MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 19281
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrp‘𝐴)
symgval.2 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
Assertion
Ref Expression
symgval 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥)   𝐺(𝑥)

Proof of Theorem symgval
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrp‘𝐴)
2 df-symg 19280 . . . . 5 SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}))
32a1i 11 . . . 4 (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥})))
4 fveq2 6822 . . . . . 6 (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴))
5 eqidd 2732 . . . . . . . . . 10 (𝑥 = 𝐴 = )
6 id 22 . . . . . . . . . 10 (𝑥 = 𝐴𝑥 = 𝐴)
75, 6, 6f1oeq123d 6757 . . . . . . . . 9 (𝑥 = 𝐴 → (:𝑥1-1-onto𝑥:𝐴1-1-onto𝐴))
87abbidv 2797 . . . . . . . 8 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {:𝐴1-1-onto𝐴})
9 f1oeq1 6751 . . . . . . . . 9 ( = 𝑥 → (:𝐴1-1-onto𝐴𝑥:𝐴1-1-onto𝐴))
109cbvabv 2801 . . . . . . . 8 {:𝐴1-1-onto𝐴} = {𝑥𝑥:𝐴1-1-onto𝐴}
118, 10eqtrdi 2782 . . . . . . 7 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = {𝑥𝑥:𝐴1-1-onto𝐴})
12 symgval.2 . . . . . . 7 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
1311, 12eqtr4di 2784 . . . . . 6 (𝑥 = 𝐴 → {:𝑥1-1-onto𝑥} = 𝐵)
144, 13oveq12d 7364 . . . . 5 (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
1514adantl 481 . . . 4 ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {:𝑥1-1-onto𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵))
16 id 22 . . . 4 (𝐴 ∈ V → 𝐴 ∈ V)
17 ovexd 7381 . . . 4 (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V)
18 nfv 1915 . . . 4 𝑥 𝐴 ∈ V
19 nfcv 2894 . . . 4 𝑥𝐴
20 nfcv 2894 . . . . 5 𝑥(EndoFMnd‘𝐴)
21 nfcv 2894 . . . . 5 𝑥s
22 nfab1 2896 . . . . . 6 𝑥{𝑥𝑥:𝐴1-1-onto𝐴}
2312, 22nfcxfr 2892 . . . . 5 𝑥𝐵
2420, 21, 23nfov 7376 . . . 4 𝑥((EndoFMnd‘𝐴) ↾s 𝐵)
253, 15, 16, 17, 18, 19, 24fvmptdf 6935 . . 3 (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
26 ress0 17151 . . . . 5 (∅ ↾s 𝐵) = ∅
2726a1i 11 . . . 4 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅)
28 fvprc 6814 . . . . 5 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅)
2928oveq1d 7361 . . . 4 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵))
30 fvprc 6814 . . . 4 𝐴 ∈ V → (SymGrp‘𝐴) = ∅)
3127, 29, 303eqtr4rd 2777 . . 3 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵))
3225, 31pm2.61i 182 . 2 (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)
331, 32eqtri 2754 1 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1541  wcel 2111  {cab 2709  Vcvv 3436  c0 4283  cmpt 5172  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  s cress 17138  EndoFMndcefmnd 18773  SymGrpcsymg 19279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-1cn 11061  ax-addcl 11063
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-nn 12123  df-slot 17090  df-ndx 17102  df-base 17118  df-ress 17139  df-symg 19280
This theorem is referenced by:  symgbas  19282  symgressbas  19292  symgplusg  19293  symgvalstruct  19307  symgtset  19309
  Copyright terms: Public domain W3C validator