HomeHome Metamath Proof Explorer
Theorem List (p. 420 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 41901-42000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempm11.62 41901* Theorem *11.62 in [WhiteheadRussell] p. 166. Importation combined with the rearrangement with quantifiers. (Contributed by Andrew Salmon, 24-May-2011.)
(∀𝑥𝑦((𝜑𝜓) → 𝜒) ↔ ∀𝑥(𝜑 → ∀𝑦(𝜓𝜒)))
 
Theorempm11.63 41902 Theorem *11.63 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
(¬ ∃𝑥𝑦𝜑 → ∀𝑥𝑦(𝜑𝜓))
 
Theorempm11.7 41903 Theorem *11.7 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
(∃𝑥𝑦(𝜑𝜑) ↔ ∃𝑥𝑦𝜑)
 
Theorempm11.71 41904* Theorem *11.71 in [WhiteheadRussell] p. 166. (Contributed by Andrew Salmon, 24-May-2011.)
((∃𝑥𝜑 ∧ ∃𝑦𝜒) → ((∀𝑥(𝜑𝜓) ∧ ∀𝑦(𝜒𝜃)) ↔ ∀𝑥𝑦((𝜑𝜒) → (𝜓𝜃))))
 
20.35.3  Predicate Calculus
 
Theoremsbeqal1 41905* If 𝑥 = 𝑦 always implies 𝑥 = 𝑧, then 𝑦 = 𝑧. (Contributed by Andrew Salmon, 2-Jun-2011.)
(∀𝑥(𝑥 = 𝑦𝑥 = 𝑧) → 𝑦 = 𝑧)
 
Theoremsbeqal1i 41906* Suppose you know 𝑥 = 𝑦 implies 𝑥 = 𝑧, assuming 𝑥 and 𝑧 are distinct. Then, 𝑦 = 𝑧. (Contributed by Andrew Salmon, 3-Jun-2011.)
(𝑥 = 𝑦𝑥 = 𝑧)       𝑦 = 𝑧
 
Theoremsbeqal2i 41907* If 𝑥 = 𝑦 implies 𝑥 = 𝑧, then we can infer 𝑧 = 𝑦. (Contributed by Andrew Salmon, 3-Jun-2011.)
(𝑥 = 𝑦𝑥 = 𝑧)       𝑧 = 𝑦
 
Theoremaxc5c4c711 41908 Proof of a theorem that can act as a sole axiom for pure predicate calculus with ax-gen 1799 as the inference rule. This proof extends the idea of axc5c711 36859 and related theorems. (Contributed by Andrew Salmon, 14-Jul-2011.)
((∀𝑥𝑦 ¬ ∀𝑥𝑦(∀𝑦𝜑𝜓) → (𝜑 → ∀𝑦(∀𝑦𝜑𝜓))) → (∀𝑦𝜑 → ∀𝑦𝜓))
 
Theoremaxc5c4c711toc5 41909 Rederivation of sp 2178 from axc5c4c711 41908. Note that ax6 2384 is used for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) Revised to use ax6v 1973 instead of ax6 2384, so that this rederivation requires only ax6v 1973 and propositional calculus. (Revised by BJ, 14-Sep-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝜑𝜑)
 
Theoremaxc5c4c711toc4 41910 Rederivation of axc4 2319 from axc5c4c711 41908. Note that only propositional calculus is required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(∀𝑥𝜑𝜓) → (∀𝑥𝜑 → ∀𝑥𝜓))
 
Theoremaxc5c4c711toc7 41911 Rederivation of axc7 2315 from axc5c4c711 41908. Note that neither axc7 2315 nor ax-11 2156 are required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(¬ ∀𝑥 ¬ ∀𝑥𝜑𝜑)
 
Theoremaxc5c4c711to11 41912 Rederivation of ax-11 2156 from axc5c4c711 41908. Note that ax-11 2156 is not required for the rederivation. (Contributed by Andrew Salmon, 14-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥𝑦𝜑 → ∀𝑦𝑥𝜑)
 
Theoremaxc11next 41913* This theorem shows that, given axextb 2712, we can derive a version of axc11n 2426. However, it is weaker than axc11n 2426 because it has a distinct variable requirement. (Contributed by Andrew Salmon, 16-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥 𝑥 = 𝑧 → ∀𝑧 𝑧 = 𝑥)
 
20.35.4  Principia Mathematica * 13 and * 14
 
Theorempm13.13a 41914 One result of theorem *13.13 in [WhiteheadRussell] p. 178. A note on the section - to make the theorems more usable, and because inequality is notation for set theory (it is not defined in the predicate calculus section), this section will use classes instead of sets. (Contributed by Andrew Salmon, 3-Jun-2011.)
((𝜑𝑥 = 𝐴) → [𝐴 / 𝑥]𝜑)
 
Theorempm13.13b 41915 Theorem *13.13 in [WhiteheadRussell] p. 178 with different variable substitution. (Contributed by Andrew Salmon, 3-Jun-2011.)
(([𝐴 / 𝑥]𝜑𝑥 = 𝐴) → 𝜑)
 
Theorempm13.14 41916 Theorem *13.14 in [WhiteheadRussell] p. 178. (Contributed by Andrew Salmon, 3-Jun-2011.)
(([𝐴 / 𝑥]𝜑 ∧ ¬ 𝜑) → 𝑥𝐴)
 
Theorempm13.192 41917* Theorem *13.192 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
(∃𝑦(∀𝑥(𝑥 = 𝐴𝑥 = 𝑦) ∧ 𝜑) ↔ [𝐴 / 𝑦]𝜑)
 
Theorempm13.193 41918 Theorem *13.193 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
((𝜑𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑𝑥 = 𝑦))
 
Theorempm13.194 41919 Theorem *13.194 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
((𝜑𝑥 = 𝑦) ↔ ([𝑦 / 𝑥]𝜑𝜑𝑥 = 𝑦))
 
Theorempm13.195 41920* Theorem *13.195 in [WhiteheadRussell] p. 179. This theorem is very similar to sbc5 3739. (Contributed by Andrew Salmon, 3-Jun-2011.) (Revised by NM, 4-Jan-2017.)
(∃𝑦(𝑦 = 𝐴𝜑) ↔ [𝐴 / 𝑦]𝜑)
 
Theorempm13.196a 41921* Theorem *13.196 in [WhiteheadRussell] p. 179. The only difference is the position of the substituted variable. (Contributed by Andrew Salmon, 3-Jun-2011.)
𝜑 ↔ ∀𝑦([𝑦 / 𝑥]𝜑𝑦𝑥))
 
Theorem2sbc6g 41922* Theorem *13.21 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
((𝐴𝐶𝐵𝐷) → (∀𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) → 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
 
Theorem2sbc5g 41923* Theorem *13.22 in [WhiteheadRussell] p. 179. (Contributed by Andrew Salmon, 3-Jun-2011.)
((𝐴𝐶𝐵𝐷) → (∃𝑧𝑤((𝑧 = 𝐴𝑤 = 𝐵) ∧ 𝜑) ↔ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑))
 
Theoremiotain 41924 Equivalence between two different forms of . (Contributed by Andrew Salmon, 15-Jul-2011.)
(∃!𝑥𝜑 {𝑥𝜑} = (℩𝑥𝜑))
 
Theoremiotaexeu 41925 The iota class exists. This theorem does not require ax-nul 5225 for its proof. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → (℩𝑥𝜑) ∈ V)
 
Theoremiotasbc 41926* Definition *14.01 in [WhiteheadRussell] p. 184. In Principia Mathematica, Russell and Whitehead define in terms of a function of (℩𝑥𝜑). Their definition differs in that a function of (℩𝑥𝜑) evaluates to "false" when there isn't a single 𝑥 that satisfies 𝜑. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(∀𝑥(𝜑𝑥 = 𝑦) ∧ 𝜓)))
 
Theoremiotasbc2 41927* Theorem *14.111 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
((∃!𝑥𝜑 ∧ ∃!𝑥𝜓) → ([(℩𝑥𝜑) / 𝑦][(℩𝑥𝜓) / 𝑧]𝜒 ↔ ∃𝑦𝑧(∀𝑥(𝜑𝑥 = 𝑦) ∧ ∀𝑥(𝜓𝑥 = 𝑧) ∧ 𝜒)))
 
Theorempm14.12 41928* Theorem *14.12 in [WhiteheadRussell] p. 184. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → ∀𝑥𝑦((𝜑[𝑦 / 𝑥]𝜑) → 𝑥 = 𝑦))
 
Theorempm14.122a 41929* Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
(𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑)))
 
Theorempm14.122b 41930* Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
(𝐴𝑉 → ((∀𝑥(𝜑𝑥 = 𝐴) ∧ [𝐴 / 𝑥]𝜑) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
 
Theorempm14.122c 41931* Theorem *14.122 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
(𝐴𝑉 → (∀𝑥(𝜑𝑥 = 𝐴) ↔ (∀𝑥(𝜑𝑥 = 𝐴) ∧ ∃𝑥𝜑)))
 
Theorempm14.123a 41932* Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
((𝐴𝑉𝐵𝑊) → (∀𝑧𝑤(𝜑 ↔ (𝑧 = 𝐴𝑤 = 𝐵)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑)))
 
Theorempm14.123b 41933* Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
((𝐴𝑉𝐵𝑊) → ((∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ [𝐴 / 𝑧][𝐵 / 𝑤]𝜑) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∃𝑧𝑤𝜑)))
 
Theorempm14.123c 41934* Theorem *14.123 in [WhiteheadRussell] p. 185. (Contributed by Andrew Salmon, 9-Jun-2011.)
((𝐴𝑉𝐵𝑊) → (∀𝑧𝑤(𝜑 ↔ (𝑧 = 𝐴𝑤 = 𝐵)) ↔ (∀𝑧𝑤(𝜑 → (𝑧 = 𝐴𝑤 = 𝐵)) ∧ ∃𝑧𝑤𝜑)))
 
Theorempm14.18 41935 Theorem *14.18 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → (∀𝑥𝜓[(℩𝑥𝜑) / 𝑥]𝜓))
 
Theoremiotaequ 41936* Theorem *14.2 in [WhiteheadRussell] p. 189. (Contributed by Andrew Salmon, 11-Jul-2011.)
(℩𝑥𝑥 = 𝑦) = 𝑦
 
Theoremiotavalb 41937* Theorem *14.202 in [WhiteheadRussell] p. 189. A biconditional version of iotaval 6392. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → (∀𝑥(𝜑𝑥 = 𝑦) ↔ (℩𝑥𝜑) = 𝑦))
 
Theoremiotasbc5 41938* Theorem *14.205 in [WhiteheadRussell] p. 190. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∃!𝑥𝜑 → ([(℩𝑥𝜑) / 𝑦]𝜓 ↔ ∃𝑦(𝑦 = (℩𝑥𝜑) ∧ 𝜓)))
 
Theorempm14.24 41939* Theorem *14.24 in [WhiteheadRussell] p. 191. (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥𝜑 → ∀𝑦([𝑦 / 𝑥]𝜑𝑦 = (℩𝑥𝜑)))
 
Theoremiotavalsb 41940* Theorem *14.242 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∀𝑥(𝜑𝑥 = 𝑦) → ([𝑦 / 𝑧]𝜓[(℩𝑥𝜑) / 𝑧]𝜓))
 
Theoremsbiota1 41941 Theorem *14.25 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥𝜑 → (∀𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
 
Theoremsbaniota 41942 Theorem *14.26 in [WhiteheadRussell] p. 192. (Contributed by Andrew Salmon, 12-Jul-2011.)
(∃!𝑥𝜑 → (∃𝑥(𝜑𝜓) ↔ [(℩𝑥𝜑) / 𝑥]𝜓))
 
TheoremeubiOLD 41943 Obsolete proof of eubi 2584 as of 7-Oct-2022. (Contributed by Andrew Salmon, 11-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
(∀𝑥(𝜑𝜓) → (∃!𝑥𝜑 ↔ ∃!𝑥𝜓))
 
Theoremiotasbcq 41944 Theorem *14.272 in [WhiteheadRussell] p. 193. (Contributed by Andrew Salmon, 11-Jul-2011.)
(∀𝑥(𝜑𝜓) → ([(℩𝑥𝜑) / 𝑦]𝜒[(℩𝑥𝜓) / 𝑦]𝜒))
 
20.35.5  Set Theory
 
Theoremelnev 41945* Any set that contains one element less than the universe is not equal to it. (Contributed by Andrew Salmon, 16-Jun-2011.)
(𝐴 ∈ V ↔ {𝑥 ∣ ¬ 𝑥 = 𝐴} ≠ V)
 
TheoremrusbcALT 41946 A version of Russell's paradox which is proven using proper substitution. (Contributed by Andrew Salmon, 18-Jun-2011.) (New usage is discouraged.) (Proof modification is discouraged.)
{𝑥𝑥𝑥} ∉ V
 
Theoremcompeq 41947* Equality between two ways of saying "the complement of 𝐴". (Contributed by Andrew Salmon, 15-Jul-2011.)
(V ∖ 𝐴) = {𝑥 ∣ ¬ 𝑥𝐴}
 
Theoremcompne 41948 The complement of 𝐴 is not equal to 𝐴. (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by BJ, 11-Nov-2021.)
(V ∖ 𝐴) ≠ 𝐴
 
Theoremcompab 41949 Two ways of saying "the complement of a class abstraction". (Contributed by Andrew Salmon, 15-Jul-2011.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
(V ∖ {𝑧𝜑}) = {𝑧 ∣ ¬ 𝜑}
 
Theoremconss2 41950 Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
(𝐴 ⊆ (V ∖ 𝐵) ↔ 𝐵 ⊆ (V ∖ 𝐴))
 
Theoremconss1 41951 Contrapositive law for subsets. (Contributed by Andrew Salmon, 15-Jul-2011.)
((V ∖ 𝐴) ⊆ 𝐵 ↔ (V ∖ 𝐵) ⊆ 𝐴)
 
Theoremralbidar 41952 More general form of ralbida 3156. (Contributed by Andrew Salmon, 25-Jul-2011.)
(𝜑 → ∀𝑥𝐴 𝜑)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
 
Theoremrexbidar 41953 More general form of rexbida 3246. (Contributed by Andrew Salmon, 25-Jul-2011.)
(𝜑 → ∀𝑥𝐴 𝜑)    &   ((𝜑𝑥𝐴) → (𝜓𝜒))       (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜒))
 
Theoremdropab1 41954 Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
(∀𝑥 𝑥 = 𝑦 → {⟨𝑥, 𝑧⟩ ∣ 𝜑} = {⟨𝑦, 𝑧⟩ ∣ 𝜑})
 
Theoremdropab2 41955 Theorem to aid use of the distinctor reduction theorem with ordered pair class abstraction. (Contributed by Andrew Salmon, 25-Jul-2011.)
(∀𝑥 𝑥 = 𝑦 → {⟨𝑧, 𝑥⟩ ∣ 𝜑} = {⟨𝑧, 𝑦⟩ ∣ 𝜑})
 
Theoremipo0 41956 If the identity relation partially orders any class, then that class is the null class. (Contributed by Andrew Salmon, 25-Jul-2011.)
( I Po 𝐴𝐴 = ∅)
 
Theoremifr0 41957 A class that is founded by the identity relation is null. (Contributed by Andrew Salmon, 25-Jul-2011.)
( I Fr 𝐴𝐴 = ∅)
 
Theoremordpss 41958 ordelpss 6279 with an antecedent removed. (Contributed by Andrew Salmon, 25-Jul-2011.)
(Ord 𝐵 → (𝐴𝐵𝐴𝐵))
 
Theoremfvsb 41959* Explicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
(∃!𝑦 𝐴𝐹𝑦 → ([(𝐹𝐴) / 𝑥]𝜑 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
 
Theoremfveqsb 41960* Implicit substitution of a value of a function into a wff. (Contributed by Andrew Salmon, 1-Aug-2011.)
(𝑥 = (𝐹𝐴) → (𝜑𝜓))    &   𝑥𝜓       (∃!𝑦 𝐴𝐹𝑦 → (𝜓 ↔ ∃𝑥(∀𝑦(𝐴𝐹𝑦𝑦 = 𝑥) ∧ 𝜑)))
 
Theoremxpexb 41961 A Cartesian product exists iff its converse does. Corollary 6.9(1) in [TakeutiZaring] p. 26. (Contributed by Andrew Salmon, 13-Nov-2011.)
((𝐴 × 𝐵) ∈ V ↔ (𝐵 × 𝐴) ∈ V)
 
Theoremtrelpss 41962 An element of a transitive set is a proper subset of it. Theorem 7.2 in [TakeutiZaring] p. 35. Unlike tz7.2 5564, ax-reg 9281 is required for its proof. (Contributed by Andrew Salmon, 13-Nov-2011.)
((Tr 𝐴𝐵𝐴) → 𝐵𝐴)
 
20.35.6  Arithmetic
 
Theoremaddcomgi 41963 Generalization of commutative law for addition. Simplifies proofs dealing with vectors. However, it is dependent on our particular definition of ordered pair. (Contributed by Andrew Salmon, 28-Jan-2012.) (Revised by Mario Carneiro, 6-May-2015.)
(𝐴 + 𝐵) = (𝐵 + 𝐴)
 
20.35.7  Geometry
 
Syntaxcplusr 41964 Introduce the operation of vector addition.
class +𝑟
 
Syntaxcminusr 41965 Introduce the operation of vector subtraction.
class -𝑟
 
Syntaxctimesr 41966 Introduce the operation of scalar multiplication.
class .𝑣
 
Syntaxcptdfc 41967 PtDf is a predicate that is crucial for the definition of lines as well as proving a number of important theorems.
class PtDf(𝐴, 𝐵)
 
Syntaxcrr3c 41968 RR3 is a class.
class RR3
 
Syntaxcline3 41969 line3 is a class.
class line3
 
Definitiondf-addr 41970* Define the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
+𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) + (𝑦𝑣))))
 
Definitiondf-subr 41971* Define the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
-𝑟 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ ((𝑥𝑣) − (𝑦𝑣))))
 
Definitiondf-mulv 41972* Define the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.)
.𝑣 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑣 ∈ ℝ ↦ (𝑥 · (𝑦𝑣))))
 
Theoremaddrval 41973* Value of the operation of vector addition. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) + (𝐵𝑣))))
 
Theoremsubrval 41974* Value of the operation of vector subtraction. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) = (𝑣 ∈ ℝ ↦ ((𝐴𝑣) − (𝐵𝑣))))
 
Theoremmulvval 41975* Value of the operation of scalar multiplication. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴.𝑣𝐵) = (𝑣 ∈ ℝ ↦ (𝐴 · (𝐵𝑣))))
 
Theoremaddrfv 41976 Vector addition at a value. The operation takes each vector 𝐴 and 𝐵 and forms a new vector whose values are the sum of each of the values of 𝐴 and 𝐵. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴+𝑟𝐵)‘𝐶) = ((𝐴𝐶) + (𝐵𝐶)))
 
Theoremsubrfv 41977 Vector subtraction at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴-𝑟𝐵)‘𝐶) = ((𝐴𝐶) − (𝐵𝐶)))
 
Theoremmulvfv 41978 Scalar multiplication at a value. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐸𝐵𝐷𝐶 ∈ ℝ) → ((𝐴.𝑣𝐵)‘𝐶) = (𝐴 · (𝐵𝐶)))
 
Theoremaddrfn 41979 Vector addition produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) Fn ℝ)
 
Theoremsubrfn 41980 Vector subtraction produces a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴-𝑟𝐵) Fn ℝ)
 
Theoremmulvfn 41981 Scalar multiplication producees a function. (Contributed by Andrew Salmon, 27-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴.𝑣𝐵) Fn ℝ)
 
Theoremaddrcom 41982 Vector addition is commutative. (Contributed by Andrew Salmon, 28-Jan-2012.)
((𝐴𝐶𝐵𝐷) → (𝐴+𝑟𝐵) = (𝐵+𝑟𝐴))
 
Definitiondf-ptdf 41983* Define the predicate PtDf, which is a utility definition used to shorten definitions and simplify proofs. (Contributed by Andrew Salmon, 15-Jul-2012.)
PtDf(𝐴, 𝐵) = (𝑥 ∈ ℝ ↦ (((𝑥.𝑣(𝐵-𝑟𝐴)) +𝑣 𝐴) “ {1, 2, 3}))
 
Definitiondf-rr3 41984 Define the set of all points RR3. We define each point 𝐴 as a function to allow the use of vector addition and subtraction as well as scalar multiplication in our proofs. (Contributed by Andrew Salmon, 15-Jul-2012.)
RR3 = (ℝ ↑m {1, 2, 3})
 
Definitiondf-line3 41985* Define the set of all lines. A line is an infinite subset of RR3 that satisfies a PtDf property. (Contributed by Andrew Salmon, 15-Jul-2012.)
line3 = {𝑥 ∈ 𝒫 RR3 ∣ (2o𝑥 ∧ ∀𝑦𝑥𝑧𝑥 (𝑧𝑦 → ran PtDf(𝑦, 𝑧) = 𝑥))}
 
20.36  Mathbox for Alan Sare

We are sad to report the passing of long-time contributor Alan Sare (Nov. 9, 1954 - Mar. 23, 2019).

Alan's first contribution to Metamath was a shorter proof for tfrlem8 8186 in 2008.

He developed a tool called "completeusersproof" that assists developing proofs using his "virtual deduction" method: https://us.metamath.org/other.html#completeusersproof 8186. His virtual deduction method is explained in the comment for wvd1 42078.

Below are some excerpts from his first emails to NM in 2007:

...I have been interested in proving set theory theorems for many years for mental exercise. I enjoy it. I have used a book by Martin Zuckerman. It is informal. I am interested in completely and perfectly proving theorems. Mr. Zuckerman leaves out most of the steps of a proof, of course, like most authors do, as you have noted. A complete proof for higher theorems would require a volume of writing similar to the Metamath documents. So I am frustrated when I am not capable of constructing a proof and Zuckerman leaves out steps I do not understand. I could search for the steps in other texts, but I don't do that too much. Metamath may be the answer for me....

...If we go beyond mathematics, I believe that it is possible to write down all human knowledge in a way similar to the way you have explicated large areas of mathematics. Of course, that would be a much, much more difficult job. For example, it is possible to take a hard science like physics, construct axioms based on experimental results, and to cast all of physics into a collection of axioms and theorems. Maybe this has already been attempted, although I am not familiar with it. When one then moves on to the soft sciences such as social science, this job gets much more difficult. The key is: All human thought consists of logical operations on abstract objects. Usually, these logical operations are done informally. There is no reason why one cannot take any subject and explicate it and take it down to the indivisible postulates in a formal rigorous way....

...When I read a math book or an engineering book I come across something I don't understand and I am compelled to understand it. But, often it is hopeless. I don't have the time. Or, I would have to read the same thing by multiple authors in the hope that different authors would give parts of the working proof that others have omitted. It is very inefficient. Because I have always been inclined to "get to the bottom" for a 100% fully understood proof....

 
20.36.1  Auxiliary theorems for the Virtual Deduction tool
 
TheoremidiALT 41986 Placeholder for idi 1. Though unnecessary, this theorem is sometimes used in proofs in this mathbox for pedagogical purposes. (Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
𝜑       𝜑
 
Theoremexbir 41987 Exportation implication also converting the consequent from a biconditional to an implication. Derived automatically from exbirVD 42362. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓) → (𝜒𝜃)) → (𝜑 → (𝜓 → (𝜃𝜒))))
 
Theorem3impexpbicom 41988 Version of 3impexp 1356 where in addition the consequent is commuted. (Contributed by Alan Sare, 31-Dec-2011.)
(((𝜑𝜓𝜒) → (𝜃𝜏)) ↔ (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃)))))
 
Theorem3impexpbicomi 41989 Inference associated with 3impexpbicom 41988. Derived automatically from 3impexpbicomiVD 42367. (Contributed by Alan Sare, 31-Dec-2011.)
((𝜑𝜓𝜒) → (𝜃𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜏𝜃))))
 
20.36.2  Supplementary unification deductions
 
Theorembi1imp 41990 Importation inference similar to imp 406, except the outermost implication of the hypothesis is a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theorembi2imp 41991 Importation inference similar to imp 406, except both implications of the hypothesis are biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ (𝜓𝜒))       ((𝜑𝜓) → 𝜒)
 
Theorembi3impb 41992 Similar to 3impb 1113 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑 ∧ (𝜓𝜒)) ↔ 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi3impa 41993 Similar to 3impa 1108 with implication in hypothesis replaced by biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(((𝜑𝜓) ∧ 𝜒) ↔ 𝜃)       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi23impib 41994 3impib 1114 with the inner implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → ((𝜓𝜒) ↔ 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13impib 41995 3impib 1114 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ ((𝜓𝜒) → 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi123impib 41996 3impib 1114 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 ↔ ((𝜓𝜒) ↔ 𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi13impia 41997 3impia 1115 with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑𝜓) ↔ (𝜒𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi123impia 41998 3impia 1115 with the implications of the hypothesis biconditionals. (Contributed by Alan Sare, 6-Nov-2017.)
((𝜑𝜓) ↔ (𝜒𝜃))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi33imp12 41999 3imp 1109 with innermost implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → (𝜓 → (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
 
Theorembi23imp13 42000 3imp 1109 with middle implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓𝜒) → 𝜃)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >