆)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐾 Cn 𝐽)) | ||
| Syntax | cmetid 33852 | Extend class notation with the class of metric identifications. |
| class ~Met | ||
| Syntax | cpstm 33853 | Extend class notation with the metric induced by a pseudometric. |
| class pstoMet | ||
| Definition | df-metid 33854* | Define the metric identification relation for a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ~Met = (𝑑 ∈ ∪ ran PsMet ↦ {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ dom dom 𝑑 ∧ 𝑦 ∈ dom dom 𝑑) ∧ (𝑥𝑑𝑦) = 0)}) | ||
| Definition | df-pstm 33855* | Define the metric induced by a pseudometric. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ pstoMet = (𝑑 ∈ ∪ ran PsMet ↦ (𝑎 ∈ (dom dom 𝑑 / (~Met‘𝑑)), 𝑏 ∈ (dom dom 𝑑 / (~Met‘𝑑)) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝑑𝑦)})) | ||
| Theorem | metidval 33856* | Value of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋) ∧ (𝑥𝐷𝑦) = 0)}) | ||
| Theorem | metidss 33857 | As a relation, the metric identification is a subset of a Cartesian product. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) ⊆ (𝑋 × 𝑋)) | ||
| Theorem | metidv 33858 | 𝐴 and 𝐵 identify by the metric 𝐷 if their distance is zero. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋)) → (𝐴(~Met‘𝐷)𝐵 ↔ (𝐴𝐷𝐵) = 0)) | ||
| Theorem | metideq 33859 | Basic property of the metric identification relation. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ (𝐴(~Met‘𝐷)𝐵 ∧ 𝐸(~Met‘𝐷)𝐹)) → (𝐴𝐷𝐸) = (𝐵𝐷𝐹)) | ||
| Theorem | metider 33860 | The metric identification is an equivalence relation. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ (𝐷 ∈ (PsMet‘𝑋) → (~Met‘𝐷) Er 𝑋) | ||
| Theorem | pstmval 33861* | Value of the metric induced by a pseudometric 𝐷. (Contributed by Thierry Arnoux, 7-Feb-2018.) |
| ⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) = (𝑎 ∈ (𝑋 / ∼ ), 𝑏 ∈ (𝑋 / ∼ ) ↦ ∪ {𝑧 ∣ ∃𝑥 ∈ 𝑎 ∃𝑦 ∈ 𝑏 𝑧 = (𝑥𝐷𝑦)})) | ||
| Theorem | pstmfval 33862 | Function value of the metric induced by a pseudometric 𝐷 (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ([𝐴] ∼ (pstoMet‘𝐷)[𝐵] ∼ ) = (𝐴𝐷𝐵)) | ||
| Theorem | pstmxmet 33863 | The metric induced by a pseudometric is a full-fledged metric on the equivalence classes of the metric identification. (Contributed by Thierry Arnoux, 11-Feb-2018.) |
| ⊢ ∼ = (~Met‘𝐷) ⇒ ⊢ (𝐷 ∈ (PsMet‘𝑋) → (pstoMet‘𝐷) ∈ (∞Met‘(𝑋 / ∼ ))) | ||
| Theorem | hauseqcn 33864 | In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.) |
| ⊢ 𝑋 = ∪ 𝐽 & ⊢ (𝜑 → 𝐾 ∈ Haus) & ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → 𝐺 ∈ (𝐽 Cn 𝐾)) & ⊢ (𝜑 → (𝐹 ↾ 𝐴) = (𝐺 ↾ 𝐴)) & ⊢ (𝜑 → 𝐴 ⊆ 𝑋) & ⊢ (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | elunitge0 33865 | An element of the closed unit interval is positive. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 20-Dec-2016.) |
| ⊢ (𝐴 ∈ (0[,]1) → 0 ≤ 𝐴) | ||
| Theorem | unitssxrge0 33866 | The closed unit interval is a subset of the set of the extended nonnegative reals. Useful lemma for manipulating probabilities within the closed unit interval. (Contributed by Thierry Arnoux, 12-Dec-2016.) |
| ⊢ (0[,]1) ⊆ (0[,]+∞) | ||
| Theorem | unitdivcld 33867 | Necessary conditions for a quotient to be in the closed unit interval. (somewhat too strong, it would be sufficient that A and B are in RR+) (Contributed by Thierry Arnoux, 20-Dec-2016.) |
| ⊢ ((𝐴 ∈ (0[,]1) ∧ 𝐵 ∈ (0[,]1) ∧ 𝐵 ≠ 0) → (𝐴 ≤ 𝐵 ↔ (𝐴 / 𝐵) ∈ (0[,]1))) | ||
| Theorem | iistmd 33868 | The closed unit interval forms a topological monoid under multiplication. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
| ⊢ 𝐼 = ((mulGrp‘ℂfld) ↾s (0[,]1)) ⇒ ⊢ 𝐼 ∈ TopMnd | ||
| Theorem | unicls 33869 | The union of the closed set is the underlying set of the topology. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ 𝐽 ∈ Top & ⊢ 𝑋 = ∪ 𝐽 ⇒ ⊢ ∪ (Clsd‘𝐽) = 𝑋 | ||
| Theorem | tpr2tp 33870 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝐽 ×t 𝐽) ∈ (TopOn‘(ℝ × ℝ)) | ||
| Theorem | tpr2uni 33871 | The usual topology on (ℝ × ℝ) is the product topology of the usual topology on ℝ. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ ∪ (𝐽 ×t 𝐽) = (ℝ × ℝ) | ||
| Theorem | xpinpreima 33872 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ (𝐴 × 𝐵) = ((◡(1st ↾ (V × V)) “ 𝐴) ∩ (◡(2nd ↾ (V × V)) “ 𝐵)) | ||
| Theorem | xpinpreima2 33873 | Rewrite the cartesian product of two sets as the intersection of their preimage by 1st and 2nd, the projections on the first and second elements. (Contributed by Thierry Arnoux, 22-Sep-2017.) |
| ⊢ ((𝐴 ⊆ 𝐸 ∧ 𝐵 ⊆ 𝐹) → (𝐴 × 𝐵) = ((◡(1st ↾ (𝐸 × 𝐹)) “ 𝐴) ∩ (◡(2nd ↾ (𝐸 × 𝐹)) “ 𝐵))) | ||
| Theorem | sqsscirc1 33874 | The complex square of side 𝐷 is a subset of the complex circle of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
| ⊢ ((((𝑋 ∈ ℝ ∧ 0 ≤ 𝑋) ∧ (𝑌 ∈ ℝ ∧ 0 ≤ 𝑌)) ∧ 𝐷 ∈ ℝ+) → ((𝑋 < (𝐷 / 2) ∧ 𝑌 < (𝐷 / 2)) → (√‘((𝑋↑2) + (𝑌↑2))) < 𝐷)) | ||
| Theorem | sqsscirc2 33875 | The complex square of side 𝐷 is a subset of the complex disc of radius 𝐷. (Contributed by Thierry Arnoux, 25-Sep-2017.) |
| ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ 𝐷 ∈ ℝ+) → (((abs‘(ℜ‘(𝐵 − 𝐴))) < (𝐷 / 2) ∧ (abs‘(ℑ‘(𝐵 − 𝐴))) < (𝐷 / 2)) → (abs‘(𝐵 − 𝐴)) < 𝐷)) | ||
| Theorem | cnre2csqlem 33876* | Lemma for cnre2csqima 33877. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ (𝐺 ↾ (ℝ × ℝ)) = (𝐻 ∘ 𝐹) & ⊢ 𝐹 Fn (ℝ × ℝ) & ⊢ 𝐺 Fn V & ⊢ (𝑥 ∈ (ℝ × ℝ) → (𝐺‘𝑥) ∈ ℝ) & ⊢ ((𝑥 ∈ ran 𝐹 ∧ 𝑦 ∈ ran 𝐹) → (𝐻‘(𝑥 − 𝑦)) = ((𝐻‘𝑥) − (𝐻‘𝑦))) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ (◡(𝐺 ↾ (ℝ × ℝ)) “ (((𝐺‘𝑋) − 𝐷)(,)((𝐺‘𝑋) + 𝐷))) → (abs‘(𝐻‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷)) | ||
| Theorem | cnre2csqima 33877* | Image of a centered square by the canonical bijection from (ℝ × ℝ) to ℂ. (Contributed by Thierry Arnoux, 27-Sep-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + (i · 𝑦))) ⇒ ⊢ ((𝑋 ∈ (ℝ × ℝ) ∧ 𝑌 ∈ (ℝ × ℝ) ∧ 𝐷 ∈ ℝ+) → (𝑌 ∈ ((((1st ‘𝑋) − 𝐷)(,)((1st ‘𝑋) + 𝐷)) × (((2nd ‘𝑋) − 𝐷)(,)((2nd ‘𝑋) + 𝐷))) → ((abs‘(ℜ‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷 ∧ (abs‘(ℑ‘((𝐹‘𝑌) − (𝐹‘𝑋)))) < 𝐷))) | ||
| Theorem | tpr2rico 33878* | For any point of an open set of the usual topology on (ℝ × ℝ) there is an open square which contains that point and is entirely in the open set. This is square is actually a ball by the (𝑙↑+∞) norm 𝑋. (Contributed by Thierry Arnoux, 21-Sep-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ 𝐺 = (𝑢 ∈ ℝ, 𝑣 ∈ ℝ ↦ (𝑢 + (i · 𝑣))) & ⊢ 𝐵 = ran (𝑥 ∈ ran (,), 𝑦 ∈ ran (,) ↦ (𝑥 × 𝑦)) ⇒ ⊢ ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋 ∈ 𝐴) → ∃𝑟 ∈ 𝐵 (𝑋 ∈ 𝑟 ∧ 𝑟 ⊆ 𝐴)) | ||
| Theorem | cnvordtrestixx 33879* | The restriction of the 'greater than' order to an interval gives the same topology as the subspace topology. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ 𝐴 ⊆ ℝ* & ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → (𝑥[,]𝑦) ⊆ 𝐴) ⇒ ⊢ ((ordTop‘ ≤ ) ↾t 𝐴) = (ordTop‘(◡ ≤ ∩ (𝐴 × 𝐴))) | ||
| Theorem | prsdm 33880 | Domain of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → dom ≤ = 𝐵) | ||
| Theorem | prsrn 33881 | Range of the relation of a proset. (Contributed by Thierry Arnoux, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → ran ≤ = 𝐵) | ||
| Theorem | prsss 33882 | Relation of a subproset. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → ( ≤ ∩ (𝐴 × 𝐴)) = ((le‘𝐾) ∩ (𝐴 × 𝐴))) | ||
| Theorem | prsssdm 33883 | Domain of a subproset relation. (Contributed by Thierry Arnoux, 12-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → dom ( ≤ ∩ (𝐴 × 𝐴)) = 𝐴) | ||
| Theorem | ordtprsval 33884* | Value of the order topology for a proset. (Contributed by Thierry Arnoux, 11-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) & ⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ⇒ ⊢ (𝐾 ∈ Proset → (ordTop‘ ≤ ) = (topGen‘(fi‘({𝐵} ∪ (𝐸 ∪ 𝐹))))) | ||
| Theorem | ordtprsuni 33885* | Value of the order topology. (Contributed by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐸 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑦 ≤ 𝑥}) & ⊢ 𝐹 = ran (𝑥 ∈ 𝐵 ↦ {𝑦 ∈ 𝐵 ∣ ¬ 𝑥 ≤ 𝑦}) ⇒ ⊢ (𝐾 ∈ Proset → 𝐵 = ∪ ({𝐵} ∪ (𝐸 ∪ 𝐹))) | ||
| Theorem | ordtcnvNEW 33886 | The order dual generates the same topology as the original order. (Contributed by Mario Carneiro, 3-Sep-2015.) (Revised by Thierry Arnoux, 13-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ (𝐾 ∈ Proset → (ordTop‘◡ ≤ ) = (ordTop‘ ≤ )) | ||
| Theorem | ordtrestNEW 33887 | The subspace topology of an order topology is in general finer than the topology generated by the restricted order, but we do have inclusion in one direction. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) ⇒ ⊢ ((𝐾 ∈ Proset ∧ 𝐴 ⊆ 𝐵) → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
| Theorem | ordtrest2NEWlem 33888* | Lemma for ordtrest2NEW 33889. (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ 𝐵 ↦ {𝑤 ∈ 𝐵 ∣ ¬ 𝑤 ≤ 𝑧})(𝑣 ∩ 𝐴) ∈ (ordTop‘( ≤ ∩ (𝐴 × 𝐴)))) | ||
| Theorem | ordtrest2NEW 33889* | An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in ℝ, but in other sets like ℚ there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.) (Revised by Thierry Arnoux, 11-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ (𝜑 → 𝐾 ∈ Toset) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) → {𝑧 ∈ 𝐵 ∣ (𝑥 ≤ 𝑧 ∧ 𝑧 ≤ 𝑦)} ⊆ 𝐴) ⇒ ⊢ (𝜑 → (ordTop‘( ≤ ∩ (𝐴 × 𝐴))) = ((ordTop‘ ≤ ) ↾t 𝐴)) | ||
| Theorem | ordtconnlem1 33890* | Connectedness in the order topology of a toset. This is the "easy" direction of ordtconn 33891. See also reconnlem1 24731. (Contributed by Thierry Arnoux, 14-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ((𝐾 ∈ Toset ∧ 𝐴 ⊆ 𝐵) → ((𝐽 ↾t 𝐴) ∈ Conn → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ∀𝑟 ∈ 𝐵 ((𝑥 ≤ 𝑟 ∧ 𝑟 ≤ 𝑦) → 𝑟 ∈ 𝐴))) | ||
| Theorem | ordtconn 33891 | Connectedness in the order topology of a complete uniform totally ordered space. (Contributed by Thierry Arnoux, 15-Sep-2018.) |
| ⊢ 𝐵 = (Base‘𝐾) & ⊢ ≤ = ((le‘𝐾) ∩ (𝐵 × 𝐵)) & ⊢ 𝐽 = (ordTop‘ ≤ ) ⇒ ⊢ ⊤ | ||
| Theorem | mndpluscn 33892* | A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.) |
| ⊢ 𝐹 ∈ (𝐽Homeo𝐾) & ⊢ + :(𝐵 × 𝐵)⟶𝐵 & ⊢ ∗ :(𝐶 × 𝐶)⟶𝐶 & ⊢ 𝐽 ∈ (TopOn‘𝐵) & ⊢ 𝐾 ∈ (TopOn‘𝐶) & ⊢ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ∗ (𝐹‘𝑦))) & ⊢ + ∈ ((𝐽 ×t 𝐽) Cn 𝐽) ⇒ ⊢ ∗ ∈ ((𝐾 ×t 𝐾) Cn 𝐾) | ||
| Theorem | mhmhmeotmd 33893 | Deduce a Topological Monoid using mapping that is both a homeomorphism and a monoid homomorphism. (Contributed by Thierry Arnoux, 21-Jun-2017.) |
| ⊢ 𝐹 ∈ (𝑆 MndHom 𝑇) & ⊢ 𝐹 ∈ ((TopOpen‘𝑆)Homeo(TopOpen‘𝑇)) & ⊢ 𝑆 ∈ TopMnd & ⊢ 𝑇 ∈ TopSp ⇒ ⊢ 𝑇 ∈ TopMnd | ||
| Theorem | rmulccn 33894* | Multiplication by a real constant is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) Avoid ax-mulf 11108. (Revised by GG, 16-Mar-2025.) |
| ⊢ 𝐽 = (topGen‘ran (,)) & ⊢ (𝜑 → 𝐶 ∈ ℝ) ⇒ ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝑥 · 𝐶)) ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | raddcn 33895* | Addition in the real numbers is a continuous function. (Contributed by Thierry Arnoux, 23-May-2017.) |
| ⊢ 𝐽 = (topGen‘ran (,)) ⇒ ⊢ (𝑥 ∈ ℝ, 𝑦 ∈ ℝ ↦ (𝑥 + 𝑦)) ∈ ((𝐽 ×t 𝐽) Cn 𝐽) | ||
| Theorem | xrmulc1cn 33896* | The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.) |
| ⊢ 𝐽 = (ordTop‘ ≤ ) & ⊢ 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶)) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐽)) | ||
| Theorem | fmcncfil 33897 | The image of a Cauchy filter by a continuous filter map is a Cauchy filter. (Contributed by Thierry Arnoux, 12-Nov-2017.) |
| ⊢ 𝐽 = (MetOpen‘𝐷) & ⊢ 𝐾 = (MetOpen‘𝐸) ⇒ ⊢ (((𝐷 ∈ (CMet‘𝑋) ∧ 𝐸 ∈ (∞Met‘𝑌) ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) ∧ 𝐵 ∈ (CauFil‘𝐷)) → ((𝑌 FilMap 𝐹)‘𝐵) ∈ (CauFil‘𝐸)) | ||
| Theorem | xrge0hmph 33898 | The extended nonnegative reals are homeomorphic to the closed unit interval. (Contributed by Thierry Arnoux, 24-Mar-2017.) |
| ⊢ II ≃ ((ordTop‘ ≤ ) ↾t (0[,]+∞)) | ||
| Theorem | xrge0iifcnv 33899* | Define a bijection from [0, 1] onto [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ ◡𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))) | ||
| Theorem | xrge0iifcv 33900* | The defined function's value in the real. (Contributed by Thierry Arnoux, 1-Apr-2017.) |
| ⊢ 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥))) ⇒ ⊢ (𝑋 ∈ (0(,]1) → (𝐹‘𝑋) = -(log‘𝑋)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |