MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 19362
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrp‘𝐴)
symgval.2 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
Assertion
Ref Expression
symgval 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem symgval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrp‘𝐴)
2 df-symg 19361 . . . . 5 SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
32a1i 11 . . . 4 (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥})))
4 fveq2 6893 . . . . . 6 (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴))
5 eqidd 2727 . . . . . . . . . 10 (𝑥 = 𝐴 = )
6 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
75, 6, 6f1oeq123d 6829 . . . . . . . . 9 (𝑥 = 𝐴 → (:𝑥1-1-onto𝑥:𝐴1-1-onto𝐴))
87abbidv 2795 . . . . . . . 8 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {:𝐴1-1-onto𝐴})
9 f1oeq1 6823 . . . . . . . . 9 ( = 𝑥 → (:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
109cbvabv 2799 . . . . . . . 8 {:𝐴1-1-onto𝐴} = {𝑥𝑥:𝐴1-1-onto𝐴}
118, 10eqtrdi 2782 . . . . . . 7 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {𝑥𝑥:𝐴1-1-onto𝐴})
12 symgval.2 . . . . . . 7 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
1311, 12eqtr4di 2784 . . . . . 6 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = 𝐵)
144, 13oveq12d 7434 . . . . 5 (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
1514adantl 480 . . . 4 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
16 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
17 ovexd 7451 . . . 4 (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V)
18 nfv 1910 . . . 4 𝑥 𝐴 ∈ V
19 nfcv 2892 . . . 4 𝑥𝐴
20 nfcv 2892 . . . . 5 𝑥(EndoFMnd‘𝐴)
21 nfcv 2892 . . . . 5 𝑥s
22 nfab1 2894 . . . . . 6 𝑥{𝑥𝑥:𝐴1-1-onto𝐴}
2312, 22nfcxfr 2890 . . . . 5 𝑥𝐵
2420, 21, 23nfov 7446 . . . 4 𝑥((EndoFMnd‘𝐴) ↾s 𝐵)
253, 15, 16, 17, 18, 19, 24fvmptdf 7007 . . 3 (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
26 ress0 17252 . . . . 5 (∅ ↾s 𝐵) = ∅
2726a1i 11 . . . 4 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅)
28 fvprc 6885 . . . . 5 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
2928oveq1d 7431 . . . 4 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
30 fvprc 6885 . . . 4 𝐴 ∈ V → (SymGrp‘𝐴) = ∅)
3127, 29, 303eqtr4rd 2777 . . 3 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
3225, 31pm2.61i 182 . 2 (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)
331, 32eqtri 2754 1 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  {cab 2703  Vcvv 3462  c0 4322  cmpt 5228  1-1-ontowf1o 6545  cfv 6546  (class class class)co 7416  s cress 17237  EndoFMndcefmnd 18853  SymGrpcsymg 19360
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7738  ax-cnex 11205  ax-1cn 11207  ax-addcl 11209
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4906  df-iun 4995  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6371  df-on 6372  df-lim 6373  df-suc 6374  df-iota 6498  df-fun 6548  df-fn 6549  df-f 6550  df-f1 6551  df-fo 6552  df-f1o 6553  df-fv 6554  df-ov 7419  df-oprab 7420  df-mpo 7421  df-om 7869  df-2nd 7996  df-frecs 8288  df-wrecs 8319  df-recs 8393  df-rdg 8432  df-nn 12259  df-slot 17179  df-ndx 17191  df-base 17209  df-ress 17238  df-symg 19361
This theorem is referenced by:  symgbas  19364  symgressbas  19375  symgplusg  19376  symgvalstruct  19390  symgvalstructOLD  19391  symgtset  19393
  Copyright terms: Public domain W3C validator