Detailed syntax breakdown of Definition df-tgrp
| Step | Hyp | Ref
| Expression |
| 1 | | ctgrp 40744 |
. 2
class
TGrp |
| 2 | | vk |
. . 3
setvar 𝑘 |
| 3 | | cvv 3480 |
. . 3
class
V |
| 4 | | vw |
. . . 4
setvar 𝑤 |
| 5 | 2 | cv 1539 |
. . . . 5
class 𝑘 |
| 6 | | clh 39986 |
. . . . 5
class
LHyp |
| 7 | 5, 6 | cfv 6561 |
. . . 4
class
(LHyp‘𝑘) |
| 8 | | cnx 17230 |
. . . . . . 7
class
ndx |
| 9 | | cbs 17247 |
. . . . . . 7
class
Base |
| 10 | 8, 9 | cfv 6561 |
. . . . . 6
class
(Base‘ndx) |
| 11 | 4 | cv 1539 |
. . . . . . 7
class 𝑤 |
| 12 | | cltrn 40103 |
. . . . . . . 8
class
LTrn |
| 13 | 5, 12 | cfv 6561 |
. . . . . . 7
class
(LTrn‘𝑘) |
| 14 | 11, 13 | cfv 6561 |
. . . . . 6
class
((LTrn‘𝑘)‘𝑤) |
| 15 | 10, 14 | cop 4632 |
. . . . 5
class
〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉 |
| 16 | | cplusg 17297 |
. . . . . . 7
class
+g |
| 17 | 8, 16 | cfv 6561 |
. . . . . 6
class
(+g‘ndx) |
| 18 | | vf |
. . . . . . 7
setvar 𝑓 |
| 19 | | vg |
. . . . . . 7
setvar 𝑔 |
| 20 | 18 | cv 1539 |
. . . . . . . 8
class 𝑓 |
| 21 | 19 | cv 1539 |
. . . . . . . 8
class 𝑔 |
| 22 | 20, 21 | ccom 5689 |
. . . . . . 7
class (𝑓 ∘ 𝑔) |
| 23 | 18, 19, 14, 14, 22 | cmpo 7433 |
. . . . . 6
class (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔)) |
| 24 | 17, 23 | cop 4632 |
. . . . 5
class
〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉 |
| 25 | 15, 24 | cpr 4628 |
. . . 4
class
{〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑓 ∈
((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉} |
| 26 | 4, 7, 25 | cmpt 5225 |
. . 3
class (𝑤 ∈ (LHyp‘𝑘) ↦
{〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑓 ∈
((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉}) |
| 27 | 2, 3, 26 | cmpt 5225 |
. 2
class (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
{〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑓 ∈
((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| 28 | 1, 27 | wceq 1540 |
1
wff TGrp =
(𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦
{〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx),
(𝑓 ∈
((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |