Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgval | Structured version Visualization version GIF version |
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
Ref | Expression |
---|---|
symgval.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgval.2 | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
Ref | Expression |
---|---|
symgval | ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgval.1 | . 2 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | df-symg 19048 | . . . . 5 ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}))) |
4 | fveq2 6811 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴)) | |
5 | eqidd 2737 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ℎ = ℎ) | |
6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | 5, 6, 6 | f1oeq123d 6747 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (ℎ:𝑥–1-1-onto→𝑥 ↔ ℎ:𝐴–1-1-onto→𝐴)) |
8 | 7 | abbidv 2805 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴}) |
9 | f1oeq1 6741 | . . . . . . . . 9 ⊢ (ℎ = 𝑥 → (ℎ:𝐴–1-1-onto→𝐴 ↔ 𝑥:𝐴–1-1-onto→𝐴)) | |
10 | 9 | cbvabv 2809 | . . . . . . . 8 ⊢ {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
11 | 8, 10 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
12 | symgval.2 | . . . . . . 7 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
13 | 11, 12 | eqtr4di 2794 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = 𝐵) |
14 | 4, 13 | oveq12d 7334 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
15 | 14 | adantl 482 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
16 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
17 | ovexd 7351 | . . . 4 ⊢ (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V) | |
18 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
19 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
20 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥(EndoFMnd‘𝐴) | |
21 | nfcv 2904 | . . . . 5 ⊢ Ⅎ𝑥 ↾s | |
22 | nfab1 2906 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
23 | 12, 22 | nfcxfr 2902 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
24 | 20, 21, 23 | nfov 7346 | . . . 4 ⊢ Ⅎ𝑥((EndoFMnd‘𝐴) ↾s 𝐵) |
25 | 3, 15, 16, 17, 18, 19, 24 | fvmptdf 6920 | . . 3 ⊢ (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
26 | ress0 17027 | . . . . 5 ⊢ (∅ ↾s 𝐵) = ∅ | |
27 | 26 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅) |
28 | fvprc 6803 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
29 | 28 | oveq1d 7331 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵)) |
30 | fvprc 6803 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
31 | 27, 29, 30 | 3eqtr4rd 2787 | . . 3 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
32 | 25, 31 | pm2.61i 182 | . 2 ⊢ (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵) |
33 | 1, 32 | eqtri 2764 | 1 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 {cab 2713 Vcvv 3440 ∅c0 4266 ↦ cmpt 5169 –1-1-onto→wf1o 6464 ‘cfv 6465 (class class class)co 7316 ↾s cress 17015 EndoFMndcefmnd 18580 SymGrpcsymg 19047 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-cnex 11006 ax-1cn 11008 ax-addcl 11010 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-nn 12053 df-slot 16957 df-ndx 16969 df-base 16987 df-ress 17016 df-symg 19048 |
This theorem is referenced by: symgbas 19051 symgressbas 19062 symgplusg 19063 symgvalstruct 19077 symgvalstructOLD 19078 symgtset 19080 |
Copyright terms: Public domain | W3C validator |