![]() |
Metamath
Proof Explorer Theorem List (p. 193 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ghmf1o 19201 | A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝑆) & ⊢ 𝑌 = (Base‘𝑇) ⇒ ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝐹:𝑋–1-1-onto→𝑌 ↔ ◡𝐹 ∈ (𝑇 GrpHom 𝑆))) | ||
Theorem | conjghm 19202* | Conjugation is an automorphism of the group. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → (𝐹 ∈ (𝐺 GrpHom 𝐺) ∧ 𝐹:𝑋–1-1-onto→𝑋)) | ||
Theorem | conjsubg 19203* | A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) | ||
Theorem | conjsubgen 19204* | A conjugated subgroup is equinumerous to the original subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ≈ ran 𝐹) | ||
Theorem | conjnmz 19205* | A subgroup is unchanged under conjugation by an element of its normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑁) → 𝑆 = ran 𝐹) | ||
Theorem | conjnmzb 19206* | Alternative condition for elementhood in the normalizer. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) & ⊢ 𝑁 = {𝑦 ∈ 𝑋 ∣ ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ∈ 𝑆 ↔ (𝑧 + 𝑦) ∈ 𝑆)} ⇒ ⊢ (𝑆 ∈ (SubGrp‘𝐺) → (𝐴 ∈ 𝑁 ↔ (𝐴 ∈ 𝑋 ∧ 𝑆 = ran 𝐹))) | ||
Theorem | conjnsg 19207* | A normal subgroup is unchanged under conjugation. (Contributed by Mario Carneiro, 18-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ − = (-g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) ⇒ ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 = ran 𝐹) | ||
Theorem | qusghm 19208* | If 𝑌 is a normal subgroup of 𝐺, then the "natural map" from elements to their cosets is a group homomorphism from 𝐺 to 𝐺 / 𝑌. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 18-Sep-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)) & ⊢ 𝐹 = (𝑥 ∈ 𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) ⇒ ⊢ (𝑌 ∈ (NrmSGrp‘𝐺) → 𝐹 ∈ (𝐺 GrpHom 𝐻)) | ||
Theorem | ghmpropd 19209* | Group homomorphism depends only on the group attributes of structures. (Contributed by Mario Carneiro, 12-Jun-2015.) |
⊢ (𝜑 → 𝐵 = (Base‘𝐽)) & ⊢ (𝜑 → 𝐶 = (Base‘𝐾)) & ⊢ (𝜑 → 𝐵 = (Base‘𝐿)) & ⊢ (𝜑 → 𝐶 = (Base‘𝑀)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐽)𝑦) = (𝑥(+g‘𝐿)𝑦)) & ⊢ ((𝜑 ∧ (𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐶)) → (𝑥(+g‘𝐾)𝑦) = (𝑥(+g‘𝑀)𝑦)) ⇒ ⊢ (𝜑 → (𝐽 GrpHom 𝐾) = (𝐿 GrpHom 𝑀)) | ||
Syntax | cgim 19210 | The class of group isomorphism sets. |
class GrpIso | ||
Syntax | cgic 19211 | The class of the group isomorphism relation. |
class ≃𝑔 | ||
Definition | df-gim 19212* | An isomorphism of groups is a homomorphism which is also a bijection, i.e. it preserves equality as well as the group operation. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ GrpIso = (𝑠 ∈ Grp, 𝑡 ∈ Grp ↦ {𝑔 ∈ (𝑠 GrpHom 𝑡) ∣ 𝑔:(Base‘𝑠)–1-1-onto→(Base‘𝑡)}) | ||
Definition | df-gic 19213 | Two groups are said to be isomorphic iff they are connected by at least one isomorphism. Isomorphic groups share all global group properties, but to relate local properties requires knowledge of a specific isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ ≃𝑔 = (◡ GrpIso “ (V ∖ 1o)) | ||
Theorem | gimfn 19214 | The group isomorphism function is a well-defined function. (Contributed by Mario Carneiro, 23-Aug-2015.) |
⊢ GrpIso Fn (Grp × Grp) | ||
Theorem | isgim 19215 | An isomorphism of groups is a bijective homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ 𝐹:𝐵–1-1-onto→𝐶)) | ||
Theorem | gimf1o 19216 | An isomorphism of groups is a bijection. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹:𝐵–1-1-onto→𝐶) | ||
Theorem | gimghm 19217 | An isomorphism of groups is a homomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) | ||
Theorem | isgim2 19218 | A group isomorphism is a homomorphism whose converse is also a homomorphism. Characterization of isomorphisms similar to ishmeo 23676. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) ↔ (𝐹 ∈ (𝑅 GrpHom 𝑆) ∧ ◡𝐹 ∈ (𝑆 GrpHom 𝑅))) | ||
Theorem | subggim 19219 | Behavior of subgroups under isomorphism. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝐴 ⊆ 𝐵) → (𝐴 ∈ (SubGrp‘𝑅) ↔ (𝐹 “ 𝐴) ∈ (SubGrp‘𝑆))) | ||
Theorem | gimcnv 19220 | The converse of a group isomorphism is a group isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 6-May-2015.) |
⊢ (𝐹 ∈ (𝑆 GrpIso 𝑇) → ◡𝐹 ∈ (𝑇 GrpIso 𝑆)) | ||
Theorem | gimco 19221 | The composition of group isomorphisms is a group isomorphism. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ((𝐹 ∈ (𝑇 GrpIso 𝑈) ∧ 𝐺 ∈ (𝑆 GrpIso 𝑇)) → (𝐹 ∘ 𝐺) ∈ (𝑆 GrpIso 𝑈)) | ||
Theorem | gim0to0 19222 | A group isomorphism maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019.) (Revised by Thierry Arnoux, 23-May-2023.) |
⊢ 𝐴 = (Base‘𝑅) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ 𝑁 = (0g‘𝑆) & ⊢ 0 = (0g‘𝑅) ⇒ ⊢ ((𝐹 ∈ (𝑅 GrpIso 𝑆) ∧ 𝑋 ∈ 𝐴) → ((𝐹‘𝑋) = 𝑁 ↔ 𝑋 = 0 )) | ||
Theorem | brgic 19223 | The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅) | ||
Theorem | brgici 19224 | Prove isomorphic by an explicit isomorphism. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝐹 ∈ (𝑅 GrpIso 𝑆) → 𝑅 ≃𝑔 𝑆) | ||
Theorem | gicref 19225 | Isomorphism is reflexive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ (𝑅 ∈ Grp → 𝑅 ≃𝑔 𝑅) | ||
Theorem | giclcl 19226 | Isomorphism implies the left side is a group. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑔 𝑆 → 𝑅 ∈ Grp) | ||
Theorem | gicrcl 19227 | Isomorphism implies the right side is a group. (Contributed by Mario Carneiro, 6-May-2015.) |
⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ∈ Grp) | ||
Theorem | gicsym 19228 | Isomorphism is symmetric. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ (𝑅 ≃𝑔 𝑆 → 𝑆 ≃𝑔 𝑅) | ||
Theorem | gictr 19229 | Isomorphism is transitive. (Contributed by Mario Carneiro, 21-Apr-2016.) |
⊢ ((𝑅 ≃𝑔 𝑆 ∧ 𝑆 ≃𝑔 𝑇) → 𝑅 ≃𝑔 𝑇) | ||
Theorem | gicer 19230 | Isomorphism is an equivalence relation on groups. (Contributed by Mario Carneiro, 21-Apr-2016.) (Proof shortened by AV, 1-May-2021.) |
⊢ ≃𝑔 Er Grp | ||
Theorem | gicen 19231 | Isomorphic groups have equinumerous base sets. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝑅 ≃𝑔 𝑆 → 𝐵 ≈ 𝐶) | ||
Theorem | gicsubgen 19232 | A less trivial example of a group invariant: cardinality of the subgroup lattice. (Contributed by Stefan O'Rear, 25-Jan-2015.) |
⊢ (𝑅 ≃𝑔 𝑆 → (SubGrp‘𝑅) ≈ (SubGrp‘𝑆)) | ||
Theorem | ghmquskerlem1 19233* | Lemma for ghmqusker 19237. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑋 ∈ (Base‘𝐺)) ⇒ ⊢ (𝜑 → (𝐽‘[𝑋](𝐺 ~QG 𝐾)) = (𝐹‘𝑋)) | ||
Theorem | ghmquskerco 19234* | In the case of theorem ghmqusker 19237, the composition of the natural homomorphism 𝐿 with the constructed homomorphism 𝐽 equals the original homomorphism 𝐹. One says that 𝐹 factors through 𝑄. (Proposed by Saveliy Skresanov, 15-Feb-2025.) (Contributed by Thierry Arnoux, 15-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ 𝐵 = (Base‘𝐺) & ⊢ 𝐿 = (𝑥 ∈ 𝐵 ↦ [𝑥](𝐺 ~QG 𝐾)) ⇒ ⊢ (𝜑 → 𝐹 = (𝐽 ∘ 𝐿)) | ||
Theorem | ghmquskerlem2 19235* | Lemma for ghmqusker 19237. (Contributed by Thierry Arnoux, 14-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → 𝑌 ∈ (Base‘𝑄)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝑌 (𝐽‘𝑌) = (𝐹‘𝑥)) | ||
Theorem | ghmquskerlem3 19236* | The mapping 𝐻 induced by a surjective group homomorphism 𝐹 from the quotient group 𝑄 over 𝐹's kernel 𝐾 is a group isomorphism. In this case, one says that 𝐹 factors through 𝑄, which is also called the factor group. (Contributed by Thierry Arnoux, 22-Mar-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpHom 𝐻)) | ||
Theorem | ghmqusker 19237* | A surjective group homomorphism 𝐹 from 𝐺 to 𝐻 induces an isomorphism 𝐽 from 𝑄 to 𝐻, where 𝑄 is the factor group of 𝐺 by 𝐹's kernel 𝐾. (Contributed by Thierry Arnoux, 15-Feb-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ 𝐽 = (𝑞 ∈ (Base‘𝑄) ↦ ∪ (𝐹 “ 𝑞)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) ⇒ ⊢ (𝜑 → 𝐽 ∈ (𝑄 GrpIso 𝐻)) | ||
Theorem | gicqusker 19238 | The image 𝐻 of a group homomorphism 𝐹 is isomorphic with the quotient group 𝑄 over 𝐹's kernel 𝐾. Together with ghmker 19195 and ghmima 19190, this is sometimes called the first isomorphism theorem for groups. (Contributed by Thierry Arnoux, 10-Mar-2025.) |
⊢ 0 = (0g‘𝐻) & ⊢ (𝜑 → 𝐹 ∈ (𝐺 GrpHom 𝐻)) & ⊢ 𝐾 = (◡𝐹 “ { 0 }) & ⊢ 𝑄 = (𝐺 /s (𝐺 ~QG 𝐾)) & ⊢ (𝜑 → ran 𝐹 = (Base‘𝐻)) ⇒ ⊢ (𝜑 → 𝑄 ≃𝑔 𝐻) | ||
Syntax | cga 19239 | Extend class definition to include the class of group actions. |
class GrpAct | ||
Definition | df-ga 19240* | Define the class of all group actions. A group 𝐺 acts on a set 𝑆 if a permutation on 𝑆 is associated with every element of 𝐺 in such a way that the identity permutation on 𝑆 is associated with the neutral element of 𝐺, and the composition of the permutations associated with two elements of 𝐺 is identical with the permutation associated with the composition of these two elements (in the same order) in the group 𝐺. (Contributed by Jeff Hankins, 10-Aug-2009.) |
⊢ GrpAct = (𝑔 ∈ Grp, 𝑠 ∈ V ↦ ⦋(Base‘𝑔) / 𝑏⦌{𝑚 ∈ (𝑠 ↑m (𝑏 × 𝑠)) ∣ ∀𝑥 ∈ 𝑠 (((0g‘𝑔)𝑚𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑏 ∀𝑧 ∈ 𝑏 ((𝑦(+g‘𝑔)𝑧)𝑚𝑥) = (𝑦𝑚(𝑧𝑚𝑥)))}) | ||
Theorem | isga 19241* | The predicate "is a (left) group action". The group 𝐺 is said to act on the base set 𝑌 of the action, which is not assumed to have any special properties. There is a related notion of right group action, but as the Wikipedia article explains, it is not mathematically interesting. The way actions are usually thought of is that each element 𝑔 of 𝐺 is a permutation of the elements of 𝑌 (see gapm 19256). Since group theory was classically about symmetry groups, it is therefore likely that the notion of group action was useful even in early group theory. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 0 = (0g‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) ↔ ((𝐺 ∈ Grp ∧ 𝑌 ∈ V) ∧ ( ⊕ :(𝑋 × 𝑌)⟶𝑌 ∧ ∀𝑥 ∈ 𝑌 (( 0 ⊕ 𝑥) = 𝑥 ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 ((𝑦 + 𝑧) ⊕ 𝑥) = (𝑦 ⊕ (𝑧 ⊕ 𝑥)))))) | ||
Theorem | gagrp 19242 | The left argument of a group action is a group. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) | ||
Theorem | gaset 19243 | The right argument of a group action is a set. (Contributed by Mario Carneiro, 30-Apr-2015.) |
⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V) | ||
Theorem | gagrpid 19244 | The identity of the group does not alter the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 0 = (0g‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → ( 0 ⊕ 𝐴) = 𝐴) | ||
Theorem | gaf 19245 | The mapping of the group action operation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) | ||
Theorem | gafo 19246 | A group action is onto its base set. (Contributed by Jeff Hankins, 10-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)–onto→𝑌) | ||
Theorem | gaass 19247 | An "associative" property for group actions. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 + 𝐵) ⊕ 𝐶) = (𝐴 ⊕ (𝐵 ⊕ 𝐶))) | ||
Theorem | ga0 19248 | The action of a group on the empty set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ (𝐺 ∈ Grp → ∅ ∈ (𝐺 GrpAct ∅)) | ||
Theorem | gaid 19249 | The trivial action of a group on any set. Each group element corresponds to the identity permutation. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ((𝐺 ∈ Grp ∧ 𝑆 ∈ 𝑉) → (2nd ↾ (𝑋 × 𝑆)) ∈ (𝐺 GrpAct 𝑆)) | ||
Theorem | subgga 19250* | A subgroup acts on its parent group. (Contributed by Jeff Hankins, 13-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐻 = (𝐺 ↾s 𝑌) & ⊢ 𝐹 = (𝑥 ∈ 𝑌, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ⇒ ⊢ (𝑌 ∈ (SubGrp‘𝐺) → 𝐹 ∈ (𝐻 GrpAct 𝑋)) | ||
Theorem | gass 19251* | A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → (( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) | ||
Theorem | gasubg 19252 | The restriction of a group action to a subgroup is a group action. (Contributed by Mario Carneiro, 17-Jan-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝑆) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ( ⊕ ↾ (𝑆 × 𝑌)) ∈ (𝐻 GrpAct 𝑌)) | ||
Theorem | gaid2 19253* | A group operation is a left group action of the group on itself. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ + = (+g‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑋 ↦ (𝑥 + 𝑦)) ⇒ ⊢ (𝐺 ∈ Grp → 𝐹 ∈ (𝐺 GrpAct 𝑋)) | ||
Theorem | galcan 19254 | The action of a particular group element is left-cancelable. (Contributed by FL, 17-May-2010.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = (𝐴 ⊕ 𝐶) ↔ 𝐵 = 𝐶)) | ||
Theorem | gacan 19255 | Group inverses cancel in a group action. (Contributed by Jeff Hankins, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝑁 = (invg‘𝐺) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑌)) → ((𝐴 ⊕ 𝐵) = 𝐶 ↔ ((𝑁‘𝐴) ⊕ 𝐶) = 𝐵)) | ||
Theorem | gapm 19256* | The action of a particular group element is a permutation of the base set. (Contributed by Jeff Hankins, 11-Aug-2009.) (Proof shortened by Mario Carneiro, 13-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐹 = (𝑥 ∈ 𝑌 ↦ (𝐴 ⊕ 𝑥)) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑋) → 𝐹:𝑌–1-1-onto→𝑌) | ||
Theorem | gaorb 19257* | The orbit equivalence relation puts two points in the group action in the same equivalence class iff there is a group element that takes one element to the other. (Contributed by Mario Carneiro, 14-Jan-2015.) |
⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (𝐴 ∼ 𝐵 ↔ (𝐴 ∈ 𝑌 ∧ 𝐵 ∈ 𝑌 ∧ ∃ℎ ∈ 𝑋 (ℎ ⊕ 𝐴) = 𝐵)) | ||
Theorem | gaorber 19258* | The orbit equivalence relation is an equivalence relation on the target set of the group action. (Contributed by NM, 11-Aug-2009.) (Revised by Mario Carneiro, 13-Jan-2015.) |
⊢ ∼ = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} & ⊢ 𝑋 = (Base‘𝐺) ⇒ ⊢ ( ⊕ ∈ (𝐺 GrpAct 𝑌) → ∼ Er 𝑌) | ||
Theorem | gastacl 19259* | The stabilizer subgroup in a group action. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐻 ∈ (SubGrp‘𝐺)) | ||
Theorem | gastacos 19260* | Write the coset relation for the stabilizer subgroup. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ (𝐵 ∈ 𝑋 ∧ 𝐶 ∈ 𝑋)) → (𝐵 ∼ 𝐶 ↔ (𝐵 ⊕ 𝐴) = (𝐶 ⊕ 𝐴))) | ||
Theorem | orbstafun 19261* | Existence and uniqueness for the function of orbsta 19263. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → Fun 𝐹) | ||
Theorem | orbstaval 19262* | Value of the function at a given equivalence class element. (Contributed by Mario Carneiro, 15-Jan-2015.) (Proof shortened by Mario Carneiro, 23-Dec-2016.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝐵 ∈ 𝑋) → (𝐹‘[𝐵] ∼ ) = (𝐵 ⊕ 𝐴)) | ||
Theorem | orbsta 19263* | The Orbit-Stabilizer theorem. The mapping 𝐹 is a bijection from the cosets of the stabilizer subgroup of 𝐴 to the orbit of 𝐴. (Contributed by Mario Carneiro, 15-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝐹 = ran (𝑘 ∈ 𝑋 ↦ ⟨[𝑘] ∼ , (𝑘 ⊕ 𝐴)⟩) & ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ (( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) → 𝐹:(𝑋 / ∼ )–1-1-onto→[𝐴]𝑂) | ||
Theorem | orbsta2 19264* | Relation between the size of the orbit and the size of the stabilizer of a point in a finite group action. (Contributed by Mario Carneiro, 16-Jan-2015.) |
⊢ 𝑋 = (Base‘𝐺) & ⊢ 𝐻 = {𝑢 ∈ 𝑋 ∣ (𝑢 ⊕ 𝐴) = 𝐴} & ⊢ ∼ = (𝐺 ~QG 𝐻) & ⊢ 𝑂 = {⟨𝑥, 𝑦⟩ ∣ ({𝑥, 𝑦} ⊆ 𝑌 ∧ ∃𝑔 ∈ 𝑋 (𝑔 ⊕ 𝑥) = 𝑦)} ⇒ ⊢ ((( ⊕ ∈ (𝐺 GrpAct 𝑌) ∧ 𝐴 ∈ 𝑌) ∧ 𝑋 ∈ Fin) → (♯‘𝑋) = ((♯‘[𝐴]𝑂) · (♯‘𝐻))) | ||
Syntax | ccntz 19265 | Syntax for the centralizer of a set in a monoid. |
class Cntz | ||
Syntax | ccntr 19266 | Syntax for the centralizer of a monoid. |
class Cntr | ||
Definition | df-cntz 19267* | Define the centralizer of a subset of a magma, which is the set of elements each of which commutes with each element of the given subset. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ Cntz = (𝑚 ∈ V ↦ (𝑠 ∈ 𝒫 (Base‘𝑚) ↦ {𝑥 ∈ (Base‘𝑚) ∣ ∀𝑦 ∈ 𝑠 (𝑥(+g‘𝑚)𝑦) = (𝑦(+g‘𝑚)𝑥)})) | ||
Definition | df-cntr 19268 | Define the center of a magma, which is the elements that commute with all others. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ Cntr = (𝑚 ∈ V ↦ ((Cntz‘𝑚)‘(Base‘𝑚))) | ||
Theorem | cntrval 19269 | Substitute definition of the center. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝐵) = (Cntr‘𝑀) | ||
Theorem | cntzfval 19270* | First level substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑀 ∈ 𝑉 → 𝑍 = (𝑠 ∈ 𝒫 𝐵 ↦ {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑠 (𝑥 + 𝑦) = (𝑦 + 𝑥)})) | ||
Theorem | cntzval 19271* | Definition substitution for a centralizer. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = {𝑥 ∈ 𝐵 ∣ ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) = (𝑦 + 𝑥)}) | ||
Theorem | elcntz 19272* | Elementhood in the centralizer. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝐴 ∈ (𝑍‘𝑆) ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝑆 (𝐴 + 𝑦) = (𝑦 + 𝐴)))) | ||
Theorem | cntzel 19273* | Membership in a centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑋 ∈ (𝑍‘𝑆) ↔ ∀𝑦 ∈ 𝑆 (𝑋 + 𝑦) = (𝑦 + 𝑋))) | ||
Theorem | cntzsnval 19274* | Special substitution for the centralizer of a singleton. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑍‘{𝑌}) = {𝑥 ∈ 𝐵 ∣ (𝑥 + 𝑌) = (𝑌 + 𝑥)}) | ||
Theorem | elcntzsn 19275 | Value of the centralizer of a singleton. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑌 ∈ 𝐵 → (𝑋 ∈ (𝑍‘{𝑌}) ↔ (𝑋 ∈ 𝐵 ∧ (𝑋 + 𝑌) = (𝑌 + 𝑋)))) | ||
Theorem | sscntz 19276* | A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥 + 𝑦) = (𝑦 + 𝑥))) | ||
Theorem | cntzrcl 19277 | Reverse closure for elements of the centralizer. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑋 ∈ (𝑍‘𝑆) → (𝑀 ∈ V ∧ 𝑆 ⊆ 𝐵)) | ||
Theorem | cntzssv 19278 | The centralizer is unconditionally a subset. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑍‘𝑆) ⊆ 𝐵 | ||
Theorem | cntzi 19279 | Membership in a centralizer (inference). (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 22-Sep-2015.) |
⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑋 ∈ (𝑍‘𝑆) ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | elcntr 19280* | Elementhood in the center of a magma. (Contributed by SN, 21-Mar-2025.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝐴 ∈ 𝑍 ↔ (𝐴 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 (𝐴 + 𝑦) = (𝑦 + 𝐴))) | ||
Theorem | cntrss 19281 | The center is a subset of the base field. (Contributed by Thierry Arnoux, 21-Aug-2023.) |
⊢ 𝐵 = (Base‘𝑀) ⇒ ⊢ (Cntr‘𝑀) ⊆ 𝐵 | ||
Theorem | cntri 19282 | Defining property of the center of a group. (Contributed by Mario Carneiro, 22-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ + = (+g‘𝑀) & ⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ 𝑍 ∧ 𝑌 ∈ 𝐵) → (𝑋 + 𝑌) = (𝑌 + 𝑋)) | ||
Theorem | resscntz 19283 | Centralizer in a substructure. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐻 = (𝐺 ↾s 𝐴) & ⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑆 ⊆ 𝐴) → (𝑌‘𝑆) = ((𝑍‘𝑆) ∩ 𝐴)) | ||
Theorem | cntzsgrpcl 19284* | Centralizers are closed under the semigroup operation. (Contributed by AV, 17-Feb-2025.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) & ⊢ 𝐶 = (𝑍‘𝑆) ⇒ ⊢ ((𝑀 ∈ Smgrp ∧ 𝑆 ⊆ 𝐵) → ∀𝑦 ∈ 𝐶 ∀𝑧 ∈ 𝐶 (𝑦(+g‘𝑀)𝑧) ∈ 𝐶) | ||
Theorem | cntz2ss 19285 | Centralizers reverse the subset relation. (Contributed by Mario Carneiro, 3-Oct-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝑆) → (𝑍‘𝑆) ⊆ (𝑍‘𝑇)) | ||
Theorem | cntzrec 19286 | Reciprocity relationship for centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵) → (𝑆 ⊆ (𝑍‘𝑇) ↔ 𝑇 ⊆ (𝑍‘𝑆))) | ||
Theorem | cntziinsn 19287* | Express any centralizer as an intersection of singleton centralizers. (Contributed by Stefan O'Rear, 5-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ (𝑆 ⊆ 𝐵 → (𝑍‘𝑆) = (𝐵 ∩ ∩ 𝑥 ∈ 𝑆 (𝑍‘{𝑥}))) | ||
Theorem | cntzsubm 19288 | Centralizers in a monoid are submonoids. (Contributed by Stefan O'Rear, 6-Sep-2015.) (Revised by Mario Carneiro, 19-Apr-2016.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubMnd‘𝑀)) | ||
Theorem | cntzsubg 19289 | Centralizers in a group are subgroups. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝐵 = (Base‘𝑀) & ⊢ 𝑍 = (Cntz‘𝑀) ⇒ ⊢ ((𝑀 ∈ Grp ∧ 𝑆 ⊆ 𝐵) → (𝑍‘𝑆) ∈ (SubGrp‘𝑀)) | ||
Theorem | cntzidss 19290 | If the elements of 𝑆 commute, the elements of a subset 𝑇 also commute. (Contributed by Mario Carneiro, 25-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) ⇒ ⊢ ((𝑆 ⊆ (𝑍‘𝑆) ∧ 𝑇 ⊆ 𝑆) → 𝑇 ⊆ (𝑍‘𝑇)) | ||
Theorem | cntzmhm 19291 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝐴 ∈ (𝑍‘𝑆)) → (𝐹‘𝐴) ∈ (𝑌‘(𝐹 “ 𝑆))) | ||
Theorem | cntzmhm2 19292 | Centralizers in a monoid are preserved by monoid homomorphisms. (Contributed by Mario Carneiro, 24-Apr-2016.) |
⊢ 𝑍 = (Cntz‘𝐺) & ⊢ 𝑌 = (Cntz‘𝐻) ⇒ ⊢ ((𝐹 ∈ (𝐺 MndHom 𝐻) ∧ 𝑆 ⊆ (𝑍‘𝑇)) → (𝐹 “ 𝑆) ⊆ (𝑌‘(𝐹 “ 𝑇))) | ||
Theorem | cntrsubgnsg 19293 | A central subgroup is normal. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ ((𝑋 ∈ (SubGrp‘𝑀) ∧ 𝑋 ⊆ 𝑍) → 𝑋 ∈ (NrmSGrp‘𝑀)) | ||
Theorem | cntrnsg 19294 | The center of a group is a normal subgroup. (Contributed by Stefan O'Rear, 6-Sep-2015.) |
⊢ 𝑍 = (Cntr‘𝑀) ⇒ ⊢ (𝑀 ∈ Grp → 𝑍 ∈ (NrmSGrp‘𝑀)) | ||
Syntax | coppg 19295 | The opposite group operation. |
class oppg | ||
Definition | df-oppg 19296 | Define an opposite group, which is the same as the original group but with addition written the other way around. df-oppr 20272 does the same thing for multiplication. (Contributed by Stefan O'Rear, 25-Aug-2015.) |
⊢ oppg = (𝑤 ∈ V ↦ (𝑤 sSet ⟨(+g‘ndx), tpos (+g‘𝑤)⟩)) | ||
Theorem | oppgval 19297 | Value of the opposite group. (Contributed by Stefan O'Rear, 25-Aug-2015.) (Revised by Mario Carneiro, 16-Sep-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) ⇒ ⊢ 𝑂 = (𝑅 sSet ⟨(+g‘ndx), tpos + ⟩) | ||
Theorem | oppgplusfval 19298 | Value of the addition operation of an opposite group. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ ✚ = tpos + | ||
Theorem | oppgplus 19299 | Value of the addition operation of an opposite ring. (Contributed by Stefan O'Rear, 26-Aug-2015.) (Revised by Fan Zheng, 26-Jun-2016.) |
⊢ + = (+g‘𝑅) & ⊢ 𝑂 = (oppg‘𝑅) & ⊢ ✚ = (+g‘𝑂) ⇒ ⊢ (𝑋 ✚ 𝑌) = (𝑌 + 𝑋) | ||
Theorem | setsplusg 19300 | The other components of an extensible structure remain unchanged if the +g component is set/substituted. (Contributed by Stefan O'Rear, 26-Aug-2015.) Generalisation of the former oppglem and mgplem. (Revised by AV, 18-Oct-2024.) |
⊢ 𝑂 = (𝑅 sSet ⟨(+g‘ndx), 𝑆⟩) & ⊢ 𝐸 = Slot (𝐸‘ndx) & ⊢ (𝐸‘ndx) ≠ (+g‘ndx) ⇒ ⊢ (𝐸‘𝑅) = (𝐸‘𝑂) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |