| Metamath
Proof Explorer Theorem List (p. 193 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30880) |
(30881-32403) |
(32404-49778) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | galcan 19201 | The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = (𝐴 ⊕ 𝐶) ↔ 𝐵 = 𝐶)) | ||
| Theorem | gacan 19202 | Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = 𝐶 ↔ ((𝑁‘𝐴) ⊕ 𝐶) = 𝐵)) | ||
| Theorem | gapm 19203* | The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑌 ↦ (𝐴 ⊕ 𝑥)) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑌–1-1-onto→𝑌) | ||
| Theorem | gaorb 19204* | The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | ||
| Theorem | gaorber 19205* | The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
| ⊢ ∼ = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∼ Er 𝑌) | ||
| Theorem | gastacl 19206* | The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) | ||
| Theorem | gastacos 19207* | Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 ∼ 𝐶 ↔ (𝐵 ⊕ 𝐴) = (𝐶 ⊕ 𝐴))) | ||
| Theorem | orbstafun 19208* | Existence and uniqueness for the function of orbsta 19210. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) | ||
| Theorem | orbstaval 19209* | Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝐵 ∈ 𝑋) → (𝐹‘[𝐵] ∼ ) = (𝐵 ⊕ 𝐴)) | ||
| Theorem | orbsta 19210* | The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ 〈[𝑘] ∼ , (𝑘 ⊕ 𝐴)〉) & ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–1-1-onto→[𝐴]𝑂) | ||
| Theorem | orbsta2 19211* | Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| ⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝑂 = {〈𝑥, 𝑦〉 ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻))) | ||
| Syntax | ccntz 19212 | Syntax for the centralizer of a set in a monoid. |
| class Cntz | ||
| Syntax | ccntr 19213 | Syntax for the centralizer of a monoid. |
| class Cntr | ||
| Definition | df-cntz 19214* | Define the centralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | ||
| Definition | df-cntr 19215 | Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | ||
| Theorem | cntrval 19216 | Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) | ||
| Theorem | cntzfval 19217* | First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) | ||
| Theorem | cntzval 19218* | Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) | ||
| Theorem | elcntz 19219* | Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) | ||
| Theorem | cntzel 19220* | Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) | ||
| Theorem | cntzsnval 19221* | Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) | ||
| Theorem | elcntzsn 19222 | Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) | ||
| Theorem | sscntz 19223* | A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
| Theorem | cntzrcl 19224 | Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) | ||
| Theorem | cntzssv 19225 | The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝑆) ⊆ 𝐵 | ||
| Theorem | cntzi 19226 | Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
| ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | elcntr 19227* | Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) | ||
| Theorem | cntrss 19228 | The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
| ⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (Cntr‘𝑀) ⊆ 𝐵 | ||
| Theorem | cntri 19229 | Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
| Theorem | resscntz 19230 | Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) | ||
| Theorem | cntzsgrpcl 19231* | Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) & ⊢ 𝐶 = (𝑍‘𝑆) ⇒ ⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) | ||
| Theorem | cntz2ss 19232 | Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzrec 19233 | Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) | ||
| Theorem | cntziinsn 19234* | Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) | ||
| Theorem | cntzsubm 19235 | Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | ||
| Theorem | cntzsubg 19236 | Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑀)) | ||
| Theorem | cntzidss 19237 | If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) | ||
| Theorem | cntzmhm 19238 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) | ||
| Theorem | cntzmhm2 19239 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
| ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) | ||
| Theorem | cntrsubgnsg 19240 | A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀)) | ||
| Theorem | cntrnsg 19241 | The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
| ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀)) | ||
| Syntax | coppg 19242 | The opposite group operation. |
| class oppg | ||
| Definition | df-oppg 19243 | Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 20240 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
| ⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet 〈(+g‘ndx), tpos (+g‘𝑤)〉)) | ||
| Theorem | oppgval 19244 | Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), tpos + 〉) | ||
| Theorem | oppgplusfval 19245 | Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ ✚ = tpos + | ||
| Theorem | oppgplus 19246 | Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
| ⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) | ||
| Theorem | setsplusg 19247 | The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
| ⊢ 𝑂 = (𝑅 sSet 〈(+g‘ndx), 𝑆〉) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (+g‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) | ||
| Theorem | oppgbas 19248 | Base set of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ 𝐵 = (Base‘𝑂) | ||
| Theorem | oppgtset 19249 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopSet‘𝑅) ⇒ ⊢ 𝐽 = (TopSet‘𝑂) | ||
| Theorem | oppgtopn 19250 | Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐽 = (TopOpen‘𝑅) ⇒ ⊢ 𝐽 = (TopOpen‘𝑂) | ||
| Theorem | oppgmnd 19251 | The opposite of a monoid is a monoid. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd → 𝑂 ∈ Mnd) | ||
| Theorem | oppgmndb 19252 | Bidirectional form of oppgmnd 19251. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Mnd ↔ 𝑂 ∈ Mnd) | ||
| Theorem | oppgid 19253 | Zero in a monoid is a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ 0 = (0g‘𝑂) | ||
| Theorem | oppggrp 19254 | The opposite of a group is a group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝑂 ∈ Grp) | ||
| Theorem | oppggrpb 19255 | Bidirectional form of oppggrp 19254. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp ↔ 𝑂 ∈ Grp) | ||
| Theorem | oppginv 19256 | Inverses in a group are a symmetric notion. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ 𝐼 = (invg‘𝑅) ⇒ ⊢ (𝑅 ∈ Grp → 𝐼 = (invg‘𝑂)) | ||
| Theorem | invoppggim 19257 | The inverse is an antiautomorphism on any group. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝐼 = (invg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso 𝑂)) | ||
| Theorem | oppggic 19258 | Every group is (naturally) isomorphic to its opposite. (Contributed by Stefan O'Rear, 26-Aug-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (𝐺 ∈ Grp → 𝐺 ≃𝑔 𝑂) | ||
| Theorem | oppgsubm 19259 | Being a submonoid is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubMnd‘𝐺) = (SubMnd‘𝑂) | ||
| Theorem | oppgsubg 19260 | Being a subgroup is a symmetric property. (Contributed by Mario Carneiro, 17-Sep-2015.) |
| ⊢ 𝑂 = (oppg‘𝐺) ⇒ ⊢ (SubGrp‘𝐺) = (SubGrp‘𝑂) | ||
| Theorem | oppgcntz 19261 | A centralizer in a group is the same as the centralizer in the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ (𝑍‘𝐴) = ((Cntz‘𝑂)‘𝐴) | ||
| Theorem | oppgcntr 19262 | The center of a group is the same as the center of the opposite group. (Contributed by Mario Carneiro, 21-Apr-2016.) |
| ⊢ 𝑂 = (oppg‘𝐺) & ⊢ 𝑍 = (Cntr‘𝐺) ⇒ ⊢ 𝑍 = (Cntr‘𝑂) | ||
| Theorem | gsumwrev 19263 | A sum in an opposite monoid is the regular sum of a reversed word. (Contributed by Stefan O'Rear, 27-Aug-2015.) (Proof shortened by Mario Carneiro, 28-Feb-2016.) |
| ⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑂 = (oppg‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑊 ∈ Word 𝐵) → (𝑂 Σg 𝑊) = (𝑀 Σg (reverse‘𝑊))) | ||
| Theorem | oppgle 19264 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ≤ = (le‘𝑅) ⇒ ⊢ ≤ = (le‘𝑂) | ||
| Theorem | oppglt 19265 | less-than relation of an opposite group. (Contributed by Thierry Arnoux, 13-Apr-2018.) |
| ⊢ 𝑂 = (oppg‘𝑅) & ⊢ < = (lt‘𝑅) ⇒ ⊢ (𝑅 ∈ 𝑉 → < = (lt‘𝑂)) | ||
According to Wikipedia ("Symmetric group", 09-Mar-2019,
https://en.wikipedia.org/wiki/symmetric_group) "In abstract algebra, the
symmetric group defined over any set is the group whose elements are all the
bijections from the set to itself, and whose group operation is the composition
of functions." and according to Encyclopedia of Mathematics ("Symmetric group",
09-Mar-2019, https://www.encyclopediaofmath.org/index.php/Symmetric_group)
"The group of all permutations (self-bijections) of a set with the operation of
composition (see Permutation group).". In [Rotman] p. 27 "If X is a nonempty
set, a permutation of X is a function a : X -> X that is a one-to-one
correspondence." and "If X is a nonempty set, the symmetric group on X, denoted
SX, is the group whose elements are the permutations of X and whose
binary operation is composition of functions.". Therefore, we define the
symmetric group on a set 𝐴 as the set of one-to-one onto functions
from 𝐴 to itself under function composition, see df-symg 19267. However, the
set is allowed to be empty, see symgbas0 19286. Hint: The symmetric groups
should not be confused with "symmetry groups" which is a different topic in
group theory.
| ||
| Syntax | csymg 19266 | Extend class notation to include the class of symmetric groups. |
| class SymGrp | ||
| Definition | df-symg 19267* | Define the symmetric group on set 𝑥. We represent the group as the set of one-to-one onto functions from 𝑥 to itself under function composition, and topologize it as a function space assuming the set is discrete. This definition is based on the fact that a symmetric group is a restriction of the monoid of endofunctions. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by AV, 28-Mar-2024.) |
| ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | ||
| Theorem | symgval 19268* | The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} ⇒ ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) | ||
| Theorem | symgbas 19269* | The base set of the symmetric group. (Contributed by Mario Carneiro, 12-Jan-2015.) (Proof shortened by AV, 29-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | ||
| Theorem | elsymgbas2 19270 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | elsymgbas 19271 | Two ways of saying a function is a 1-1-onto mapping of A to itself. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → (𝐹 ∈ 𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐴)) | ||
| Theorem | symgbasf1o 19272 | Elements in the symmetric group are 1-1 onto functions. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | symgbasf 19273 | A permutation (element of the symmetric group) is a function from a set into itself. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹:𝐴⟶𝐴) | ||
| Theorem | symgbasmap 19274 | A permutation (element of the symmetric group) is a mapping (or set exponentiation) from a set into itself. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → 𝐹 ∈ (𝐴 ↑m 𝐴)) | ||
| Theorem | symghash 19275 | The symmetric group on 𝑛 objects has cardinality 𝑛!. (Contributed by Mario Carneiro, 22-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → (♯‘𝐵) = (!‘(♯‘𝐴))) | ||
| Theorem | symgbasfi 19276 | The symmetric group on a finite index set is finite. (Contributed by SO, 9-Jul-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | symgfv 19277 | The function value of a permutation. (Contributed by AV, 1-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴) → (𝐹‘𝑋) ∈ 𝐴) | ||
| Theorem | symgfvne 19278 | The function values of a permutation for different arguments are different. (Contributed by AV, 8-Jan-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ ((𝐹 ∈ 𝐵 ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑍 → (𝑌 ≠ 𝑋 → (𝐹‘𝑌) ≠ 𝑍))) | ||
| Theorem | symgressbas 19279 | The symmetric group on 𝐴 characterized as structure restriction of the monoid of endofunctions on 𝐴 to its base set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑀 = (EndoFMnd‘𝐴) ⇒ ⊢ 𝐺 = (𝑀 ↾s 𝐵) | ||
| Theorem | symgplusg 19280* | The group operation of a symmetric group is the function composition. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Proof shortened by AV, 19-Feb-2024.) (Revised by AV, 29-Mar-2024.) (Proof shortened by AV, 14-Aug-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (𝐴 ↑m 𝐴) & ⊢ + = (+g‘𝐺) ⇒ ⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) | ||
| Theorem | symgov 19281 | The value of the group operation of the symmetric group on 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 28-Jan-2015.) (Revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑋 ∘ 𝑌)) | ||
| Theorem | symgcl 19282 | The group operation of the symmetric group on 𝐴 is closed, i.e. a magma. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by Mario Carneiro, 28-Jan-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ ((𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) ∈ 𝐵) | ||
| Theorem | idresperm 19283 | The identity function restricted to a set is a permutation of this set. (Contributed by AV, 17-Mar-2019.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) ∈ (Base‘𝐺)) | ||
| Theorem | symgmov1 19284* | For a permutation of a set, each element of the set replaces an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑛) = 𝑘) | ||
| Theorem | symgmov2 19285* | For a permutation of a set, each element of the set is replaced by an(other) element of the set. (Contributed by AV, 2-Jan-2019.) |
| ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) ⇒ ⊢ (𝑄 ∈ 𝑃 → ∀𝑛 ∈ 𝑁 ∃𝑘 ∈ 𝑁 (𝑄‘𝑘) = 𝑛) | ||
| Theorem | symgbas0 19286 | The base set of the symmetric group on the empty set is the singleton containing the empty set. (Contributed by AV, 27-Feb-2019.) |
| ⊢ (Base‘(SymGrp‘∅)) = {∅} | ||
| Theorem | symg1hash 19287 | The symmetric group on a singleton has cardinality 1. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → (♯‘𝐵) = 1) | ||
| Theorem | symg1bas 19288 | The symmetric group on a singleton is the symmetric group S1 consisting of the identity only. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼} ⇒ ⊢ (𝐼 ∈ 𝑉 → 𝐵 = {{〈𝐼, 𝐼〉}}) | ||
| Theorem | symg2hash 19289 | The symmetric group on a (proper) pair has cardinality 2. (Contributed by AV, 9-Dec-2018.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊 ∧ 𝐼 ≠ 𝐽) → (♯‘𝐵) = 2) | ||
| Theorem | symg2bas 19290 | The symmetric group on a pair is the symmetric group S2 consisting of the identity and the transposition. Notice that this statement is valid for proper pairs only. In the case that both elements are identical, i.e., the pairs are actually singletons, this theorem would be about S1, see Theorem symg1bas 19288. (Contributed by AV, 9-Dec-2018.) (Proof shortened by AV, 16-Jun-2022.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐴 = {𝐼, 𝐽} ⇒ ⊢ ((𝐼 ∈ 𝑉 ∧ 𝐽 ∈ 𝑊) → 𝐵 = {{〈𝐼, 𝐼〉, 〈𝐽, 𝐽〉}, {〈𝐼, 𝐽〉, 〈𝐽, 𝐼〉}}) | ||
| Theorem | 0symgefmndeq 19291 | The symmetric group on the empty set is identical with the monoid of endofunctions on the empty set. (Contributed by AV, 30-Mar-2024.) |
| ⊢ (EndoFMnd‘∅) = (SymGrp‘∅) | ||
| Theorem | snsymgefmndeq 19292 | The symmetric group on a singleton 𝐴 is identical with the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ (𝐴 = {𝑋} → (EndoFMnd‘𝐴) = (SymGrp‘𝐴)) | ||
| Theorem | symgpssefmnd 19293 | For a set 𝐴 with more than one element, the symmetric group on 𝐴 is a proper subset of the monoid of endofunctions on 𝐴. (Contributed by AV, 31-Mar-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 1 < (♯‘𝐴)) → (Base‘𝐺) ⊊ (Base‘𝑀)) | ||
| Theorem | symgvalstruct 19294* | The value of the symmetric group function at 𝐴 represented as extensible structure with three slots. This corresponds to the former definition of SymGrp. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 31-Mar-2024.) (Proof shortened by AV, 6-Nov-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} & ⊢ 𝑀 = (𝐴 ↑m 𝐴) & ⊢ + = (𝑓 ∈ 𝑀, 𝑔 ∈ 𝑀 ↦ (𝑓 ∘ 𝑔)) & ⊢ 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴})) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx), + 〉, 〈(TopSet‘ndx), 𝐽〉}) | ||
| Theorem | symgsubmefmnd 19295 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. (Contributed by AV, 18-Feb-2024.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| Theorem | symgtset 19296 | The topology of the symmetric group on 𝐴. This component is defined on a larger set than the true base - the product topology is defined on the set of all functions, not just bijections - but the definition of TopOpen ensures that it is trimmed down before it gets use. (Contributed by Mario Carneiro, 29-Aug-2015.) (Proof revised by AV, 30-Mar-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → (∏t‘(𝐴 × {𝒫 𝐴})) = (TopSet‘𝐺)) | ||
| Theorem | symggrp 19297 | The symmetric group on a set 𝐴 is a group. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 28-Jan-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐺 ∈ Grp) | ||
| Theorem | symgid 19298 | The group identity element of the symmetric group on a set 𝐴. (Contributed by Paul Chapman, 25-Jul-2008.) (Revised by Mario Carneiro, 13-Jan-2015.) (Proof shortened by AV, 1-Apr-2024.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → ( I ↾ 𝐴) = (0g‘𝐺)) | ||
| Theorem | symginv 19299 | The group inverse in the symmetric group corresponds to the functional inverse. (Contributed by Stefan O'Rear, 24-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.) |
| ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (𝐹 ∈ 𝐵 → (𝑁‘𝐹) = ◡𝐹) | ||
| Theorem | symgsubmefmndALT 19300 | The symmetric group on a set 𝐴 is a submonoid of the monoid of endofunctions on 𝐴. Alternate proof based on issubmndb 18697 and not on injsubmefmnd 18789 and sursubmefmnd 18788. (Contributed by AV, 18-Feb-2024.) (Revised by AV, 30-Mar-2024.) (New usage is discouraged.) (Proof modification is discouraged.) |
| ⊢ 𝑀 = (EndoFMnd‘𝐴) & ⊢ 𝐺 = (SymGrp‘𝐴) & ⊢ 𝐵 = (Base‘𝐺) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐵 ∈ (SubMnd‘𝑀)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |