| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tgrpfset | Structured version Visualization version GIF version | ||
| Description: The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.) |
| Ref | Expression |
|---|---|
| tgrpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| tgrpfset | ⊢ (𝐾 ∈ 𝑉 → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3471 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | fveq2 6861 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
| 3 | tgrpset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 2, 3 | eqtr4di 2783 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 5 | fveq2 6861 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾)) | |
| 6 | 5 | fveq1d 6863 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤)) |
| 7 | 6 | opeq2d 4847 | . . . . 5 ⊢ (𝑘 = 𝐾 → 〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉 = 〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉) |
| 8 | eqidd 2731 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)) | |
| 9 | 6, 6, 8 | mpoeq123dv 7467 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))) |
| 10 | 9 | opeq2d 4847 | . . . . 5 ⊢ (𝑘 = 𝐾 → 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉 = 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉) |
| 11 | 7, 10 | preq12d 4708 | . . . 4 ⊢ (𝑘 = 𝐾 → {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉} = {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉}) |
| 12 | 4, 11 | mpteq12dv 5197 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉}) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| 13 | df-tgrp 40744 | . . 3 ⊢ TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) | |
| 14 | 12, 13, 3 | mptfvmpt 7205 | . 2 ⊢ (𝐾 ∈ V → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| 15 | 1, 14 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {cpr 4594 〈cop 4598 ↦ cmpt 5191 ∘ ccom 5645 ‘cfv 6514 ∈ cmpo 7392 ndxcnx 17170 Basecbs 17186 +gcplusg 17227 LHypclh 39985 LTrncltrn 40102 TGrpctgrp 40743 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-oprab 7394 df-mpo 7395 df-tgrp 40744 |
| This theorem is referenced by: tgrpset 40746 |
| Copyright terms: Public domain | W3C validator |