MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-symg Structured version   Visualization version   GIF version

Definition df-symg 19229
Description: Define the symmetric group on set π‘₯. We represent the group as the set of one-to-one onto functions from π‘₯ to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.)
Assertion
Ref Expression
df-symg SymGrp = (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}))
Distinct variable group:   π‘₯,β„Ž

Detailed syntax breakdown of Definition df-symg
StepHypRef Expression
1 csymg 19228 . 2 class SymGrp
2 vx . . 3 setvar π‘₯
3 cvv 3474 . . 3 class V
42cv 1540 . . . . 5 class π‘₯
5 cefmnd 18745 . . . . 5 class EndoFMnd
64, 5cfv 6540 . . . 4 class (EndoFMndβ€˜π‘₯)
7 vh . . . . . . 7 setvar β„Ž
87cv 1540 . . . . . 6 class β„Ž
94, 4, 8wf1o 6539 . . . . 5 wff β„Ž:π‘₯–1-1-ontoβ†’π‘₯
109, 7cab 2709 . . . 4 class {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}
11 cress 17169 . . . 4 class β†Ύs
126, 10, 11co 7405 . . 3 class ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯})
132, 3, 12cmpt 5230 . 2 class (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}))
141, 13wceq 1541 1 wff SymGrp = (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}))
Colors of variables: wff setvar class
This definition is referenced by:  symgval  19230
  Copyright terms: Public domain W3C validator