Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > symgval | Structured version Visualization version GIF version |
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 28-Mar-2024.) |
Ref | Expression |
---|---|
symgval.1 | ⊢ 𝐺 = (SymGrp‘𝐴) |
symgval.2 | ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
Ref | Expression |
---|---|
symgval | ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | symgval.1 | . 2 ⊢ 𝐺 = (SymGrp‘𝐴) | |
2 | df-symg 18956 | . . . . 5 ⊢ SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥})) | |
3 | 2 | a1i 11 | . . . 4 ⊢ (𝐴 ∈ V → SymGrp = (𝑥 ∈ V ↦ ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}))) |
4 | fveq2 6768 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (EndoFMnd‘𝑥) = (EndoFMnd‘𝐴)) | |
5 | eqidd 2740 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → ℎ = ℎ) | |
6 | id 22 | . . . . . . . . . 10 ⊢ (𝑥 = 𝐴 → 𝑥 = 𝐴) | |
7 | 5, 6, 6 | f1oeq123d 6706 | . . . . . . . . 9 ⊢ (𝑥 = 𝐴 → (ℎ:𝑥–1-1-onto→𝑥 ↔ ℎ:𝐴–1-1-onto→𝐴)) |
8 | 7 | abbidv 2808 | . . . . . . . 8 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴}) |
9 | f1oeq1 6700 | . . . . . . . . 9 ⊢ (ℎ = 𝑥 → (ℎ:𝐴–1-1-onto→𝐴 ↔ 𝑥:𝐴–1-1-onto→𝐴)) | |
10 | 9 | cbvabv 2812 | . . . . . . . 8 ⊢ {ℎ ∣ ℎ:𝐴–1-1-onto→𝐴} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} |
11 | 8, 10 | eqtrdi 2795 | . . . . . . 7 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴}) |
12 | symgval.2 | . . . . . . 7 ⊢ 𝐵 = {𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
13 | 11, 12 | eqtr4di 2797 | . . . . . 6 ⊢ (𝑥 = 𝐴 → {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥} = 𝐵) |
14 | 4, 13 | oveq12d 7286 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
15 | 14 | adantl 481 | . . . 4 ⊢ ((𝐴 ∈ V ∧ 𝑥 = 𝐴) → ((EndoFMnd‘𝑥) ↾s {ℎ ∣ ℎ:𝑥–1-1-onto→𝑥}) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
16 | id 22 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ V) | |
17 | ovexd 7303 | . . . 4 ⊢ (𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) ∈ V) | |
18 | nfv 1920 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ V | |
19 | nfcv 2908 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
20 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥(EndoFMnd‘𝐴) | |
21 | nfcv 2908 | . . . . 5 ⊢ Ⅎ𝑥 ↾s | |
22 | nfab1 2910 | . . . . . 6 ⊢ Ⅎ𝑥{𝑥 ∣ 𝑥:𝐴–1-1-onto→𝐴} | |
23 | 12, 22 | nfcxfr 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐵 |
24 | 20, 21, 23 | nfov 7298 | . . . 4 ⊢ Ⅎ𝑥((EndoFMnd‘𝐴) ↾s 𝐵) |
25 | 3, 15, 16, 17, 18, 19, 24 | fvmptdf 6875 | . . 3 ⊢ (𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
26 | ress0 16934 | . . . . 5 ⊢ (∅ ↾s 𝐵) = ∅ | |
27 | 26 | a1i 11 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (∅ ↾s 𝐵) = ∅) |
28 | fvprc 6760 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → (EndoFMnd‘𝐴) = ∅) | |
29 | 28 | oveq1d 7283 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ((EndoFMnd‘𝐴) ↾s 𝐵) = (∅ ↾s 𝐵)) |
30 | fvprc 6760 | . . . 4 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ∅) | |
31 | 27, 29, 30 | 3eqtr4rd 2790 | . . 3 ⊢ (¬ 𝐴 ∈ V → (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵)) |
32 | 25, 31 | pm2.61i 182 | . 2 ⊢ (SymGrp‘𝐴) = ((EndoFMnd‘𝐴) ↾s 𝐵) |
33 | 1, 32 | eqtri 2767 | 1 ⊢ 𝐺 = ((EndoFMnd‘𝐴) ↾s 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2109 {cab 2716 Vcvv 3430 ∅c0 4261 ↦ cmpt 5161 –1-1-onto→wf1o 6429 ‘cfv 6430 (class class class)co 7268 ↾s cress 16922 EndoFMndcefmnd 18488 SymGrpcsymg 18955 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-1cn 10913 ax-addcl 10915 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-nn 11957 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-symg 18956 |
This theorem is referenced by: symgbas 18959 symgressbas 18970 symgplusg 18971 symgvalstruct 18985 symgvalstructOLD 18986 symgtset 18988 |
Copyright terms: Public domain | W3C validator |