| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgval | Structured version Visualization version GIF version | ||
| Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgval.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgval.2 | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| Ref | Expression |
|---|---|
| symgval | ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgval.1 | . 2 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | df-symg 19284 | . . . . 5 ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}))) |
| 4 | fveq2 6828 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴)) | |
| 5 | eqidd 2734 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ℎ = ℎ) | |
| 6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 7 | 5, 6, 6 | f1oeq123d 6762 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (ℎ:𝑥–1-1-onto→𝑥 ↔ ℎ:𝐴–1-1-onto→𝐴)) |
| 8 | 7 | abbidv 2799 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴}) |
| 9 | f1oeq1 6756 | . . . . . . . . 9 ⊢ (ℎ = 𝑥 → (ℎ:𝐴–1-1-onto→𝐴 ↔ 𝑥:𝐴–1-1-onto→𝐴)) | |
| 10 | 9 | cbvabv 2803 | . . . . . . . 8 ⊢ {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| 11 | 8, 10 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
| 12 | symgval.2 | . . . . . . 7 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
| 13 | 11, 12 | eqtr4di 2786 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = 𝐵) |
| 14 | 4, 13 | oveq12d 7370 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 16 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 17 | ovexd 7387 | . . . 4 ⊢ (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V) | |
| 18 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
| 19 | nfcv 2895 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 20 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥(EndoFMnd‘𝐴) | |
| 21 | nfcv 2895 | . . . . 5 ⊢ Ⅎ𝑥 ↾s | |
| 22 | nfab1 2897 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
| 23 | 12, 22 | nfcxfr 2893 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
| 24 | 20, 21, 23 | nfov 7382 | . . . 4 ⊢ Ⅎ𝑥((EndoFMnd‘𝐴) ↾s 𝐵) |
| 25 | 3, 15, 16, 17, 18, 19, 24 | fvmptdf 6941 | . . 3 ⊢ (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 26 | ress0 17156 | . . . . 5 ⊢ (∅ ↾s 𝐵) = ∅ | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅) |
| 28 | fvprc 6820 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 29 | 28 | oveq1d 7367 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵)) |
| 30 | fvprc 6820 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
| 31 | 27, 29, 30 | 3eqtr4rd 2779 | . . 3 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 32 | 25, 31 | pm2.61i 182 | . 2 ⊢ (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| 33 | 1, 32 | eqtri 2756 | 1 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2113 {cab 2711 Vcvv 3437 ∅c0 4282 ↦ cmpt 5174 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7352 ↾s cress 17143 EndoFMndcefmnd 18778 SymGrpcsymg 19283 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-symg 19284 |
| This theorem is referenced by: symgbas 19286 symgressbas 19296 symgplusg 19297 symgvalstruct 19311 symgtset 19313 |
| Copyright terms: Public domain | W3C validator |