| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-symg | Structured version Visualization version GIF version | ||
| Description: Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
| Ref | Expression |
|---|---|
| df-symg | ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | csymg 19386 | . 2 class SymGrp | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | 2 | cv 1539 | . . . . 5 class 𝑥 |
| 5 | cefmnd 18881 | . . . . 5 class EndoFMnd | |
| 6 | 4, 5 | cfv 6561 | . . . 4 class (EndoFMnd‘𝑥) |
| 7 | vh | . . . . . . 7 setvar ℎ | |
| 8 | 7 | cv 1539 | . . . . . 6 class ℎ |
| 9 | 4, 4, 8 | wf1o 6560 | . . . . 5 wff ℎ:𝑥–1-1-onto→𝑥 |
| 10 | 9, 7 | cab 2714 | . . . 4 class {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} |
| 11 | cress 17274 | . . . 4 class ↾s | |
| 12 | 6, 10, 11 | co 7431 | . . 3 class ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) |
| 13 | 2, 3, 12 | cmpt 5225 | . 2 class (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) |
| 14 | 1, 13 | wceq 1540 | 1 wff SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) |
| Colors of variables: wff setvar class |
| This definition is referenced by: symgval 19388 |
| Copyright terms: Public domain | W3C validator |