| Metamath
Proof Explorer Theorem List (p. 420 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Syntax | chg 41901 | Extend class notation with g-map. |
| class HGMap | ||
| Definition | df-hgmap 41902* | Define map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
| ⊢ HGMap = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ {𝑎 ∣ [((DVecH‘𝑘)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝑘)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠 ‘𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝑘)‘𝑤))(𝑚‘𝑣))))})) | ||
| Theorem | hgmapffval 41903* | Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) ⇒ ⊢ (𝐾 ∈ 𝑋 → (HGMap‘𝐾) = (𝑤 ∈ 𝐻 ↦ {𝑎 ∣ [((DVecH‘𝐾)‘𝑤) / 𝑢][(Base‘(Scalar‘𝑢)) / 𝑏][((HDMap‘𝐾)‘𝑤) / 𝑚]𝑎 ∈ (𝑥 ∈ 𝑏 ↦ (℩𝑦 ∈ 𝑏 ∀𝑣 ∈ (Base‘𝑢)(𝑚‘(𝑥( ·𝑠 ‘𝑢)𝑣)) = (𝑦( ·𝑠 ‘((LCDual‘𝐾)‘𝑤))(𝑚‘𝑣))))})) | ||
| Theorem | hgmapfval 41904* | Map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. (Contributed by NM, 25-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐼 = (𝑥 ∈ 𝐵 ↦ (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑥 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣))))) | ||
| Theorem | hgmapval 41905* | Value of map from the scalar division ring of the vector space to the scalar division ring of its closed kernel dual. Function sigma of scalar f in part 14 of [Baer] p. 50 line 4. TODO: variable names are inherited from older version. Maybe make more consistent with hdmap14lem15 41900. (Contributed by NM, 25-Mar-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑀 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐼 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ 𝑌 ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐼‘𝑋) = (℩𝑦 ∈ 𝐵 ∀𝑣 ∈ 𝑉 (𝑀‘(𝑋 · 𝑣)) = (𝑦 ∙ (𝑀‘𝑣)))) | ||
| Theorem | hgmapfnN 41906 | Functionality of scalar sigma map. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐺 Fn 𝐵) | ||
| Theorem | hgmapcl 41907 | Closure of scalar sigma map i.e. the map from the vector space scalar base to the dual space scalar base. (Contributed by NM, 6-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) ∈ 𝐵) | ||
| Theorem | hgmapdcl 41908 | Closure of the vector space to dual space scalar map, in the scalar sigma map. (Contributed by NM, 6-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝑄 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑄) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘𝐹) ∈ 𝐴) | ||
| Theorem | hgmapvs 41909 | Part 15 of [Baer] p. 50 line 6. Also line 15 in [Holland95] p. 14. (Contributed by NM, 6-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝐹 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑆‘(𝐹 · 𝑋)) = ((𝐺‘𝐹) ∙ (𝑆‘𝑋))) | ||
| Theorem | hgmapval0 41910 | Value of the scalar sigma map at zero. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 0 ) = 0 ) | ||
| Theorem | hgmapval1 41911 | Value of the scalar sigma map at one. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → (𝐺‘ 1 ) = 1 ) | ||
| Theorem | hgmapadd 41912 | Part 15 of [Baer] p. 50 line 13. (Contributed by NM, 6-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ + = (+g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 + 𝑌)) = ((𝐺‘𝑋) + (𝐺‘𝑌))) | ||
| Theorem | hgmapmul 41913 | Part 15 of [Baer] p. 50 line 16. The multiplication is reversed after converting to the dual space scalar to the vector space scalar. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝑋 · 𝑌)) = ((𝐺‘𝑌) · (𝐺‘𝑋))) | ||
| Theorem | hgmaprnlem1N 41914 | Lemma for hgmaprnN 41919. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ (𝜑 → 𝑘 ∈ 𝐵) & ⊢ (𝜑 → 𝑠 = (𝑘 · 𝑡)) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem2N 41915 | Lemma for hgmaprnN 41919. Part 15 of [Baer] p. 50 line 20. We only require a subset relation, rather than equality, so that the case of zero 𝑧 is taken care of automatically. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → (𝑁‘{𝑠}) ⊆ (𝑁‘{𝑡})) | ||
| Theorem | hgmaprnlem3N 41916* | Lemma for hgmaprnN 41919. Eliminate 𝑘. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) & ⊢ (𝜑 → 𝑠 ∈ 𝑉) & ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) & ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ 𝐿 = (LSpan‘𝐶) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem4N 41917* | Lemma for hgmaprnN 41919. Eliminate 𝑠. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) & ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnlem5N 41918 | Lemma for hgmaprnN 41919. Eliminate 𝑡. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) & ⊢ 𝐷 = (Base‘𝐶) & ⊢ 𝑃 = (Scalar‘𝐶) & ⊢ 𝐴 = (Base‘𝑃) & ⊢ ∙ = ( ·𝑠 ‘𝐶) & ⊢ 𝑄 = (0g‘𝐶) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑧 ∈ 𝐴) ⇒ ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) | ||
| Theorem | hgmaprnN 41919 | Part of proof of part 16 in [Baer] p. 50 line 23, Fs=G, except that we use the original vector space scalars for the range. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ran 𝐺 = 𝐵) | ||
| Theorem | hgmap11 41920 | The scalar sigma map is one-to-one. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = (𝐺‘𝑌) ↔ 𝑋 = 𝑌)) | ||
| Theorem | hgmapf1oN 41921 | The scalar sigma map is a one-to-one onto function. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐺:𝐵–1-1-onto→𝐵) | ||
| Theorem | hgmapeq0 41922 | The scalar sigma map is zero iff its argument is zero. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝐺‘𝑋) = 0 ↔ 𝑋 = 0 )) | ||
| Theorem | hdmapipcl 41923 | The inner product (Hermitian form) (𝑋, 𝑌) will be defined as ((𝑆‘𝑌)‘𝑋). Show closure. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘𝑋) ∈ 𝐵) | ||
| Theorem | hdmapln1 41924 | Linearity property that will be used for inner product. TODO: try to combine hypotheses in hdmap*ln* series. (Contributed by NM, 7-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘((𝐴 · 𝑋) + 𝑌)) = ((𝐴 × ((𝑆‘𝑍)‘𝑋)) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplna1 41925 | Additive property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 + 𝑌)) = (((𝑆‘𝑍)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplns1 41926 | Subtraction property of first (inner product) argument. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑁 = (-g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘𝑍)‘(𝑋 − 𝑌)) = (((𝑆‘𝑍)‘𝑋)𝑁((𝑆‘𝑍)‘𝑌))) | ||
| Theorem | hdmaplnm1 41927 | Multiplicative property of first (inner product) argument. (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘𝑌)‘(𝐴 · 𝑋)) = (𝐴 × ((𝑆‘𝑌)‘𝑋))) | ||
| Theorem | hdmaplna2 41928 | Additive property of second (inner product) argument. (Contributed by NM, 10-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ⨣ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) ⇒ ⊢ (𝜑 → ((𝑆‘(𝑌 + 𝑍))‘𝑋) = (((𝑆‘𝑌)‘𝑋) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
| Theorem | hdmapglnm2 41929 | g-linear property of second (inner product) argument. Line 19 in [Holland95] p. 14. (Contributed by NM, 10-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘(𝐴 · 𝑌))‘𝑋) = (((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴))) | ||
| Theorem | hdmapgln2 41930 | g-linear property that will be used for inner product. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) & ⊢ (𝜑 → 𝑍 ∈ 𝑉) & ⊢ (𝜑 → 𝐴 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐴 · 𝑌) + 𝑍))‘𝑋) = ((((𝑆‘𝑌)‘𝑋) × (𝐺‘𝐴)) ⨣ ((𝑆‘𝑍)‘𝑋))) | ||
| Theorem | hdmaplkr 41931 | Kernel of the vector to dual map. Line 16 in [Holland95] p. 14. TODO: eliminate 𝐹 hypothesis. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝐹 = (LFnl‘𝑈) & ⊢ 𝑌 = (LKer‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑌‘(𝑆‘𝑋)) = (𝑂‘{𝑋})) | ||
| Theorem | hdmapellkr 41932 | Membership in the kernel (as shown by hdmaplkr 41931) of the vector to dual map. Line 17 in [Holland95] p. 14. (Contributed by NM, 16-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ 𝑌 ∈ (𝑂‘{𝑋}))) | ||
| Theorem | hdmapip0 41933 | Zero property that will be used for inner product. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝑍 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑋) = 𝑍 ↔ 𝑋 = 0 )) | ||
| Theorem | hdmapip1 41934 | Construct a proportional vector 𝑌 whose inner product with the original 𝑋 equals one. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 0 = (0g‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) & ⊢ 𝑌 = ((𝑁‘((𝑆‘𝑋)‘𝑋)) · 𝑋) ⇒ ⊢ (𝜑 → ((𝑆‘𝑋)‘𝑌) = 1 ) | ||
| Theorem | hdmapip0com 41935 | Commutation property of Baer's sigma map (Holland's A map). Line 20 of [Holland95] p. 14. Also part of Lemma 1 of [Baer] p. 110 line 7. (Contributed by NM, 9-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (((𝑆‘𝑋)‘𝑌) = 0 ↔ ((𝑆‘𝑌)‘𝑋) = 0 )) | ||
| Theorem | hdmapinvlem1 41936 | Line 27 in [Baer] p. 110. We use 𝐶 for Baer's u. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41854. Our ((𝑆‘𝐸)‘𝐶) means the inner product 〈𝐶, 𝐸〉 i.e. his f(u,w) (note argument reversal). (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐸)‘𝐶) = 0 ) | ||
| Theorem | hdmapinvlem2 41937 | Line 28 in [Baer] p. 110, 0 = f(w,u). (Contributed by NM, 11-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ · = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) ⇒ ⊢ (𝜑 → ((𝑆‘𝐶)‘𝐸) = 0 ) | ||
| Theorem | hdmapinvlem3 41938 | Line 30 in [Baer] p. 110, f(sw + u, tw - v) = 0. (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → ((𝑆‘((𝐽 · 𝐸) − 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ) | ||
| Theorem | hdmapinvlem4 41939 | Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 41854. Our ((𝑆‘𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) & ⊢ (𝜑 → (𝐼 × (𝐺‘𝐽)) = ((𝑆‘𝐷)‘𝐶)) ⇒ ⊢ (𝜑 → (𝐽 × (𝐺‘𝐼)) = ((𝑆‘𝐶)‘𝐷)) | ||
| Theorem | hdmapglem5 41940 | Part 1.2 in [Baer] p. 110 line 34, f(u,v) alpha = f(v,u). (Contributed by NM, 12-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ − = (-g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐼 ∈ 𝐵) & ⊢ (𝜑 → 𝐽 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝐷)‘𝐶)) = ((𝑆‘𝐶)‘𝐷)) | ||
| Theorem | hgmapvvlem1 41941 | Involution property of scalar sigma map. Line 10 in [Baer] p. 111, t sigma squared = t. Our 𝐸, 𝐶, 𝐷, 𝑌, 𝑋 correspond to Baer's w, h, k, s, t. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) & ⊢ (𝜑 → 𝑌 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → (𝑌 × (𝐺‘𝑋)) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvvlem2 41942 | Lemma for hgmapvv 41944. Eliminate 𝑌 (Baer's s). (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) & ⊢ (𝜑 → 𝐶 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝐷 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → ((𝑆‘𝐷)‘𝐶) = 1 ) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvvlem3 41943 | Lemma for hgmapvv 41944. Eliminate ((𝑆‘𝐷)‘𝐶) = 1 (Baer's f(h,k)=1). (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ 1 = (1r‘𝑅) & ⊢ 𝑁 = (invr‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hgmapvv 41944 | Value of a double involution. Part 1.2 of [Baer] p. 110 line 37. (Contributed by NM, 13-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐺‘(𝐺‘𝑋)) = 𝑋) | ||
| Theorem | hdmapglem7a 41945* | Lemma for hdmapg 41948. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) ⇒ ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) | ||
| Theorem | hdmapglem7b 41946 | Lemma for hdmapg 41948. (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑥 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑦 ∈ (𝑂‘{𝐸})) & ⊢ (𝜑 → 𝑚 ∈ 𝐵) & ⊢ (𝜑 → 𝑛 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((𝑆‘((𝑚 · 𝐸) + 𝑥))‘((𝑛 · 𝐸) + 𝑦)) = ((𝑛 × (𝐺‘𝑚)) ✚ ((𝑆‘𝑥)‘𝑦))) | ||
| Theorem | hdmapglem7 41947 | Lemma for hdmapg 41948. Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). In the proof, our 𝐸, (𝑂‘{𝐸}), 𝑋, 𝑌, 𝑘, 𝑢, 𝑙, and 𝑣 correspond respectively to Baer's w, H, x, y, x', x'', y', and y'', and our ((𝑆‘𝑌)‘𝑋) corresponds to Baer's f(x,y). (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⊕ = (LSSum‘𝑈) & ⊢ 𝑁 = (LSpan‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ × = (.r‘𝑅) & ⊢ 0 = (0g‘𝑅) & ⊢ ✚ = (+g‘𝑅) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
| Theorem | hdmapg 41948 | Apply the scalar sigma function (involution) 𝐺 to an inner product reverses the arguments. The inner product of 𝑋 and 𝑌 is represented by ((𝑆‘𝑌)‘𝑋). Line 15 in [Baer] p. 111, f(x,y) alpha = f(y,x). (Contributed by NM, 14-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐺‘((𝑆‘𝑌)‘𝑋)) = ((𝑆‘𝑋)‘𝑌)) | ||
| Theorem | hdmapoc 41949* | Express our constructed orthocomplement (polarity) in terms of the Hilbert space definition of orthocomplement. Lines 24 and 25 in [Holland95] p. 14. (Contributed by NM, 17-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 0 = (0g‘𝑅) & ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = {𝑦 ∈ 𝑉 ∣ ∀𝑧 ∈ 𝑋 ((𝑆‘𝑧)‘𝑦) = 0 }) | ||
| Syntax | chlh 41950 | Extend class notation with the final constructed Hilbert space. |
| class HLHil | ||
| Definition | df-hlhil 41951* | Define our final Hilbert space constructed from a Hilbert lattice. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ HLHil = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ⦋((DVecH‘𝑘)‘𝑤) / 𝑢⦌⦋(Base‘𝑢) / 𝑣⦌({〈(Base‘ndx), 𝑣〉, 〈(+g‘ndx), (+g‘𝑢)〉, 〈(Scalar‘ndx), (((EDRing‘𝑘)‘𝑤) sSet 〈(*𝑟‘ndx), ((HGMap‘𝑘)‘𝑤)〉)〉} ∪ {〈( ·𝑠 ‘ndx), ( ·𝑠 ‘𝑢)〉, 〈(·𝑖‘ndx), (𝑥 ∈ 𝑣, 𝑦 ∈ 𝑣 ↦ ((((HDMap‘𝑘)‘𝑤)‘𝑦)‘𝑥))〉}))) | ||
| Theorem | hlhilset 41952* | The final Hilbert space constructed from a Hilbert lattice 𝐾 and an arbitrary hyperplane 𝑊 in 𝐾. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝑈) & ⊢ + = (+g‘𝑈) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) & ⊢ · = ( ·𝑠 ‘𝑈) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐿 = ({〈(Base‘ndx), 𝑉〉, 〈(+g‘ndx), + 〉, 〈(Scalar‘ndx), 𝑅〉} ∪ {〈( ·𝑠 ‘ndx), · 〉, 〈(·𝑖‘ndx), , 〉})) | ||
| Theorem | hlhilsca 41953 | The scalar of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝑅 = (𝐸 sSet 〈(*𝑟‘ndx), 𝐺〉) ⇒ ⊢ (𝜑 → 𝑅 = (Scalar‘𝑈)) | ||
| Theorem | hlhilbase 41954 | The base set of the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑀 = (Base‘𝐿) ⇒ ⊢ (𝜑 → 𝑀 = (Base‘𝑈)) | ||
| Theorem | hlhilplus 41955 | The vector addition for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ + = (+g‘𝐿) ⇒ ⊢ (𝜑 → + = (+g‘𝑈)) | ||
| Theorem | hlhilslem 41956 | Lemma for hlhilsbase 41957 etc. (Contributed by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = Slot (𝐹‘ndx) & ⊢ (𝐹‘ndx) ≠ (*𝑟‘ndx) & ⊢ 𝐶 = (𝐹‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (𝐹‘𝑅)) | ||
| Theorem | hlhilsbase 41957 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
| Theorem | hlhilsplus 41958 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝐸) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
| Theorem | hlhilsmul 41959 | Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) (Revised by AV, 6-Nov-2024.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐸 = ((EDRing‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ · = (.r‘𝐸) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
| Theorem | hlhilsbase2 41960 | The scalar base set of the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐶 = (Base‘𝑆) ⇒ ⊢ (𝜑 → 𝐶 = (Base‘𝑅)) | ||
| Theorem | hlhilsplus2 41961 | Scalar addition for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ + = (+g‘𝑆) ⇒ ⊢ (𝜑 → + = (+g‘𝑅)) | ||
| Theorem | hlhilsmul2 41962 | Scalar multiplication for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ · = (.r‘𝑆) ⇒ ⊢ (𝜑 → · = (.r‘𝑅)) | ||
| Theorem | hlhils0 41963 | The scalar ring zero for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 0 = (0g‘𝑆) ⇒ ⊢ (𝜑 → 0 = (0g‘𝑅)) | ||
| Theorem | hlhils1N 41964 | The scalar ring unity for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) (New usage is discouraged.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 1 = (1r‘𝑆) ⇒ ⊢ (𝜑 → 1 = (1r‘𝑅)) | ||
| Theorem | hlhilvsca 41965 | The scalar product for the final constructed Hilbert space. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → · = ( ·𝑠 ‘𝑈)) | ||
| Theorem | hlhilip 41966* | Inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ , = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝑆‘𝑦)‘𝑥)) ⇒ ⊢ (𝜑 → , = (·𝑖‘𝑈)) | ||
| Theorem | hlhilipval 41967 | Value of inner product operation for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ , = (·𝑖‘𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝑉) & ⊢ (𝜑 → 𝑌 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝑋 , 𝑌) = ((𝑆‘𝑌)‘𝑋)) | ||
| Theorem | hlhilnvl 41968 | The involution operation of the star division ring for the final constructed Hilbert space. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ ∗ = ((HGMap‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → ∗ = (*𝑟‘𝑅)) | ||
| Theorem | hlhillvec 41969 | The final constructed Hilbert space is a vector space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ LVec) | ||
| Theorem | hlhildrng 41970 | The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 20-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) ⇒ ⊢ (𝜑 → 𝑅 ∈ DivRing) | ||
| Theorem | hlhilsrnglem 41971 | Lemma for hlhilsrng 41972. (Contributed by NM, 21-Jun-2015.) (Revised by Mario Carneiro, 28-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑆 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑆) & ⊢ + = (+g‘𝑆) & ⊢ · = (.r‘𝑆) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | hlhilsrng 41972 | The star division ring for the final constructed Hilbert space is a division ring. (Contributed by NM, 21-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑅 = (Scalar‘𝑈) ⇒ ⊢ (𝜑 → 𝑅 ∈ *-Ring) | ||
| Theorem | hlhil0 41973 | The zero vector for the final constructed Hilbert space. (Contributed by NM, 22-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 0 = (0g‘𝐿) ⇒ ⊢ (𝜑 → 0 = (0g‘𝑈)) | ||
| Theorem | hlhillsm 41974 | The vector sum operation for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ ⊕ = (LSSum‘𝐿) ⇒ ⊢ (𝜑 → ⊕ = (LSSum‘𝑈)) | ||
| Theorem | hlhilocv 41975 | The orthocomplement for the final constructed Hilbert space. (Contributed by NM, 23-Jun-2015.) (Revised by Mario Carneiro, 29-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ 𝑁 = ((ocH‘𝐾)‘𝑊) & ⊢ 𝑂 = (ocv‘𝑈) & ⊢ (𝜑 → 𝑋 ⊆ 𝑉) ⇒ ⊢ (𝜑 → (𝑂‘𝑋) = (𝑁‘𝑋)) | ||
| Theorem | hlhillcs 41976 | The closed subspaces of the final constructed Hilbert space. TODO: hlhilbase 41954 is applied over and over to conclusion rather than applied once to antecedent - would compressed proof be shorter if applied once to antecedent? (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ 𝐶 = (ClSubSp‘𝑈) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝐶 = ran 𝐼) | ||
| Theorem | hlhilphllem 41977* | Lemma for hlhil 25363. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ + = (+g‘𝐿) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑅 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑄 = (0g‘𝑅) & ⊢ 0 = (0g‘𝐿) & ⊢ , = (·𝑖‘𝑈) & ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) ⇒ ⊢ (𝜑 → 𝑈 ∈ PreHil) | ||
| Theorem | hlhilhillem 41978* | Lemma for hlhil 25363. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) & ⊢ 𝐹 = (Scalar‘𝑈) & ⊢ 𝐿 = ((DVecH‘𝐾)‘𝑊) & ⊢ 𝑉 = (Base‘𝐿) & ⊢ + = (+g‘𝐿) & ⊢ · = ( ·𝑠 ‘𝐿) & ⊢ 𝑅 = (Scalar‘𝐿) & ⊢ 𝐵 = (Base‘𝑅) & ⊢ ⨣ = (+g‘𝑅) & ⊢ × = (.r‘𝑅) & ⊢ 𝑄 = (0g‘𝑅) & ⊢ 0 = (0g‘𝐿) & ⊢ , = (·𝑖‘𝑈) & ⊢ 𝐽 = ((HDMap‘𝐾)‘𝑊) & ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) & ⊢ 𝐸 = (𝑥 ∈ 𝑉, 𝑦 ∈ 𝑉 ↦ ((𝐽‘𝑦)‘𝑥)) & ⊢ 𝑂 = (ocv‘𝑈) & ⊢ 𝐶 = (ClSubSp‘𝑈) ⇒ ⊢ (𝜑 → 𝑈 ∈ Hil) | ||
| Theorem | hlathil 41979 |
Construction of a Hilbert space (df-hil 21634) 𝑈 from a Hilbert
lattice (df-hlat 39369) 𝐾, where 𝑊 is a fixed but arbitrary
hyperplane (co-atom) in 𝐾.
The Hilbert space 𝑈 is identical to the vector space ((DVecH‘𝐾)‘𝑊) (see dvhlvec 41127) except that it is extended with involution and inner product components. The construction of these two components is provided by Theorem 3.6 in [Holland95] p. 13, whose proof we follow loosely. An example of involution is the complex conjugate when the division ring is the field of complex numbers. The nature of the division ring we constructed is indeterminate, however, until we specialize the initial Hilbert lattice with additional conditions found by Maria Solèr in 1995 and refined by René Mayet in 1998 that result in a division ring isomorphic to ℂ. See additional discussion at https://us.metamath.org/qlegif/mmql.html#what 41127. 𝑊 corresponds to the w in the proof of Theorem 13.4 of [Crawley] p. 111. Such a 𝑊 always exists since HL has lattice rank of at least 4 by df-hil 21634. It can be eliminated if we just want to show the existence of a Hilbert space, as is done in the literature. (Contributed by NM, 23-Jun-2015.) |
| ⊢ 𝐻 = (LHyp‘𝐾) & ⊢ 𝑈 = ((HLHil‘𝐾)‘𝑊) & ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) ⇒ ⊢ (𝜑 → 𝑈 ∈ Hil) | ||
| Syntax | ccsrg 41980 | Extend class notation with the class of all commutative semirings. |
| class CSRing | ||
| Definition | df-csring 41981 | Define the class of all commutative semirings. (Contributed by metakunt, 4-Apr-2025.) |
| ⊢ CSRing = {𝑓 ∈ SRing ∣ (mulGrp‘𝑓) ∈ CMnd} | ||
| Theorem | iscsrg 41982 | A commutative semiring is a semiring whose multiplication is a commutative monoid. (Contributed by metakunt, 4-Apr-2025.) |
| ⊢ 𝐺 = (mulGrp‘𝑅) ⇒ ⊢ (𝑅 ∈ CSRing ↔ (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd)) | ||
| Theorem | rhmzrhval 41983 | Evaluation of integers across a ring homomorphism. (Contributed by metakunt, 4-Jun-2025.) |
| ⊢ (𝜑 → 𝐹 ∈ (𝑅 RingHom 𝑆)) & ⊢ (𝜑 → 𝑋 ∈ ℤ) & ⊢ 𝑀 = (ℤRHom‘𝑅) & ⊢ 𝑁 = (ℤRHom‘𝑆) ⇒ ⊢ (𝜑 → (𝐹‘(𝑀‘𝑋)) = (𝑁‘𝑋)) | ||
| Theorem | zndvdchrrhm 41984* | Construction of a ring homomorphism from ℤ/nℤ to 𝑅 when the characteristic of 𝑅 divides 𝑁. (Contributed by metakunt, 4-Jun-2025.) |
| ⊢ (𝜑 → 𝑅 ∈ Ring) & ⊢ (𝜑 → 𝑁 ∈ ℕ) & ⊢ (𝜑 → (chr‘𝑅) ∈ ℤ) & ⊢ (𝜑 → (chr‘𝑅) ∥ 𝑁) & ⊢ 𝑍 = (ℤ/nℤ‘𝑁) & ⊢ 𝐹 = (𝑥 ∈ (Base‘𝑍) ↦ ∪ ((ℤRHom‘𝑅) “ 𝑥)) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝑍 RingHom 𝑅)) | ||
| Theorem | relogbcld 41985 | Closure of the general logarithm with a positive real base on positive reals, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 𝐵 ≠ 1) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) ∈ ℝ) | ||
| Theorem | relogbexpd 41986 | Identity law for general logarithm: the logarithm of a power to the base is the exponent, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ≠ 1) & ⊢ (𝜑 → 𝑀 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐵 logb (𝐵↑𝑀)) = 𝑀) | ||
| Theorem | relogbzexpd 41987 | Power law for the general logarithm for integer powers: The logarithm of a positive real number to the power of an integer is equal to the product of the exponent and the logarithm of the base of the power, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℝ+) & ⊢ (𝜑 → 𝐵 ≠ 1) & ⊢ (𝜑 → 𝐶 ∈ ℝ+) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝐵 logb (𝐶↑𝑁)) = (𝑁 · (𝐵 logb 𝐶))) | ||
| Theorem | logblebd 41988 | The general logarithm is monotone/increasing, a deduction version. (Contributed by metakunt, 22-May-2024.) |
| ⊢ (𝜑 → 𝐵 ∈ ℤ) & ⊢ (𝜑 → 2 ≤ 𝐵) & ⊢ (𝜑 → 𝑋 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑋) & ⊢ (𝜑 → 𝑌 ∈ ℝ) & ⊢ (𝜑 → 0 < 𝑌) & ⊢ (𝜑 → 𝑋 ≤ 𝑌) ⇒ ⊢ (𝜑 → (𝐵 logb 𝑋) ≤ (𝐵 logb 𝑌)) | ||
| Theorem | uzindd 41989* | Induction on the upper integers that start at 𝑀. The first four hypotheses give us the substitution instances we need; the following two are the basis and the induction step, a deduction version. (Contributed by metakunt, 8-Jun-2024.) |
| ⊢ (𝑗 = 𝑀 → (𝜓 ↔ 𝜒)) & ⊢ (𝑗 = 𝑘 → (𝜓 ↔ 𝜃)) & ⊢ (𝑗 = (𝑘 + 1) → (𝜓 ↔ 𝜏)) & ⊢ (𝑗 = 𝑁 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ 𝜃 ∧ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) → 𝜏) & ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝑁) ⇒ ⊢ (𝜑 → 𝜂) | ||
| Theorem | fzadd2d 41990 | Membership of a sum in a finite interval of integers, a deduction version. (Contributed by metakunt, 10-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝑂 ∈ ℤ) & ⊢ (𝜑 → 𝑃 ∈ ℤ) & ⊢ (𝜑 → 𝐽 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐾 ∈ (𝑂...𝑃)) & ⊢ (𝜑 → 𝑄 = (𝑀 + 𝑂)) & ⊢ (𝜑 → 𝑅 = (𝑁 + 𝑃)) ⇒ ⊢ (𝜑 → (𝐽 + 𝐾) ∈ (𝑄...𝑅)) | ||
| Theorem | zltp1led 41991 | Integer ordering relation, a deduction version. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) ⇒ ⊢ (𝜑 → (𝑀 < 𝑁 ↔ (𝑀 + 1) ≤ 𝑁)) | ||
| Theorem | fzne2d 41992 | Elementhood in a finite set of sequential integers, except its upper bound. (Contributed by metakunt, 23-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) & ⊢ (𝜑 → 𝐾 ≠ 𝑁) ⇒ ⊢ (𝜑 → 𝐾 < 𝑁) | ||
| Theorem | eqfnfv2d2 41993* | Equality of functions is determined by their values, a deduction version. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐺 Fn 𝐵) & ⊢ (𝜑 → 𝐴 = 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) = (𝐺‘𝑥)) ⇒ ⊢ (𝜑 → 𝐹 = 𝐺) | ||
| Theorem | fzsplitnd 41994 | Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝐾 ∈ (𝑀...𝑁)) ⇒ ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) | ||
| Theorem | fzsplitnr 41995 | Split a finite interval of integers into two parts. (Contributed by metakunt, 28-May-2024.) |
| ⊢ (𝜑 → 𝑀 ∈ ℤ) & ⊢ (𝜑 → 𝑁 ∈ ℤ) & ⊢ (𝜑 → 𝐾 ∈ ℤ) & ⊢ (𝜑 → 𝑀 ≤ 𝐾) & ⊢ (𝜑 → 𝐾 ≤ 𝑁) ⇒ ⊢ (𝜑 → (𝑀...𝑁) = ((𝑀...(𝐾 − 1)) ∪ (𝐾...𝑁))) | ||
| Theorem | addassnni 41996 | Associative law for addition. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐶 ∈ ℕ ⇒ ⊢ ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶)) | ||
| Theorem | addcomnni 41997 | Commutative law for addition. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 + 𝐵) = (𝐵 + 𝐴) | ||
| Theorem | mulassnni 41998 | Associative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ & ⊢ 𝐶 ∈ ℕ ⇒ ⊢ ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶)) | ||
| Theorem | mulcomnni 41999 | Commutative law for multiplication. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝐴 ∈ ℕ & ⊢ 𝐵 ∈ ℕ ⇒ ⊢ (𝐴 · 𝐵) = (𝐵 · 𝐴) | ||
| Theorem | gcdcomnni 42000 | Commutative law for gcd. (Contributed by metakunt, 25-Apr-2024.) |
| ⊢ 𝑀 ∈ ℕ & ⊢ 𝑁 ∈ ℕ ⇒ ⊢ (𝑀 gcd 𝑁) = (𝑁 gcd 𝑀) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |