MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 19327
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrpβ€˜π΄)
symgval.2 𝐡 = {π‘₯ ∣ π‘₯:𝐴–1-1-onto→𝐴}
Assertion
Ref Expression
symgval 𝐺 = ((EndoFMndβ€˜π΄) β†Ύs 𝐡)
Distinct variable group:   π‘₯,𝐴
Allowed substitution hints:   𝐡(π‘₯)   𝐺(π‘₯)

Proof of Theorem symgval
Dummy variable β„Ž is distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrpβ€˜π΄)
2 df-symg 19326 . . . . 5 SymGrp = (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}))
32a1i 11 . . . 4 (𝐴 ∈ V β†’ SymGrp = (π‘₯ ∈ V ↦ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯})))
4 fveq2 6894 . . . . . 6 (π‘₯ = 𝐴 β†’ (EndoFMndβ€˜π‘₯) = (EndoFMndβ€˜π΄))
5 eqidd 2726 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ β„Ž = β„Ž)
6 id 22 . . . . . . . . . 10 (π‘₯ = 𝐴 β†’ π‘₯ = 𝐴)
75, 6, 6f1oeq123d 6830 . . . . . . . . 9 (π‘₯ = 𝐴 β†’ (β„Ž:π‘₯–1-1-ontoβ†’π‘₯ ↔ β„Ž:𝐴–1-1-onto→𝐴))
87abbidv 2794 . . . . . . . 8 (π‘₯ = 𝐴 β†’ {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯} = {β„Ž ∣ β„Ž:𝐴–1-1-onto→𝐴})
9 f1oeq1 6824 . . . . . . . . 9 (β„Ž = π‘₯ β†’ (β„Ž:𝐴–1-1-onto→𝐴 ↔ π‘₯:𝐴–1-1-onto→𝐴))
109cbvabv 2798 . . . . . . . 8 {β„Ž ∣ β„Ž:𝐴–1-1-onto→𝐴} = {π‘₯ ∣ π‘₯:𝐴–1-1-onto→𝐴}
118, 10eqtrdi 2781 . . . . . . 7 (π‘₯ = 𝐴 β†’ {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯} = {π‘₯ ∣ π‘₯:𝐴–1-1-onto→𝐴})
12 symgval.2 . . . . . . 7 𝐡 = {π‘₯ ∣ π‘₯:𝐴–1-1-onto→𝐴}
1311, 12eqtr4di 2783 . . . . . 6 (π‘₯ = 𝐴 β†’ {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯} = 𝐡)
144, 13oveq12d 7435 . . . . 5 (π‘₯ = 𝐴 β†’ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}) = ((EndoFMndβ€˜π΄) β†Ύs 𝐡))
1514adantl 480 . . . 4 ((𝐴 ∈ V ∧ π‘₯ = 𝐴) β†’ ((EndoFMndβ€˜π‘₯) β†Ύs {β„Ž ∣ β„Ž:π‘₯–1-1-ontoβ†’π‘₯}) = ((EndoFMndβ€˜π΄) β†Ύs 𝐡))
16 id 22 . . . 4 (𝐴 ∈ V β†’ 𝐴 ∈ V)
17 ovexd 7452 . . . 4 (𝐴 ∈ V β†’ ((EndoFMndβ€˜π΄) β†Ύs 𝐡) ∈ V)
18 nfv 1909 . . . 4 β„²π‘₯ 𝐴 ∈ V
19 nfcv 2892 . . . 4 β„²π‘₯𝐴
20 nfcv 2892 . . . . 5 β„²π‘₯(EndoFMndβ€˜π΄)
21 nfcv 2892 . . . . 5 β„²π‘₯ β†Ύs
22 nfab1 2894 . . . . . 6 β„²π‘₯{π‘₯ ∣ π‘₯:𝐴–1-1-onto→𝐴}
2312, 22nfcxfr 2890 . . . . 5 β„²π‘₯𝐡
2420, 21, 23nfov 7447 . . . 4 β„²π‘₯((EndoFMndβ€˜π΄) β†Ύs 𝐡)
253, 15, 16, 17, 18, 19, 24fvmptdf 7008 . . 3 (𝐴 ∈ V β†’ (SymGrpβ€˜π΄) = ((EndoFMndβ€˜π΄) β†Ύs 𝐡))
26 ress0 17223 . . . . 5 (βˆ… β†Ύs 𝐡) = βˆ…
2726a1i 11 . . . 4 (Β¬ 𝐴 ∈ V β†’ (βˆ… β†Ύs 𝐡) = βˆ…)
28 fvprc 6886 . . . . 5 (Β¬ 𝐴 ∈ V β†’ (EndoFMndβ€˜π΄) = βˆ…)
2928oveq1d 7432 . . . 4 (Β¬ 𝐴 ∈ V β†’ ((EndoFMndβ€˜π΄) β†Ύs 𝐡) = (βˆ… β†Ύs 𝐡))
30 fvprc 6886 . . . 4 (Β¬ 𝐴 ∈ V β†’ (SymGrpβ€˜π΄) = βˆ…)
3127, 29, 303eqtr4rd 2776 . . 3 (Β¬ 𝐴 ∈ V β†’ (SymGrpβ€˜π΄) = ((EndoFMndβ€˜π΄) β†Ύs 𝐡))
3225, 31pm2.61i 182 . 2 (SymGrpβ€˜π΄) = ((EndoFMndβ€˜π΄) β†Ύs 𝐡)
331, 32eqtri 2753 1 𝐺 = ((EndoFMndβ€˜π΄) β†Ύs 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1533   ∈ wcel 2098  {cab 2702  Vcvv 3463  βˆ…c0 4323   ↦ cmpt 5231  β€“1-1-ontoβ†’wf1o 6546  β€˜cfv 6547  (class class class)co 7417   β†Ύs cress 17208  EndoFMndcefmnd 18824  SymGrpcsymg 19325
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-1cn 11196  ax-addcl 11198
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-om 7870  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-nn 12243  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-symg 19326
This theorem is referenced by:  symgbas  19329  symgressbas  19340  symgplusg  19341  symgvalstruct  19355  symgvalstructOLD  19356  symgtset  19358
  Copyright terms: Public domain W3C validator