| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tgrpfset | Structured version Visualization version GIF version | ||
| Description: The translation group maps for a lattice 𝐾. (Contributed by NM, 5-Jun-2013.) |
| Ref | Expression |
|---|---|
| tgrpset.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| Ref | Expression |
|---|---|
| tgrpfset | ⊢ (𝐾 ∈ 𝑉 → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3457 | . 2 ⊢ (𝐾 ∈ 𝑉 → 𝐾 ∈ V) | |
| 2 | fveq2 6822 | . . . . 5 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = (LHyp‘𝐾)) | |
| 3 | tgrpset.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | 2, 3 | eqtr4di 2784 | . . . 4 ⊢ (𝑘 = 𝐾 → (LHyp‘𝑘) = 𝐻) |
| 5 | fveq2 6822 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (LTrn‘𝑘) = (LTrn‘𝐾)) | |
| 6 | 5 | fveq1d 6824 | . . . . . 6 ⊢ (𝑘 = 𝐾 → ((LTrn‘𝑘)‘𝑤) = ((LTrn‘𝐾)‘𝑤)) |
| 7 | 6 | opeq2d 4832 | . . . . 5 ⊢ (𝑘 = 𝐾 → 〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉 = 〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉) |
| 8 | eqidd 2732 | . . . . . . 7 ⊢ (𝑘 = 𝐾 → (𝑓 ∘ 𝑔) = (𝑓 ∘ 𝑔)) | |
| 9 | 6, 6, 8 | mpoeq123dv 7421 | . . . . . 6 ⊢ (𝑘 = 𝐾 → (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔)) = (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))) |
| 10 | 9 | opeq2d 4832 | . . . . 5 ⊢ (𝑘 = 𝐾 → 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉 = 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉) |
| 11 | 7, 10 | preq12d 4694 | . . . 4 ⊢ (𝑘 = 𝐾 → {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉} = {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉}) |
| 12 | 4, 11 | mpteq12dv 5178 | . . 3 ⊢ (𝑘 = 𝐾 → (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉}) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| 13 | df-tgrp 40781 | . . 3 ⊢ TGrp = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {〈(Base‘ndx), ((LTrn‘𝑘)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝑘)‘𝑤), 𝑔 ∈ ((LTrn‘𝑘)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) | |
| 14 | 12, 13, 3 | mptfvmpt 7162 | . 2 ⊢ (𝐾 ∈ V → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| 15 | 1, 14 | syl 17 | 1 ⊢ (𝐾 ∈ 𝑉 → (TGrp‘𝐾) = (𝑤 ∈ 𝐻 ↦ {〈(Base‘ndx), ((LTrn‘𝐾)‘𝑤)〉, 〈(+g‘ndx), (𝑓 ∈ ((LTrn‘𝐾)‘𝑤), 𝑔 ∈ ((LTrn‘𝐾)‘𝑤) ↦ (𝑓 ∘ 𝑔))〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {cpr 4578 〈cop 4582 ↦ cmpt 5172 ∘ ccom 5620 ‘cfv 6481 ∈ cmpo 7348 ndxcnx 17101 Basecbs 17117 +gcplusg 17158 LHypclh 40022 LTrncltrn 40139 TGrpctgrp 40780 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-oprab 7350 df-mpo 7351 df-tgrp 40781 |
| This theorem is referenced by: tgrpset 40783 |
| Copyright terms: Public domain | W3C validator |