Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tgrpfset Structured version   Visualization version   GIF version

Theorem tgrpfset 40745
Description: The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.)
Hypothesis
Ref Expression
tgrpset.h 𝐻 = (LHyp‘𝐾)
Assertion
Ref Expression
tgrpfset (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
Distinct variable groups:   𝑤,𝐻   𝑓,𝑔,𝑤,𝐾
Allowed substitution hints:   𝐻(𝑓,𝑔)   𝑉(𝑤,𝑓,𝑔)

Proof of Theorem tgrpfset
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 elex 3471 . 2 (𝐾𝑉𝐾 ∈ V)
2 fveq2 6861 . . . . 5 (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾))
3 tgrpset.h . . . . 5 𝐻 = (LHyp‘𝐾)
42, 3eqtr4di 2783 . . . 4 (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻)
5 fveq2 6861 . . . . . . 7 (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾))
65fveq1d 6863 . . . . . 6 (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤))
76opeq2d 4847 . . . . 5 (𝑘 = 𝐾 → ⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩ = ⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩)
8 eqidd 2731 . . . . . . 7 (𝑘 = 𝐾 → (𝑓𝑔) = (𝑓𝑔))
96, 6, 8mpoeq123dv 7467 . . . . . 6 (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔)))
109opeq2d 4847 . . . . 5 (𝑘 = 𝐾 → ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩ = ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩)
117, 10preq12d 4708 . . . 4 (𝑘 = 𝐾 → {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩} = {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩})
124, 11mpteq12dv 5197 . . 3 (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
13 df-tgrp 40744 . . 3 TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {⟨(Base‘ndx), ((LTrn‘𝑘)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓𝑔))⟩}))
1412, 13, 3mptfvmpt 7205 . 2 (𝐾 ∈ V → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
151, 14syl 17 1 (𝐾𝑉 → (TGrp‘𝐾) = (𝑤𝐻 ↦ {⟨(Base‘ndx), ((LTrn‘𝐾)‘𝑤)⟩, ⟨(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓𝑔))⟩}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  {cpr 4594  cop 4598  cmpt 5191  ccom 5645  cfv 6514  cmpo 7392  ndxcnx 17170  Basecbs 17186  +gcplusg 17227  LHypclh 39985  LTrncltrn 40102  TGrpctgrp 40743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-oprab 7394  df-mpo 7395  df-tgrp 40744
This theorem is referenced by:  tgrpset  40746
  Copyright terms: Public domain W3C validator