![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > df-symg | Structured version Visualization version GIF version |
Description: Define the symmetric group on set π₯. We represent the group as the set of one-to-one onto functions from π₯ to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
Ref | Expression |
---|---|
df-symg | β’ SymGrp = (π₯ β V β¦ ((EndoFMndβπ₯) βΎs {β β£ β:π₯β1-1-ontoβπ₯})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | csymg 19228 | . 2 class SymGrp | |
2 | vx | . . 3 setvar π₯ | |
3 | cvv 3474 | . . 3 class V | |
4 | 2 | cv 1540 | . . . . 5 class π₯ |
5 | cefmnd 18745 | . . . . 5 class EndoFMnd | |
6 | 4, 5 | cfv 6540 | . . . 4 class (EndoFMndβπ₯) |
7 | vh | . . . . . . 7 setvar β | |
8 | 7 | cv 1540 | . . . . . 6 class β |
9 | 4, 4, 8 | wf1o 6539 | . . . . 5 wff β:π₯β1-1-ontoβπ₯ |
10 | 9, 7 | cab 2709 | . . . 4 class {β β£ β:π₯β1-1-ontoβπ₯} |
11 | cress 17169 | . . . 4 class βΎs | |
12 | 6, 10, 11 | co 7405 | . . 3 class ((EndoFMndβπ₯) βΎs {β β£ β:π₯β1-1-ontoβπ₯}) |
13 | 2, 3, 12 | cmpt 5230 | . 2 class (π₯ β V β¦ ((EndoFMndβπ₯) βΎs {β β£ β:π₯β1-1-ontoβπ₯})) |
14 | 1, 13 | wceq 1541 | 1 wff SymGrp = (π₯ β V β¦ ((EndoFMndβπ₯) βΎs {β β£ β:π₯β1-1-ontoβπ₯})) |
Colors of variables: wff setvar class |
This definition is referenced by: symgval 19230 |
Copyright terms: Public domain | W3C validator |