Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpfset Structured version   Visualization version   GIF version

Theorem tgrpfset 38346
Description: The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.)
Hypothesis
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
tgrpfset (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
Distinct variable groups:   𝑤,𝐻   𝑓,𝑔,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔)   𝑉(𝑤,𝑓,𝑔)

Proof of Theorem tgrpfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3428 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6662 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 tgrpset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2811 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6662 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6664 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76opeq2d 4773 . . . . 5 (𝑘 = 𝐾 → ⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩)
8 eqidd 2759 . . . . . . 7 (𝑘 = 𝐾 → (𝑓𝑔) = (𝑓𝑔))
96, 6, 8mpoeq123dv 7228 . . . . . 6 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)))
109opeq2d 4773 . . . . 5 (𝑘 = 𝐾 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩)
117, 10preq12d 4637 . . . 4 (𝑘 = 𝐾 → {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})
124, 11mpteq12dv 5120 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
13 df-tgrp 38345 . . 3 TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}))
1412, 13, 3mptfvmpt 6987 . 2 (𝐾 ∈ V → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
151, 14syl 17 1 (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1538  wcel 2111  Vcvv 3409  {cpr 4527  cop 4531  cmpt 5115  ccom 5531  cfv 6339  cmpo 7157  ndxcnx 16543  Basecbs 16546  +gcplusg 16628  LHypclh 37586  LTrncltrn 37703  TGrpctgrp 38344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5159  ax-sep 5172  ax-nul 5179  ax-pr 5301
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3699  df-csb 3808  df-dif 3863  df-un 3865  df-in 3867  df-ss 3877  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4802  df-iun 4888  df-br 5036  df-opab 5098  df-mpt 5116  df-id 5433  df-xp 5533  df-rel 5534  df-cnv 5535  df-co 5536  df-dm 5537  df-rn 5538  df-res 5539  df-ima 5540  df-iota 6298  df-fun 6341  df-fn 6342  df-f 6343  df-f1 6344  df-fo 6345  df-f1o 6346  df-fv 6347  df-oprab 7159  df-mpo 7160  df-tgrp 38345
This theorem is referenced by:  tgrpset  38347
  Copyright terms: Public domain W3C validator