MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  symgval Structured version   Visualization version   GIF version

Theorem symgval 18280
Description: The value of the symmetric group function at 𝐴. (Contributed by Paul Chapman, 25-Feb-2008.) (Revised by Mario Carneiro, 12-Jan-2015.)
Hypotheses
Ref Expression
symgval.1 𝐺 = (SymGrp‘𝐴)
symgval.2 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
symgval.3 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
symgval.4 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
Assertion
Ref Expression
symgval (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Distinct variable group:   𝑓,𝑔,𝑥,𝐴
Allowed substitution hints:   𝐵(𝑥,𝑓,𝑔)   + (𝑥,𝑓,𝑔)   𝐺(𝑥,𝑓,𝑔)   𝐽(𝑥,𝑓,𝑔)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem symgval
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 symgval.1 . 2 𝐺 = (SymGrp‘𝐴)
2 elex 3426 . . 3 (𝐴𝑉𝐴 ∈ V)
3 ovex 7006 . . . . . . 7 (𝑎𝑚 𝑎) ∈ V
4 f1of 6441 . . . . . . . . 9 (𝑥:𝑎1-1-onto𝑎𝑥:𝑎𝑎)
5 vex 3411 . . . . . . . . . 10 𝑎 ∈ V
65, 5elmap 8233 . . . . . . . . 9 (𝑥 ∈ (𝑎𝑚 𝑎) ↔ 𝑥:𝑎𝑎)
74, 6sylibr 226 . . . . . . . 8 (𝑥:𝑎1-1-onto𝑎𝑥 ∈ (𝑎𝑚 𝑎))
87abssi 3929 . . . . . . 7 {𝑥𝑥:𝑎1-1-onto𝑎} ⊆ (𝑎𝑚 𝑎)
93, 8ssexi 5078 . . . . . 6 {𝑥𝑥:𝑎1-1-onto𝑎} ∈ V
109a1i 11 . . . . 5 (𝑎 = 𝐴 → {𝑥𝑥:𝑎1-1-onto𝑎} ∈ V)
11 id 22 . . . . . . . 8 (𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎} → 𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎})
12 f1oeq23 6433 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑎 = 𝐴) → (𝑥:𝑎1-1-onto𝑎𝑥:𝐴1-1-onto𝐴))
1312anidms 559 . . . . . . . . . 10 (𝑎 = 𝐴 → (𝑥:𝑎1-1-onto𝑎𝑥:𝐴1-1-onto𝐴))
1413abbidv 2836 . . . . . . . . 9 (𝑎 = 𝐴 → {𝑥𝑥:𝑎1-1-onto𝑎} = {𝑥𝑥:𝐴1-1-onto𝐴})
15 symgval.2 . . . . . . . . 9 𝐵 = {𝑥𝑥:𝐴1-1-onto𝐴}
1614, 15syl6eqr 2825 . . . . . . . 8 (𝑎 = 𝐴 → {𝑥𝑥:𝑎1-1-onto𝑎} = 𝐵)
1711, 16sylan9eqr 2829 . . . . . . 7 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → 𝑏 = 𝐵)
1817opeq2d 4680 . . . . . 6 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → ⟨(Base‘ndx), 𝑏⟩ = ⟨(Base‘ndx), 𝐵⟩)
19 eqidd 2772 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (𝑓𝑔) = (𝑓𝑔))
2017, 17, 19mpoeq123dv 7045 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔)))
21 symgval.3 . . . . . . . 8 + = (𝑓𝐵, 𝑔𝐵 ↦ (𝑓𝑔))
2220, 21syl6eqr 2825 . . . . . . 7 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔)) = + )
2322opeq2d 4680 . . . . . 6 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), + ⟩)
24 simpl 475 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → 𝑎 = 𝐴)
2524pweqd 4421 . . . . . . . . . . 11 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → 𝒫 𝑎 = 𝒫 𝐴)
2625sneqd 4447 . . . . . . . . . 10 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → {𝒫 𝑎} = {𝒫 𝐴})
2724, 26xpeq12d 5434 . . . . . . . . 9 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (𝑎 × {𝒫 𝑎}) = (𝐴 × {𝒫 𝐴}))
2827fveq2d 6500 . . . . . . . 8 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (∏t‘(𝑎 × {𝒫 𝑎})) = (∏t‘(𝐴 × {𝒫 𝐴})))
29 symgval.4 . . . . . . . 8 𝐽 = (∏t‘(𝐴 × {𝒫 𝐴}))
3028, 29syl6eqr 2825 . . . . . . 7 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → (∏t‘(𝑎 × {𝒫 𝑎})) = 𝐽)
3130opeq2d 4680 . . . . . 6 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩ = ⟨(TopSet‘ndx), 𝐽⟩)
3218, 23, 31tpeq123d 4554 . . . . 5 ((𝑎 = 𝐴𝑏 = {𝑥𝑥:𝑎1-1-onto𝑎}) → {⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
3310, 32csbied 3808 . . . 4 (𝑎 = 𝐴{𝑥𝑥:𝑎1-1-onto𝑎} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩} = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
34 df-symg 18279 . . . 4 SymGrp = (𝑎 ∈ V ↦ {𝑥𝑥:𝑎1-1-onto𝑎} / 𝑏{⟨(Base‘ndx), 𝑏⟩, ⟨(+g‘ndx), (𝑓𝑏, 𝑔𝑏 ↦ (𝑓𝑔))⟩, ⟨(TopSet‘ndx), (∏t‘(𝑎 × {𝒫 𝑎}))⟩})
35 tpex 7285 . . . 4 {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩} ∈ V
3633, 34, 35fvmpt 6593 . . 3 (𝐴 ∈ V → (SymGrp‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
372, 36syl 17 . 2 (𝐴𝑉 → (SymGrp‘𝐴) = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
381, 37syl5eq 2819 1 (𝐴𝑉𝐺 = {⟨(Base‘ndx), 𝐵⟩, ⟨(+g‘ndx), + ⟩, ⟨(TopSet‘ndx), 𝐽⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  {cab 2751  Vcvv 3408  csb 3779  𝒫 cpw 4416  {csn 4435  {ctp 4439  cop 4441   × cxp 5401  ccom 5407  wf 6181  1-1-ontowf1o 6184  cfv 6185  (class class class)co 6974  cmpo 6976  𝑚 cmap 8204  ndxcnx 16334  Basecbs 16337  +gcplusg 16419  TopSetcts 16425  tcpt 16566  SymGrpcsymg 18278
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ral 3086  df-rex 3087  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-br 4926  df-opab 4988  df-mpt 5005  df-id 5308  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-ov 6977  df-oprab 6978  df-mpo 6979  df-map 8206  df-symg 18279
This theorem is referenced by:  symgbas  18281  symgplusg  18290  symgtset  18300
  Copyright terms: Public domain W3C validator