| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symgval | Structured version Visualization version GIF version | ||
| Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
| Ref | Expression |
|---|---|
| symgval.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
| symgval.2 | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| Ref | Expression |
|---|---|
| symgval | ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | symgval.1 | . 2 ⊢ 𝐺 = (SymGrp‘𝐴) | |
| 2 | df-symg 19267 | . . . . 5 ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | |
| 3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}))) |
| 4 | fveq2 6826 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴)) | |
| 5 | eqidd 2730 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ℎ = ℎ) | |
| 6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
| 7 | 5, 6, 6 | f1oeq123d 6762 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (ℎ:𝑥–1-1-onto→𝑥 ↔ ℎ:𝐴–1-1-onto→𝐴)) |
| 8 | 7 | abbidv 2795 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴}) |
| 9 | f1oeq1 6756 | . . . . . . . . 9 ⊢ (ℎ = 𝑥 → (ℎ:𝐴–1-1-onto→𝐴 ↔ 𝑥:𝐴–1-1-onto→𝐴)) | |
| 10 | 9 | cbvabv 2799 | . . . . . . . 8 ⊢ {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
| 11 | 8, 10 | eqtrdi 2780 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
| 12 | symgval.2 | . . . . . . 7 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
| 13 | 11, 12 | eqtr4di 2782 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = 𝐵) |
| 14 | 4, 13 | oveq12d 7371 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 16 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
| 17 | ovexd 7388 | . . . 4 ⊢ (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V) | |
| 18 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
| 19 | nfcv 2891 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
| 20 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥(EndoFMnd‘𝐴) | |
| 21 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑥 ↾s | |
| 22 | nfab1 2893 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
| 23 | 12, 22 | nfcxfr 2889 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
| 24 | 20, 21, 23 | nfov 7383 | . . . 4 ⊢ Ⅎ𝑥((EndoFMnd‘𝐴) ↾s 𝐵) |
| 25 | 3, 15, 16, 17, 18, 19, 24 | fvmptdf 6940 | . . 3 ⊢ (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 26 | ress0 17172 | . . . . 5 ⊢ (∅ ↾s 𝐵) = ∅ | |
| 27 | 26 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅) |
| 28 | fvprc 6818 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
| 29 | 28 | oveq1d 7368 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵)) |
| 30 | fvprc 6818 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
| 31 | 27, 29, 30 | 3eqtr4rd 2775 | . . 3 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
| 32 | 25, 31 | pm2.61i 182 | . 2 ⊢ (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| 33 | 1, 32 | eqtri 2752 | 1 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 {cab 2707 Vcvv 3438 ∅c0 4286 ↦ cmpt 5176 –1-1-onto→wf1o 6485 ‘cfv 6486 (class class class)co 7353 ↾s cress 17159 EndoFMndcefmnd 18760 SymGrpcsymg 19266 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-symg 19267 |
| This theorem is referenced by: symgbas 19269 symgressbas 19279 symgplusg 19280 symgvalstruct 19294 symgtset 19296 |
| Copyright terms: Public domain | W3C validator |