![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > symgval | Structured version Visualization version GIF version |
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
Ref | Expression |
---|---|
symgval.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgval.2 | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
Ref | Expression |
---|---|
symgval | ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgval.1 | . 2 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | df-symg 19411 | . . . . 5 ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}))) |
4 | fveq2 6920 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴)) | |
5 | eqidd 2741 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ℎ = ℎ) | |
6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | 5, 6, 6 | f1oeq123d 6856 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (ℎ:𝑥–1-1-onto→𝑥 ↔ ℎ:𝐴–1-1-onto→𝐴)) |
8 | 7 | abbidv 2811 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴}) |
9 | f1oeq1 6850 | . . . . . . . . 9 ⊢ (ℎ = 𝑥 → (ℎ:𝐴–1-1-onto→𝐴 ↔ 𝑥:𝐴–1-1-onto→𝐴)) | |
10 | 9 | cbvabv 2815 | . . . . . . . 8 ⊢ {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
11 | 8, 10 | eqtrdi 2796 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
12 | symgval.2 | . . . . . . 7 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
13 | 11, 12 | eqtr4di 2798 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = 𝐵) |
14 | 4, 13 | oveq12d 7466 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
16 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
17 | ovexd 7483 | . . . 4 ⊢ (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V) | |
18 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
19 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
20 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥(EndoFMnd‘𝐴) | |
21 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥 ↾s | |
22 | nfab1 2910 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
23 | 12, 22 | nfcxfr 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
24 | 20, 21, 23 | nfov 7478 | . . . 4 ⊢ Ⅎ𝑥((EndoFMnd‘𝐴) ↾s 𝐵) |
25 | 3, 15, 16, 17, 18, 19, 24 | fvmptdf 7035 | . . 3 ⊢ (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
26 | ress0 17302 | . . . . 5 ⊢ (∅ ↾s 𝐵) = ∅ | |
27 | 26 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅) |
28 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
29 | 28 | oveq1d 7463 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵)) |
30 | fvprc 6912 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
31 | 27, 29, 30 | 3eqtr4rd 2791 | . . 3 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
32 | 25, 31 | pm2.61i 182 | . 2 ⊢ (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵) |
33 | 1, 32 | eqtri 2768 | 1 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 {cab 2717 Vcvv 3488 ∅c0 4352 ↦ cmpt 5249 –1-1-onto→wf1o 6572 ‘cfv 6573 (class class class)co 7448 ↾s cress 17287 EndoFMndcefmnd 18903 SymGrpcsymg 19410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-1cn 11242 ax-addcl 11244 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-nn 12294 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-symg 19411 |
This theorem is referenced by: symgbas 19413 symgressbas 19423 symgplusg 19424 symgvalstruct 19438 symgvalstructOLD 19439 symgtset 19441 |
Copyright terms: Public domain | W3C validator |