| Metamath
Proof Explorer Theorem List (p. 193 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30845) |
(30846-32368) |
(32369-49617) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | ghmf 19201 | A group homomorphism is a function. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹:𝑋⟶𝑌) | ||
| Theorem | ghmlin 19202 | A homomorphism of groups is linear. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝑋 ∧ 𝑉 ∈ 𝑋) → (𝐹‘(𝑈 + 𝑉)) = ((𝐹‘𝑈) ⨣ (𝐹‘𝑉))) | ||
| Theorem | ghmid 19203 | A homomorphism of groups preserves the identity. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝑌 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹‘𝑌) = 0 ) | ||
| Theorem | ghminv 19204 | A homomorphism of groups preserves inverses. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑀 = (invg‘𝑆) & ⊢ 𝑁 = (invg‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑀‘𝑋)) = (𝑁‘(𝐹‘𝑋))) | ||
| Theorem | ghmsub 19205 | Linearity of subtraction through a group homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ − = (-g‘𝑆) & ⊢ 𝑁 = (-g‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → (𝐹‘(𝑈 − 𝑉)) = ((𝐹‘𝑈)𝑁(𝐹‘𝑉))) | ||
| Theorem | isghmd 19206* | Deduction for a group homomorphism. (Contributed by Stefan O'Rear, 4-Feb-2015.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) & ⊢ + = (+g‘𝑆) & ⊢ ⨣ = (+g‘𝑇) & ⊢ (𝜑 → 𝑆 ∈ Grp) & ⊢ (𝜑 → 𝑇 ∈ Grp) & ⊢ (𝜑 → 𝐹:𝑋⟶𝑌) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋)) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹‘𝑥) ⨣ (𝐹‘𝑦))) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | ghmmhm 19207 | A group homomorphism is a monoid homomorphism. (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 MndHom 𝑇)) | ||
| Theorem | ghmmhmb 19208 | Group homomorphisms and monoid homomorphisms coincide. (Thus, GrpHom is somewhat redundant, although its stronger reverse closure properties are sometimes useful.) (Contributed by Stefan O'Rear, 7-Mar-2015.) |
| ⊢ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) → (𝑆 GrpHom 𝑇) = (𝑆 MndHom 𝑇)) | ||
| Theorem | ghmmulg 19209 | A group homomorphism preserves group multiples. (Contributed by Mario Carneiro, 14-Jun-2015.) |
| ⊢ 𝐵 = (Base‘𝐺) & ⊢ · = (.g‘𝐺) & ⊢ × = (.g‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 GrpHom 𝐻) ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵) → (𝐹‘(𝑁 · 𝑋)) = (𝑁 × (𝐹‘𝑋))) | ||
| Theorem | ghmrn 19210 | The range of a homomorphism is a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → ran 𝐹 ∈ (SubGrp‘𝑇)) | ||
| Theorem | 0ghm 19211 | The constant zero linear function between two groups. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 0 = (0g‘𝑁) & ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑁 ∈ Grp) → (𝐵 × { 0 }) ∈ (𝑀 GrpHom 𝑁)) | ||
| Theorem | idghm 19212 | The identity homomorphism on a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → ( I ↾ 𝐵) ∈ (𝐺 GrpHom 𝐺)) | ||
| Theorem | resghm 19213 | Restriction of a homomorphism to a subgroup. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝑈 = (𝑆 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑋 ∈ (SubGrp‘𝑆)) → (𝐹 ↾ 𝑋) ∈ (𝑈 GrpHom 𝑇)) | ||
| Theorem | resghm2 19214 | One direction of resghm2b 19215. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑈) ∧ 𝑋 ∈ (SubGrp‘𝑇)) → 𝐹 ∈ (𝑆 GrpHom 𝑇)) | ||
| Theorem | resghm2b 19215 | Restriction of the codomain of a homomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| ⊢ 𝑈 = (𝑇 ↾s 𝑋) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑇) ∧ ran 𝐹 ⊆ 𝑋) → (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ 𝐹 ∈ (𝑆 GrpHom 𝑈))) | ||
| Theorem | ghmghmrn 19216 | A group homomorphism from 𝐺 to 𝐻 is also a group homomorphism from 𝐺 to its image in 𝐻. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by AV, 26-Aug-2021.) |
| ⊢ 𝑈 = (𝑇 ↾s ran 𝐹) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝐹 ∈ (𝑆 GrpHom 𝑈)) | ||
| Theorem | ghmco 19217 | The composition of group homomorphisms is a homomorphism. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ ((𝐹 ∈ (𝑇 GrpHom 𝑈) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpHom 𝑈)) | ||
| Theorem | ghmima 19218 | The image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (SubGrp‘𝑆)) → (𝐹 “ 𝑈) ∈ (SubGrp‘𝑇)) | ||
| Theorem | ghmpreima 19219 | The inverse image of a subgroup under a homomorphism. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (SubGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (SubGrp‘𝑆)) | ||
| Theorem | ghmeql 19220 | The equalizer of two group homomorphisms is a subgroup. (Contributed by Stefan O'Rear, 7-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝐺 ∈ (𝑆 GrpHom 𝑇)) → dom (𝐹 ∩ 𝐺) ∈ (SubGrp‘𝑆)) | ||
| Theorem | ghmnsgima 19221 | The image of a normal subgroup under a surjective homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ (NrmSGrp‘𝑆) ∧ ran 𝐹 = 𝑌) → (𝐹 “ 𝑈) ∈ (NrmSGrp‘𝑇)) | ||
| Theorem | ghmnsgpreima 19222 | The inverse image of a normal subgroup under a homomorphism is normal. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑉 ∈ (NrmSGrp‘𝑇)) → (◡𝐹 “ 𝑉) ∈ (NrmSGrp‘𝑆)) | ||
| Theorem | ghmker 19223 | The kernel of a homomorphism is a normal subgroup. (Contributed by Mario Carneiro, 4-Feb-2015.) |
| ⊢ 0 = (0g‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (◡𝐹 “ { 0 }) ∈ (NrmSGrp‘𝑆)) | ||
| Theorem | ghmeqker 19224 | Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| ⊢ 𝐵 = (Base‘𝑆) & ⊢ 0 = (0g‘𝑇) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ − = (-g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑆 GrpHom 𝑇) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵) → ((𝐹‘𝑈) = (𝐹‘𝑉) ↔ (𝑈 − 𝑉) ∈ 𝐾)) | ||
| Theorem | pwsdiagghm 19225* | Diagonal homomorphism into a structure power. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
| ⊢ 𝑌 = (𝑅 ↑s 𝐼) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐼 × {𝑥})) ⇒ ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ∈ 𝑊) → 𝐹 ∈ (𝑅 GrpHom 𝑌)) | ||
| Theorem | f1ghm0to0 19226 | If a group homomorphism 𝐹 is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
| ⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐴–1-1→𝐵 ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 0 ↔ 𝑋 = 𝑁)) | ||
| Theorem | ghmf1 19227* | Two ways of saying a group homomorphism is 1-1 into its codomain. (Contributed by Paul Chapman, 3-Mar-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 4-Apr-2025.) |
| ⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ ∀𝑥 ∈ 𝐴 ((𝐹‘𝑥) = 0 → 𝑥 = 𝑁))) | ||
| Theorem | kerf1ghm 19228 | A group homomorphism 𝐹 is injective if and only if its kernel is the singleton {𝑁}. (Contributed by Thierry Arnoux, 27-Oct-2017.) (Proof shortened by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 13-May-2023.) |
| ⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑅) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpHom 𝑆) → (𝐹:𝐴–1-1→𝐵 ↔ (◡𝐹 “ { 0 }) = {𝑁})) | ||
| Theorem | ghmf1o 19229 | A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | ||
| Theorem | conjghm 19230* | Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) | ||
| Theorem | conjsubg 19231* | A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) | ||
| Theorem | conjsubgen 19232* | A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) | ||
| Theorem | conjnmz 19233* | A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) | ||
| Theorem | conjnmzb 19234* | Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) | ||
| Theorem | conjnsg 19235* | A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) | ||
| Theorem | qusghm 19236* | If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
| Theorem | ghmpropd 19237* | Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
| ⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) | ||
| Syntax | cgim 19238 | The class of group isomorphism sets. |
| class GrpIso | ||
| Syntax | cgic 19239 | The class of the group isomorphism relation. |
| class ≃𝑔 | ||
| Definition | df-gim 19240* | An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | ||
| Definition | df-gic 19241 | Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | ||
| Theorem | gimfn 19242 | The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
| ⊢ GrpIso Fn (Grp × Grp) | ||
| Theorem | isgim 19243 | An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
| Theorem | gimf1o 19244 | An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
| Theorem | gimghm 19245 | An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
| Theorem | isgim2 19246 | A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 23695. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) | ||
| Theorem | subggim 19247 | Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆))) | ||
| Theorem | gimcnv 19248 | The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) | ||
| Theorem | gimco 19249 | The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) | ||
| Theorem | gim0to0 19250 | A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
| ⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
| Theorem | brgic 19251 | The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | ||
| Theorem | brgici 19252 | Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ≃𝑔 𝑆) | ||
| Theorem | gicref 19253 | Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) | ||
| Theorem | giclcl 19254 | Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) | ||
| Theorem | gicrcl 19255 | Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015.) |
| ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) | ||
| Theorem | gicsym 19256 | Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) | ||
| Theorem | gictr 19257 | Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) | ||
| Theorem | gicer 19258 | Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
| ⊢ ≃𝑔 Er Grp | ||
| Theorem | gicen 19259 | Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) | ||
| Theorem | gicsubgen 19260 | A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
| ⊢ (𝑅 ≃𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆)) | ||
| Theorem | ghmqusnsglem1 19261* | Lemma for ghmqusnsg 19263. (Contributed by Thierry Arnoux, 13-May-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑁 ⊆ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝑁)) = (𝐹‘𝑋)) | ||
| Theorem | ghmqusnsglem2 19262* | Lemma for ghmqusnsg 19263. (Contributed by Thierry Arnoux, 13-May-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑁 ⊆ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) | ||
| Theorem | ghmqusnsg 19263* | The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over a normal subgroup 𝑁 of 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 13-May-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝑁)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑁 ⊆ 𝐾) & ⊢ (𝜑 → 𝑁 ∈ (NrmSGrp‘𝐺)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) | ||
| Theorem | ghmquskerlem1 19264* | Lemma for ghmqusker 19268. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) | ||
| Theorem | ghmquskerco 19265* | In the case of theorem ghmqusker 19268, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) | ||
| Theorem | ghmquskerlem2 19266* | Lemma for ghmqusker 19268. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) | ||
| Theorem | ghmquskerlem3 19267* | The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) | ||
| Theorem | ghmqusker 19268* | A surjective group homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 15-Feb-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) | ||
| Theorem | gicqusker 19269 | The image 𝐻 of a group homomorphism 𝐹 is isomorphic with the quotient group 𝑄 over 𝐹's kernel 𝐾. Together with ghmker 19223 and ghmima 19218, this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
| ⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) ⇒ ⊢ (𝜑 → 𝑄 ≃𝑔 𝐻) | ||
| Syntax | cga 19270 | Extend class definition to include the class of group actions. |
| class GrpAct | ||
| Definition | df-ga 19271* | Define the class of all group actions. A group 𝐺 acts on a set 𝑆 if a permutation on 𝑆 is associated with every element of 𝐺 in such a way that the identity permutation on 𝑆 is associated with the neutral element of 𝐺, and the composition of the permutations associated with two elements of 𝐺 is identical with the permutation associated with the composition of these two elements (in the same order) in the group 𝐺. (Contributed by Jeff Hankins, 10-Aug-2009.) |
| ⊢ GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ ⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | ||
| Theorem | isga 19272* | The predicate "is a (left) group action". The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 19287). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) | ||
| Theorem | gagrp 19273 | The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | ||
| Theorem | gaset 19274 | The right argument of a group action is a set. (Contributed by Mario Carneiro, 30-Apr-2015.) |
| ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V) | ||
| Theorem | gagrpid 19275 | The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 0 = (0g‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) | ||
| Theorem | gaf 19276 | The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) | ||
| Theorem | gafo 19277 | A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) | ||
| Theorem | gaass 19278 | An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶))) | ||
| Theorem | ga0 19279 | The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) | ||
| Theorem | gaid 19280 | The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆)) | ||
| Theorem | subgga 19281* | A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋)) | ||
| Theorem | gass 19282* | A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → (( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) | ||
| Theorem | gasubg 19283 | The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ⊕ ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌)) | ||
| Theorem | gaid2 19284* | A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
| Theorem | galcan 19285 | The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = (𝐴 ⊕ 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | gacan 19286 | Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = 𝐶 ↔ ((𝑁‘𝐴) ⊕ 𝐶) = 𝐵)) | ||
| Theorem | gapm 19287* | The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑌 ↦ (𝐴 ⊕ 𝑥)) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑌–1-1-onto→𝑌) | ||
| Theorem | gaorb 19288* | The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | ||
| Theorem | gaorber 19289* | The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∼ Er 𝑌) | ||
| Theorem | gastacl 19290* | The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) | ||
| Theorem | gastacos 19291* | Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 ∼ 𝐶 ↔ (𝐵 ⊕ 𝐴) = (𝐶 ⊕ 𝐴))) | ||
| Theorem | orbstafun 19292* | Existence and uniqueness for the function of orbsta 19294. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) | ||
| Theorem | orbstaval 19293* | Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝐵 ∈ 𝑋) → (𝐹‘[𝐵] ∼ ) = (𝐵 ⊕ 𝐴)) | ||
| Theorem | orbsta 19294* | The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) & ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–1-1-onto→[𝐴]𝑂) | ||
| Theorem | orbsta2 19295* | Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻))) | ||
| Syntax | ccntz 19296 | Syntax for the centralizer of a set in a monoid. |
| class Cntz | ||
| Syntax | ccntr 19297 | Syntax for the centralizer of a monoid. |
| class Cntr | ||
| Definition | df-cntz 19298* | Define the centralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | ||
| Definition | df-cntr 19299 | Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | ||
| Theorem | cntrval 19300 | Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |