Step | Hyp | Ref
| Expression |
1 | | symgval.1 |
. 2
⊢ 𝐺 = (SymGrp‘𝐴) |
2 | | elex 3426 |
. . 3
⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) |
3 | | ovex 7006 |
. . . . . . 7
⊢ (𝑎 ↑𝑚
𝑎) ∈
V |
4 | | f1of 6441 |
. . . . . . . . 9
⊢ (𝑥:𝑎–1-1-onto→𝑎 → 𝑥:𝑎⟶𝑎) |
5 | | vex 3411 |
. . . . . . . . . 10
⊢ 𝑎 ∈ V |
6 | 5, 5 | elmap 8233 |
. . . . . . . . 9
⊢ (𝑥 ∈ (𝑎 ↑𝑚 𝑎) ↔ 𝑥:𝑎⟶𝑎) |
7 | 4, 6 | sylibr 226 |
. . . . . . . 8
⊢ (𝑥:𝑎–1-1-onto→𝑎 → 𝑥 ∈ (𝑎 ↑𝑚 𝑎)) |
8 | 7 | abssi 3929 |
. . . . . . 7
⊢ {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ⊆ (𝑎 ↑𝑚 𝑎) |
9 | 3, 8 | ssexi 5078 |
. . . . . 6
⊢ {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ∈ V |
10 | 9 | a1i 11 |
. . . . 5
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} ∈ V) |
11 | | id 22 |
. . . . . . . 8
⊢ (𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} → 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) |
12 | | f1oeq23 6433 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝐴 ∧ 𝑎 = 𝐴) → (𝑥:𝑎–1-1-onto→𝑎 ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
13 | 12 | anidms 559 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐴 → (𝑥:𝑎–1-1-onto→𝑎 ↔ 𝑥:𝐴–1-1-onto→𝐴)) |
14 | 13 | abbidv 2836 |
. . . . . . . . 9
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
15 | | symgval.2 |
. . . . . . . . 9
⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
16 | 14, 15 | syl6eqr 2825 |
. . . . . . . 8
⊢ (𝑎 = 𝐴 → {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} = 𝐵) |
17 | 11, 16 | sylan9eqr 2829 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝑏 = 𝐵) |
18 | 17 | opeq2d 4680 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(Base‘ndx), 𝑏〉 = 〈(Base‘ndx), 𝐵〉) |
19 | | eqidd 2772 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)) |
20 | 17, 17, 19 | mpoeq123dv 7045 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔))) |
21 | | symgval.3 |
. . . . . . . 8
⊢ + = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑓 ∘ 𝑔)) |
22 | 20, 21 | syl6eqr 2825 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔)) = + ) |
23 | 22 | opeq2d 4680 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉 = 〈(+g‘ndx),
+
〉) |
24 | | simpl 475 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝑎 = 𝐴) |
25 | 24 | pweqd 4421 |
. . . . . . . . . . 11
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → 𝒫 𝑎 = 𝒫 𝐴) |
26 | 25 | sneqd 4447 |
. . . . . . . . . 10
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → {𝒫 𝑎} = {𝒫 𝐴}) |
27 | 24, 26 | xpeq12d 5434 |
. . . . . . . . 9
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴})) |
28 | 27 | fveq2d 6500 |
. . . . . . . 8
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
(∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴}))) |
29 | | symgval.4 |
. . . . . . . 8
⊢ 𝐽 =
(∏t‘(𝐴 × {𝒫 𝐴})) |
30 | 28, 29 | syl6eqr 2825 |
. . . . . . 7
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
(∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽) |
31 | 30 | opeq2d 4680 |
. . . . . 6
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
〈(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))〉 = 〈(TopSet‘ndx), 𝐽〉) |
32 | 18, 23, 31 | tpeq123d 4554 |
. . . . 5
⊢ ((𝑎 = 𝐴 ∧ 𝑏 = {𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎}) →
{〈(Base‘ndx), 𝑏〉, 〈(+g‘ndx),
(𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
33 | 10, 32 | csbied 3808 |
. . . 4
⊢ (𝑎 = 𝐴 → ⦋{𝑥 ∣ 𝑥:𝑎–1-1-onto→𝑎} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉} = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
34 | | df-symg 18279 |
. . . 4
⊢ SymGrp =
(𝑎 ∈ V ↦
⦋{𝑥 ∣
𝑥:𝑎–1-1-onto→𝑎} / 𝑏⦌{〈(Base‘ndx), 𝑏〉,
〈(+g‘ndx), (𝑓 ∈ 𝑏, 𝑔 ∈ 𝑏 ↦ (𝑓 ∘ 𝑔))〉, 〈(TopSet‘ndx),
(∏t‘(𝑎 × {𝒫 𝑎}))〉}) |
35 | | tpex 7285 |
. . . 4
⊢
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉} ∈ V |
36 | 33, 34, 35 | fvmpt 6593 |
. . 3
⊢ (𝐴 ∈ V →
(SymGrp‘𝐴) =
{〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
+ 〉,
〈(TopSet‘ndx), 𝐽〉}) |
37 | 2, 36 | syl 17 |
. 2
⊢ (𝐴 ∈ 𝑉 → (SymGrp‘𝐴) = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |
38 | 1, 37 | syl5eq 2819 |
1
⊢ (𝐴 ∈ 𝑉 → 𝐺 = {〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), + 〉,
〈(TopSet‘ndx), 𝐽〉}) |