Detailed syntax breakdown of Definition df-symg
Step | Hyp | Ref
| Expression |
1 | | csymg 18279 |
. 2
class
SymGrp |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | cvv 3410 |
. . 3
class
V |
4 | | vb |
. . . 4
setvar 𝑏 |
5 | 2 | cv 1507 |
. . . . . 6
class 𝑥 |
6 | | vh |
. . . . . . 7
setvar ℎ |
7 | 6 | cv 1507 |
. . . . . 6
class ℎ |
8 | 5, 5, 7 | wf1o 6185 |
. . . . 5
wff ℎ:𝑥–1-1-onto→𝑥 |
9 | 8, 6 | cab 2753 |
. . . 4
class {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} |
10 | | cnx 16335 |
. . . . . . 7
class
ndx |
11 | | cbs 16338 |
. . . . . . 7
class
Base |
12 | 10, 11 | cfv 6186 |
. . . . . 6
class
(Base‘ndx) |
13 | 4 | cv 1507 |
. . . . . 6
class 𝑏 |
14 | 12, 13 | cop 4442 |
. . . . 5
class
〈(Base‘ndx), 𝑏〉 |
15 | | cplusg 16420 |
. . . . . . 7
class
+g |
16 | 10, 15 | cfv 6186 |
. . . . . 6
class
(+g‘ndx) |
17 | | vf |
. . . . . . 7
setvar 𝑓 |
18 | | vg |
. . . . . . 7
setvar 𝑔 |
19 | 17 | cv 1507 |
. . . . . . . 8
class 𝑓 |
20 | 18 | cv 1507 |
. . . . . . . 8
class 𝑔 |
21 | 19, 20 | ccom 5408 |
. . . . . . 7
class (𝑓 ∘ 𝑔) |
22 | 17, 18, 13, 13, 21 | cmpo 6977 |
. . . . . 6
class (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) |
23 | 16, 22 | cop 4442 |
. . . . 5
class
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 |
24 | | cts 16426 |
. . . . . . 7
class
TopSet |
25 | 10, 24 | cfv 6186 |
. . . . . 6
class
(TopSet‘ndx) |
26 | 5 | cpw 4417 |
. . . . . . . . 9
class 𝒫
𝑥 |
27 | 26 | csn 4436 |
. . . . . . . 8
class
{𝒫 𝑥} |
28 | 5, 27 | cxp 5402 |
. . . . . . 7
class (𝑥 × {𝒫 𝑥}) |
29 | | cpt 16567 |
. . . . . . 7
class
∏t |
30 | 28, 29 | cfv 6186 |
. . . . . 6
class
(∏t‘(𝑥 × {𝒫 𝑥})) |
31 | 25, 30 | cop 4442 |
. . . . 5
class
〈(TopSet‘ndx), (∏t‘(𝑥 × {𝒫 𝑥}))〉 |
32 | 14, 23, 31 | ctp 4440 |
. . . 4
class
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
33 | 4, 9, 32 | csb 3781 |
. . 3
class
⦋{ℎ
∣ ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉} |
34 | 2, 3, 33 | cmpt 5005 |
. 2
class (𝑥 ∈ V ↦
⦋{ℎ ∣
ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |
35 | 1, 34 | wceq 1508 |
1
wff SymGrp =
(𝑥 ∈ V ↦
⦋{ℎ ∣
ℎ:𝑥–1-1-onto→𝑥} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑥 × {𝒫 𝑥}))〉}) |