Detailed syntax breakdown of Definition df-toplnd
Step | Hyp | Ref
| Expression |
1 | | ctoplnd 41039 |
. 2
class
TopLnd |
2 | | vx |
. . . . . . . 8
setvar 𝑥 |
3 | 2 | cv 1538 |
. . . . . . 7
class 𝑥 |
4 | 3 | cuni 4839 |
. . . . . 6
class ∪ 𝑥 |
5 | | vy |
. . . . . . . 8
setvar 𝑦 |
6 | 5 | cv 1538 |
. . . . . . 7
class 𝑦 |
7 | 6 | cuni 4839 |
. . . . . 6
class ∪ 𝑦 |
8 | 4, 7 | wceq 1539 |
. . . . 5
wff ∪ 𝑥 =
∪ 𝑦 |
9 | | vz |
. . . . . . . . 9
setvar 𝑧 |
10 | 9 | cv 1538 |
. . . . . . . 8
class 𝑧 |
11 | | com 7712 |
. . . . . . . 8
class
ω |
12 | | cdom 8731 |
. . . . . . . 8
class
≼ |
13 | 10, 11, 12 | wbr 5074 |
. . . . . . 7
wff 𝑧 ≼
ω |
14 | 10 | cuni 4839 |
. . . . . . . 8
class ∪ 𝑧 |
15 | 4, 14 | wceq 1539 |
. . . . . . 7
wff ∪ 𝑥 =
∪ 𝑧 |
16 | 13, 15 | wa 396 |
. . . . . 6
wff (𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧) |
17 | 3 | cpw 4533 |
. . . . . 6
class 𝒫
𝑥 |
18 | 16, 9, 17 | wrex 3065 |
. . . . 5
wff
∃𝑧 ∈
𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧) |
19 | 8, 18 | wi 4 |
. . . 4
wff (∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧)) |
20 | 19, 5, 17 | wral 3064 |
. . 3
wff
∀𝑦 ∈
𝒫 𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧)) |
21 | | ctop 22042 |
. . 3
class
Top |
22 | 20, 2, 21 | crab 3068 |
. 2
class {𝑥 ∈ Top ∣
∀𝑦 ∈ 𝒫
𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧))} |
23 | 1, 22 | wceq 1539 |
1
wff TopLnd =
{𝑥 ∈ Top ∣
∀𝑦 ∈ 𝒫
𝑥(∪ 𝑥 =
∪ 𝑦 → ∃𝑧 ∈ 𝒫 𝑥(𝑧 ≼ ω ∧ ∪ 𝑥 =
∪ 𝑧))} |