MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 19301
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrp‘𝐴)
symgval.2 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
Assertion
Ref Expression
symgval 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem symgval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrp‘𝐴)
2 df-symg 19300 . . . . 5 SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
32a1i 11 . . . 4 (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥})))
4 fveq2 6858 . . . . . 6 (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴))
5 eqidd 2730 . . . . . . . . . 10 (𝑥 = 𝐴 = )
6 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
75, 6, 6f1oeq123d 6794 . . . . . . . . 9 (𝑥 = 𝐴 → (:𝑥1-1-onto𝑥:𝐴1-1-onto𝐴))
87abbidv 2795 . . . . . . . 8 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {:𝐴1-1-onto𝐴})
9 f1oeq1 6788 . . . . . . . . 9 ( = 𝑥 → (:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
109cbvabv 2799 . . . . . . . 8 {:𝐴1-1-onto𝐴} = {𝑥𝑥:𝐴1-1-onto𝐴}
118, 10eqtrdi 2780 . . . . . . 7 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {𝑥𝑥:𝐴1-1-onto𝐴})
12 symgval.2 . . . . . . 7 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
1311, 12eqtr4di 2782 . . . . . 6 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = 𝐵)
144, 13oveq12d 7405 . . . . 5 (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
1514adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
16 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
17 ovexd 7422 . . . 4 (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V)
18 nfv 1914 . . . 4 𝑥 𝐴 ∈ V
19 nfcv 2891 . . . 4 𝑥𝐴
20 nfcv 2891 . . . . 5 𝑥(EndoFMnd‘𝐴)
21 nfcv 2891 . . . . 5 𝑥s
22 nfab1 2893 . . . . . 6 𝑥{𝑥𝑥:𝐴1-1-onto𝐴}
2312, 22nfcxfr 2889 . . . . 5 𝑥𝐵
2420, 21, 23nfov 7417 . . . 4 𝑥((EndoFMnd‘𝐴) ↾s 𝐵)
253, 15, 16, 17, 18, 19, 24fvmptdf 6974 . . 3 (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
26 ress0 17213 . . . . 5 (∅ ↾s 𝐵) = ∅
2726a1i 11 . . . 4 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅)
28 fvprc 6850 . . . . 5 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
2928oveq1d 7402 . . . 4 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
30 fvprc 6850 . . . 4 𝐴 ∈ V → (SymGrp‘𝐴) = ∅)
3127, 29, 303eqtr4rd 2775 . . 3 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
3225, 31pm2.61i 182 . 2 (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)
331, 32eqtri 2752 1 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2109  {cab 2707  Vcvv 3447  c0 4296  cmpt 5188  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  s cress 17200  EndoFMndcefmnd 18795  SymGrpcsymg 19299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-1cn 11126  ax-addcl 11128
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-nn 12187  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-symg 19300
This theorem is referenced by:  symgbas  19302  symgressbas  19312  symgplusg  19313  symgvalstruct  19327  symgtset  19329
  Copyright terms: Public domain W3C validator