Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpfset Structured version   Visualization version   GIF version

Theorem tgrpfset 40128
Description: The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.)
Hypothesis
Ref Expression
tgrpset.h 𝐻 = (LHypβ€˜πΎ)
Assertion
Ref Expression
tgrpfset (𝐾 ∈ 𝑉 β†’ (TGrpβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
Distinct variable groups:   𝑀,𝐻   𝑓,𝑔,𝑀,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔)   𝑉(𝑀,𝑓,𝑔)

Proof of Theorem tgrpfset
Dummy variable π‘˜ is distinct from all other variables.
StepHypRef Expression
1 elex 3487 . 2 (𝐾 ∈ 𝑉 β†’ 𝐾 ∈ V)
2 fveq2 6885 . . . . 5 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = (LHypβ€˜πΎ))
3 tgrpset.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
42, 3eqtr4di 2784 . . . 4 (π‘˜ = 𝐾 β†’ (LHypβ€˜π‘˜) = 𝐻)
5 fveq2 6885 . . . . . . 7 (π‘˜ = 𝐾 β†’ (LTrnβ€˜π‘˜) = (LTrnβ€˜πΎ))
65fveq1d 6887 . . . . . 6 (π‘˜ = 𝐾 β†’ ((LTrnβ€˜π‘˜)β€˜π‘€) = ((LTrnβ€˜πΎ)β€˜π‘€))
76opeq2d 4875 . . . . 5 (π‘˜ = 𝐾 β†’ ⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩ = ⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩)
8 eqidd 2727 . . . . . . 7 (π‘˜ = 𝐾 β†’ (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔))
96, 6, 8mpoeq123dv 7480 . . . . . 6 (π‘˜ = 𝐾 β†’ (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔)))
109opeq2d 4875 . . . . 5 (π‘˜ = 𝐾 β†’ ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩ = ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩)
117, 10preq12d 4740 . . . 4 (π‘˜ = 𝐾 β†’ {⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩} = {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩})
124, 11mpteq12dv 5232 . . 3 (π‘˜ = 𝐾 β†’ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
13 df-tgrp 40127 . . 3 TGrp = (π‘˜ ∈ V ↦ (𝑀 ∈ (LHypβ€˜π‘˜) ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜π‘˜)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜π‘˜)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
1412, 13, 3mptfvmpt 7225 . 2 (𝐾 ∈ V β†’ (TGrpβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
151, 14syl 17 1 (𝐾 ∈ 𝑉 β†’ (TGrpβ€˜πΎ) = (𝑀 ∈ 𝐻 ↦ {⟨(Baseβ€˜ndx), ((LTrnβ€˜πΎ)β€˜π‘€)⟩, ⟨(+gβ€˜ndx), (𝑓 ∈ ((LTrnβ€˜πΎ)β€˜π‘€), 𝑔 ∈ ((LTrnβ€˜πΎ)β€˜π‘€) ↦ (𝑓 ∘ 𝑔))⟩}))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  Vcvv 3468  {cpr 4625  βŸ¨cop 4629   ↦ cmpt 5224   ∘ ccom 5673  β€˜cfv 6537   ∈ cmpo 7407  ndxcnx 17135  Basecbs 17153  +gcplusg 17206  LHypclh 39368  LTrncltrn 39485  TGrpctgrp 40126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-ral 3056  df-rex 3065  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-oprab 7409  df-mpo 7410  df-tgrp 40127
This theorem is referenced by:  tgrpset  40129
  Copyright terms: Public domain W3C validator