MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 18489
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrp‘𝐴)
symgval.2 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
Assertion
Ref Expression
symgval 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem symgval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrp‘𝐴)
2 df-symg 18488 . . . . 5 SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
32a1i 11 . . . 4 (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥})))
4 fveq2 6645 . . . . . 6 (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴))
5 eqidd 2799 . . . . . . . . . 10 (𝑥 = 𝐴 = )
6 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
75, 6, 6f1oeq123d 6585 . . . . . . . . 9 (𝑥 = 𝐴 → (:𝑥1-1-onto𝑥:𝐴1-1-onto𝐴))
87abbidv 2862 . . . . . . . 8 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {:𝐴1-1-onto𝐴})
9 f1oeq1 6579 . . . . . . . . 9 ( = 𝑥 → (:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
109cbvabv 2866 . . . . . . . 8 {:𝐴1-1-onto𝐴} = {𝑥𝑥:𝐴1-1-onto𝐴}
118, 10eqtrdi 2849 . . . . . . 7 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {𝑥𝑥:𝐴1-1-onto𝐴})
12 symgval.2 . . . . . . 7 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
1311, 12eqtr4di 2851 . . . . . 6 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = 𝐵)
144, 13oveq12d 7153 . . . . 5 (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
1514adantl 485 . . . 4 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
16 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
17 ovexd 7170 . . . 4 (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V)
18 nfv 1915 . . . 4 𝑥 𝐴 ∈ V
19 nfcv 2955 . . . 4 𝑥𝐴
20 nfcv 2955 . . . . 5 𝑥(EndoFMnd‘𝐴)
21 nfcv 2955 . . . . 5 𝑥s
22 nfab1 2957 . . . . . 6 𝑥{𝑥𝑥:𝐴1-1-onto𝐴}
2312, 22nfcxfr 2953 . . . . 5 𝑥𝐵
2420, 21, 23nfov 7165 . . . 4 𝑥((EndoFMnd‘𝐴) ↾s 𝐵)
253, 15, 16, 17, 18, 19, 24fvmptdf 6751 . . 3 (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
26 ress0 16550 . . . . 5 (∅ ↾s 𝐵) = ∅
2726a1i 11 . . . 4 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅)
28 fvprc 6638 . . . . 5 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
2928oveq1d 7150 . . . 4 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
30 fvprc 6638 . . . 4 𝐴 ∈ V → (SymGrp‘𝐴) = ∅)
3127, 29, 303eqtr4rd 2844 . . 3 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
3225, 31pm2.61i 185 . 2 (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)
331, 32eqtri 2821 1 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1538  wcel 2111  {cab 2776  Vcvv 3441  c0 4243  cmpt 5110  1-1-ontowf1o 6323  cfv 6324  (class class class)co 7135  s cress 16476  EndoFMndcefmnd 18025  SymGrpcsymg 18487
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-slot 16479  df-base 16481  df-ress 16483  df-symg 18488
This theorem is referenced by:  symgbas  18491  symgressbas  18502  symgplusg  18503  symgvalstruct  18517  symgtset  18519
  Copyright terms: Public domain W3C validator