HomeHome Metamath Proof Explorer
Theorem List (p. 420 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30159)
  Hilbert Space Explorer  Hilbert Space Explorer
(30160-31682)
  Users' Mathboxes  Users' Mathboxes
(31683-47806)
 

Theorem List for Metamath Proof Explorer - 41901-42000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremrngunsnply 41901* Adjoining one element to a ring results in a set of polynomial evaluations. (Contributed by Stefan O'Rear, 30-Nov-2014.)
(πœ‘ β†’ 𝐡 ∈ (SubRingβ€˜β„‚fld))    &   (πœ‘ β†’ 𝑋 ∈ β„‚)    &   (πœ‘ β†’ 𝑆 = ((RingSpanβ€˜β„‚fld)β€˜(𝐡 βˆͺ {𝑋})))    β‡’   (πœ‘ β†’ (𝑉 ∈ 𝑆 ↔ βˆƒπ‘ ∈ (Polyβ€˜π΅)𝑉 = (π‘β€˜π‘‹)))
 
Theoremflcidc 41902* Finite linear combinations with an indicator function. (Contributed by Stefan O'Rear, 5-Dec-2014.)
(πœ‘ β†’ 𝐹 = (𝑗 ∈ 𝑆 ↦ if(𝑗 = 𝐾, 1, 0)))    &   (πœ‘ β†’ 𝑆 ∈ Fin)    &   (πœ‘ β†’ 𝐾 ∈ 𝑆)    &   ((πœ‘ ∧ 𝑖 ∈ 𝑆) β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ Σ𝑖 ∈ 𝑆 ((πΉβ€˜π‘–) Β· 𝐡) = ⦋𝐾 / π‘–β¦Œπ΅)
 
21.31.46  Endomorphism algebra
 
Syntaxcmend 41903 Syntax for module endomorphism algebra.
class MEndo
 
Definitiondf-mend 41904* Define the endomorphism algebra of a module. (Contributed by Stefan O'Rear, 2-Sep-2015.)
MEndo = (π‘š ∈ V ↦ ⦋(π‘š LMHom π‘š) / π‘β¦Œ({⟨(Baseβ€˜ndx), π‘βŸ©, ⟨(+gβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘f (+gβ€˜π‘š)𝑦))⟩, ⟨(.rβ€˜ndx), (π‘₯ ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (π‘₯ ∘ 𝑦))⟩} βˆͺ {⟨(Scalarβ€˜ndx), (Scalarβ€˜π‘š)⟩, ⟨( ·𝑠 β€˜ndx), (π‘₯ ∈ (Baseβ€˜(Scalarβ€˜π‘š)), 𝑦 ∈ 𝑏 ↦ (((Baseβ€˜π‘š) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘š)𝑦))⟩}))
 
Theoremalgstr 41905 Lemma to shorten proofs of algbase 41906 through algvsca 41910. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   π΄ Struct ⟨1, 6⟩
 
Theoremalgbase 41906 The base set of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   (𝐡 ∈ 𝑉 β†’ 𝐡 = (Baseβ€˜π΄))
 
Theoremalgaddg 41907 The additive operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   ( + ∈ 𝑉 β†’ + = (+gβ€˜π΄))
 
Theoremalgmulr 41908 The multiplicative operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   ( Γ— ∈ 𝑉 β†’ Γ— = (.rβ€˜π΄))
 
Theoremalgsca 41909 The set of scalars of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   (𝑆 ∈ 𝑉 β†’ 𝑆 = (Scalarβ€˜π΄))
 
Theoremalgvsca 41910 The scalar product operation of a constructed algebra. (Contributed by Stefan O'Rear, 27-Nov-2014.) (Revised by Mario Carneiro, 29-Aug-2015.)
𝐴 = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩})    β‡’   ( Β· ∈ 𝑉 β†’ Β· = ( ·𝑠 β€˜π΄))
 
Theoremmendval 41911* Value of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
𝐡 = (𝑀 LMHom 𝑀)    &    + = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f (+gβ€˜π‘€)𝑦))    &    Γ— = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))    &   π‘† = (Scalarβ€˜π‘€)    &    Β· = (π‘₯ ∈ (Baseβ€˜π‘†), 𝑦 ∈ 𝐡 ↦ (((Baseβ€˜π‘€) Γ— {π‘₯}) ∘f ( ·𝑠 β€˜π‘€)𝑦))    β‡’   (𝑀 ∈ 𝑋 β†’ (MEndoβ€˜π‘€) = ({⟨(Baseβ€˜ndx), 𝐡⟩, ⟨(+gβ€˜ndx), + ⟩, ⟨(.rβ€˜ndx), Γ— ⟩} βˆͺ {⟨(Scalarβ€˜ndx), π‘†βŸ©, ⟨( ·𝑠 β€˜ndx), Β· ⟩}))
 
Theoremmendbas 41912 Base set of the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    β‡’   (𝑀 LMHom 𝑀) = (Baseβ€˜π΄)
 
Theoremmendplusgfval 41913* Addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndoβ€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    &    + = (+gβ€˜π‘€)    β‡’   (+gβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘f + 𝑦))
 
Theoremmendplusg 41914 A specific addition in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    &    + = (+gβ€˜π‘€)    &    ✚ = (+gβ€˜π΄)    β‡’   ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 ✚ π‘Œ) = (𝑋 ∘f + π‘Œ))
 
Theoremmendmulrfval 41915* Multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndoβ€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    β‡’   (.rβ€˜π΄) = (π‘₯ ∈ 𝐡, 𝑦 ∈ 𝐡 ↦ (π‘₯ ∘ 𝑦))
 
Theoremmendmulr 41916 A specific multiplication in the module endormoprhism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    &    Β· = (.rβ€˜π΄)    β‡’   ((𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 Β· π‘Œ) = (𝑋 ∘ π‘Œ))
 
Theoremmendsca 41917 The module endomorphism algebra has the same scalars as the underlying module. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndoβ€˜π‘€)    &   π‘† = (Scalarβ€˜π‘€)    β‡’   π‘† = (Scalarβ€˜π΄)
 
Theoremmendvscafval 41918* Scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 2-Sep-2015.) (Proof shortened by AV, 31-Oct-2024.)
𝐴 = (MEndoβ€˜π‘€)    &    Β· = ( ·𝑠 β€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    &   π‘† = (Scalarβ€˜π‘€)    &   πΎ = (Baseβ€˜π‘†)    &   πΈ = (Baseβ€˜π‘€)    β‡’   ( ·𝑠 β€˜π΄) = (π‘₯ ∈ 𝐾, 𝑦 ∈ 𝐡 ↦ ((𝐸 Γ— {π‘₯}) ∘f Β· 𝑦))
 
Theoremmendvsca 41919 A specific scalar multiplication in the module endomorphism algebra. (Contributed by Stefan O'Rear, 3-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    &    Β· = ( ·𝑠 β€˜π‘€)    &   π΅ = (Baseβ€˜π΄)    &   π‘† = (Scalarβ€˜π‘€)    &   πΎ = (Baseβ€˜π‘†)    &   πΈ = (Baseβ€˜π‘€)    &    βˆ™ = ( ·𝑠 β€˜π΄)    β‡’   ((𝑋 ∈ 𝐾 ∧ π‘Œ ∈ 𝐡) β†’ (𝑋 βˆ™ π‘Œ) = ((𝐸 Γ— {𝑋}) ∘f Β· π‘Œ))
 
Theoremmendring 41920 The module endomorphism algebra is a ring. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    β‡’   (𝑀 ∈ LMod β†’ 𝐴 ∈ Ring)
 
Theoremmendlmod 41921 The module endomorphism algebra is a left module. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    &   π‘† = (Scalarβ€˜π‘€)    β‡’   ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ LMod)
 
Theoremmendassa 41922 The module endomorphism algebra is an algebra. (Contributed by Mario Carneiro, 22-Sep-2015.)
𝐴 = (MEndoβ€˜π‘€)    &   π‘† = (Scalarβ€˜π‘€)    β‡’   ((𝑀 ∈ LMod ∧ 𝑆 ∈ CRing) β†’ 𝐴 ∈ AssAlg)
 
21.31.47  Cyclic groups and order
 
Theoremidomrootle 41923* No element of an integral domain can have more than 𝑁 𝑁-th roots. (Contributed by Stefan O'Rear, 11-Sep-2015.)
𝐡 = (Baseβ€˜π‘…)    &    ↑ = (.gβ€˜(mulGrpβ€˜π‘…))    β‡’   ((𝑅 ∈ IDomn ∧ 𝑋 ∈ 𝐡 ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{𝑦 ∈ 𝐡 ∣ (𝑁 ↑ 𝑦) = 𝑋}) ≀ 𝑁)
 
Theoremidomodle 41924* Limit on the number of 𝑁-th roots of unity in an integral domain. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrpβ€˜π‘…) β†Ύs (Unitβ€˜π‘…))    &   π΅ = (Baseβ€˜πΊ)    &   π‘‚ = (odβ€˜πΊ)    β‡’   ((𝑅 ∈ IDomn ∧ 𝑁 ∈ β„•) β†’ (β™―β€˜{π‘₯ ∈ 𝐡 ∣ (π‘‚β€˜π‘₯) βˆ₯ 𝑁}) ≀ 𝑁)
 
Theoremfiuneneq 41925 Two finite sets of equal size have a union of the same size iff they were equal. (Contributed by Stefan O'Rear, 12-Sep-2015.)
((𝐴 β‰ˆ 𝐡 ∧ 𝐴 ∈ Fin) β†’ ((𝐴 βˆͺ 𝐡) β‰ˆ 𝐴 ↔ 𝐴 = 𝐡))
 
Theoremidomsubgmo 41926* The units of an integral domain have at most one subgroup of any single finite cardinality. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Revised by NM, 17-Jun-2017.)
𝐺 = ((mulGrpβ€˜π‘…) β†Ύs (Unitβ€˜π‘…))    β‡’   ((𝑅 ∈ IDomn ∧ 𝑁 ∈ β„•) β†’ βˆƒ*𝑦 ∈ (SubGrpβ€˜πΊ)(β™―β€˜π‘¦) = 𝑁)
 
Theoremproot1mul 41927 Any primitive 𝑁-th root of unity is a multiple of any other. (Contributed by Stefan O'Rear, 2-Nov-2015.)
𝐺 = ((mulGrpβ€˜π‘…) β†Ύs (Unitβ€˜π‘…))    &   π‘‚ = (odβ€˜πΊ)    &   πΎ = (mrClsβ€˜(SubGrpβ€˜πΊ))    β‡’   (((𝑅 ∈ IDomn ∧ 𝑁 ∈ β„•) ∧ (𝑋 ∈ (◑𝑂 β€œ {𝑁}) ∧ π‘Œ ∈ (◑𝑂 β€œ {𝑁}))) β†’ 𝑋 ∈ (πΎβ€˜{π‘Œ}))
 
Theoremproot1hash 41928 If an integral domain has a primitive 𝑁-th root of unity, it has exactly (Ο•β€˜π‘) of them. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrpβ€˜π‘…) β†Ύs (Unitβ€˜π‘…))    &   π‘‚ = (odβ€˜πΊ)    β‡’   ((𝑅 ∈ IDomn ∧ 𝑁 ∈ β„• ∧ 𝑋 ∈ (◑𝑂 β€œ {𝑁})) β†’ (β™―β€˜(◑𝑂 β€œ {𝑁})) = (Ο•β€˜π‘))
 
Theoremproot1ex 41929 The complex field has primitive 𝑁-th roots of unity for all 𝑁. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐺 = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))    &   π‘‚ = (odβ€˜πΊ)    β‡’   (𝑁 ∈ β„• β†’ (-1↑𝑐(2 / 𝑁)) ∈ (◑𝑂 β€œ {𝑁}))
 
21.31.48  Cyclotomic polynomials
 
Syntaxccytp 41930 Syntax for the sequence of cyclotomic polynomials.
class CytP
 
Definitiondf-cytp 41931* The Nth cyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015.)
CytP = (𝑛 ∈ β„• ↦ ((mulGrpβ€˜(Poly1β€˜β„‚fld)) Ξ£g (π‘Ÿ ∈ (β—‘(odβ€˜((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))) β€œ {𝑛}) ↦ ((var1β€˜β„‚fld)(-gβ€˜(Poly1β€˜β„‚fld))((algScβ€˜(Poly1β€˜β„‚fld))β€˜π‘Ÿ)))))
 
Theoremisdomn3 41932 Nonzero elements form a multiplicative submonoid of any domain. (Contributed by Stefan O'Rear, 11-Sep-2015.)
𝐡 = (Baseβ€˜π‘…)    &    0 = (0gβ€˜π‘…)    &   π‘ˆ = (mulGrpβ€˜π‘…)    β‡’   (𝑅 ∈ Domn ↔ (𝑅 ∈ Ring ∧ (𝐡 βˆ– { 0 }) ∈ (SubMndβ€˜π‘ˆ)))
 
Theoremmon1pid 41933 Monicity and degree of the unit polynomial. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝑃 = (Poly1β€˜π‘…)    &    1 = (1rβ€˜π‘ƒ)    &   π‘€ = (Monic1pβ€˜π‘…)    &   π· = ( deg1 β€˜π‘…)    β‡’   (𝑅 ∈ NzRing β†’ ( 1 ∈ 𝑀 ∧ (π·β€˜ 1 ) = 0))
 
Theoremmon1psubm 41934 Monic polynomials are a multiplicative submonoid. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝑃 = (Poly1β€˜π‘…)    &   π‘€ = (Monic1pβ€˜π‘…)    &   π‘ˆ = (mulGrpβ€˜π‘ƒ)    β‡’   (𝑅 ∈ NzRing β†’ 𝑀 ∈ (SubMndβ€˜π‘ˆ))
 
Theoremdeg1mhm 41935 Homomorphic property of the polynomial degree. (Contributed by Stefan O'Rear, 12-Sep-2015.)
𝐷 = ( deg1 β€˜π‘…)    &   π΅ = (Baseβ€˜π‘ƒ)    &   π‘ƒ = (Poly1β€˜π‘…)    &    0 = (0gβ€˜π‘ƒ)    &   π‘Œ = ((mulGrpβ€˜π‘ƒ) β†Ύs (𝐡 βˆ– { 0 }))    &   π‘ = (β„‚fld β†Ύs β„•0)    β‡’   (𝑅 ∈ Domn β†’ (𝐷 β†Ύ (𝐡 βˆ– { 0 })) ∈ (π‘Œ MndHom 𝑁))
 
Theoremcytpfn 41936 Functionality of the cyclotomic polynomial sequence. (Contributed by Stefan O'Rear, 5-Sep-2015.)
CytP Fn β„•
 
Theoremcytpval 41937* Substitutions for the Nth cyclotomic polynomial. (Contributed by Stefan O'Rear, 5-Sep-2015.)
𝑇 = ((mulGrpβ€˜β„‚fld) β†Ύs (β„‚ βˆ– {0}))    &   π‘‚ = (odβ€˜π‘‡)    &   π‘ƒ = (Poly1β€˜β„‚fld)    &   π‘‹ = (var1β€˜β„‚fld)    &   π‘„ = (mulGrpβ€˜π‘ƒ)    &    βˆ’ = (-gβ€˜π‘ƒ)    &   π΄ = (algScβ€˜π‘ƒ)    β‡’   (𝑁 ∈ β„• β†’ (CytPβ€˜π‘) = (𝑄 Ξ£g (π‘Ÿ ∈ (◑𝑂 β€œ {𝑁}) ↦ (𝑋 βˆ’ (π΄β€˜π‘Ÿ)))))
 
21.31.49  Miscellaneous topology
 
Theoremfgraphopab 41938* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴⟢𝐡 β†’ 𝐹 = {βŸ¨π‘Ž, π‘βŸ© ∣ ((π‘Ž ∈ 𝐴 ∧ 𝑏 ∈ 𝐡) ∧ (πΉβ€˜π‘Ž) = 𝑏)})
 
Theoremfgraphxp 41939* Express a function as a subset of the Cartesian product. (Contributed by Stefan O'Rear, 25-Jan-2015.)
(𝐹:𝐴⟢𝐡 β†’ 𝐹 = {π‘₯ ∈ (𝐴 Γ— 𝐡) ∣ (πΉβ€˜(1st β€˜π‘₯)) = (2nd β€˜π‘₯)})
 
Theoremhausgraph 41940 The graph of a continuous function into a Hausdorff space is closed. (Contributed by Stefan O'Rear, 25-Jan-2015.)
((𝐾 ∈ Haus ∧ 𝐹 ∈ (𝐽 Cn 𝐾)) β†’ 𝐹 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)))
 
Syntaxctopsep 41941 The class of separable topologies.
class TopSep
 
Syntaxctoplnd 41942 The class of LindelΓΆf topologies.
class TopLnd
 
Definitiondf-topsep 41943* A topology is separable iff it has a countable dense subset. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopSep = {𝑗 ∈ Top ∣ βˆƒπ‘₯ ∈ 𝒫 βˆͺ 𝑗(π‘₯ β‰Ό Ο‰ ∧ ((clsβ€˜π‘—)β€˜π‘₯) = βˆͺ 𝑗)}
 
Definitiondf-toplnd 41944* A topology is LindelΓΆf iff every open cover has a countable subcover. (Contributed by Stefan O'Rear, 8-Jan-2015.)
TopLnd = {π‘₯ ∈ Top ∣ βˆ€π‘¦ ∈ 𝒫 π‘₯(βˆͺ π‘₯ = βˆͺ 𝑦 β†’ βˆƒπ‘§ ∈ 𝒫 π‘₯(𝑧 β‰Ό Ο‰ ∧ βˆͺ π‘₯ = βˆͺ 𝑧))}
 
21.32  Mathbox for Noam Pasman
 
Theoremr1sssucd 41945 Deductive form of r1sssuc 9775. (Contributed by Noam Pasman, 19-Jan-2025.)
(πœ‘ β†’ 𝐴 ∈ On)    β‡’   (πœ‘ β†’ (𝑅1β€˜π΄) βŠ† (𝑅1β€˜suc 𝐴))
 
21.33  Mathbox for Jon Pennant
 
Theoremiocunico 41946 Split an open interval into two pieces at point B, Co-author TA. (Contributed by Jon Pennant, 8-Jun-2019.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (𝐴 < 𝐡 ∧ 𝐡 < 𝐢)) β†’ ((𝐴(,]𝐡) βˆͺ (𝐡[,)𝐢)) = (𝐴(,)𝐢))
 
Theoremiocinico 41947 The intersection of two sets that meet at a point is that point. (Contributed by Jon Pennant, 12-Jun-2019.)
(((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ 𝐢 ∈ ℝ*) ∧ (𝐴 < 𝐡 ∧ 𝐡 < 𝐢)) β†’ ((𝐴(,]𝐡) ∩ (𝐡[,)𝐢)) = {𝐡})
 
Theoremiocmbl 41948 An open-below, closed-above real interval is measurable. (Contributed by Jon Pennant, 12-Jun-2019.)
((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ) β†’ (𝐴(,]𝐡) ∈ dom vol)
 
Theoremcnioobibld 41949* A bounded, continuous function on an open bounded interval is integrable. The function must be bounded. For a counterexample, consider 𝐹 = (π‘₯ ∈ (0(,)1) ↦ (1 / π‘₯)). See cniccibl 25350 for closed bounded intervals. (Contributed by Jon Pennant, 31-May-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐹 ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ dom 𝐹(absβ€˜(πΉβ€˜π‘¦)) ≀ π‘₯)    β‡’   (πœ‘ β†’ 𝐹 ∈ 𝐿1)
 
Theoremarearect 41950 The area of a rectangle whose sides are parallel to the coordinate axes in (ℝ Γ— ℝ) is its width multiplied by its height. (Contributed by Jon Pennant, 19-Mar-2019.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    &   πΆ ∈ ℝ    &   π· ∈ ℝ    &   π΄ ≀ 𝐡    &   πΆ ≀ 𝐷    &   π‘† = ((𝐴[,]𝐡) Γ— (𝐢[,]𝐷))    β‡’   (areaβ€˜π‘†) = ((𝐡 βˆ’ 𝐴) Β· (𝐷 βˆ’ 𝐢))
 
Theoremareaquad 41951* The area of a quadrilateral with two sides which are parallel to the y-axis in (ℝ Γ— ℝ) is its width multiplied by the average height of its higher edge minus the average height of its lower edge. Co-author TA. (Contributed by Jon Pennant, 31-May-2019.)
𝐴 ∈ ℝ    &   π΅ ∈ ℝ    &   πΆ ∈ ℝ    &   π· ∈ ℝ    &   πΈ ∈ ℝ    &   πΉ ∈ ℝ    &   π΄ < 𝐡    &   πΆ ≀ 𝐸    &   π· ≀ 𝐹    &   π‘ˆ = (𝐢 + (((π‘₯ βˆ’ 𝐴) / (𝐡 βˆ’ 𝐴)) Β· (𝐷 βˆ’ 𝐢)))    &   π‘‰ = (𝐸 + (((π‘₯ βˆ’ 𝐴) / (𝐡 βˆ’ 𝐴)) Β· (𝐹 βˆ’ 𝐸)))    &   π‘† = {⟨π‘₯, π‘¦βŸ© ∣ (π‘₯ ∈ (𝐴[,]𝐡) ∧ 𝑦 ∈ (π‘ˆ[,]𝑉))}    β‡’   (areaβ€˜π‘†) = ((((𝐹 + 𝐸) / 2) βˆ’ ((𝐷 + 𝐢) / 2)) Β· (𝐡 βˆ’ 𝐴))
 
21.34  Mathbox for Richard Penner
 
21.34.1  Set Theory and Ordinal Numbers
 
Theoremuniel 41952* Two ways to say a union is an element of a class. (Contributed by RP, 27-Jan-2025.)
(βˆͺ 𝐴 ∈ 𝐡 ↔ βˆƒπ‘₯ ∈ 𝐡 βˆ€π‘§(𝑧 ∈ π‘₯ ↔ βˆƒπ‘¦ ∈ 𝐴 𝑧 ∈ 𝑦))
 
Theoremunielss 41953* Two ways to say the union of a class is an element of a subclass. (Contributed by RP, 29-Jan-2025.)
(𝐴 βŠ† 𝐡 β†’ (βˆͺ 𝐡 ∈ 𝐴 ↔ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯))
 
Theoremunielid 41954* Two ways to say the union of a class is an element of that class. (Contributed by RP, 27-Jan-2025.)
(βˆͺ 𝐴 ∈ 𝐴 ↔ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯)
 
Theoremssunib 41955* Two ways to say a class is a subclass of a union. (Contributed by RP, 27-Jan-2025.)
(𝐴 βŠ† βˆͺ 𝐡 ↔ βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐡 π‘₯ ∈ 𝑦)
 
Theoremrp-intrabeq 41956* Equality theorem for supremum of sets of ordinals. (Contributed by RP, 23-Jan-2025.)
(𝐴 = 𝐡 β†’ ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯} = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐡 𝑦 βŠ† π‘₯})
 
Theoremrp-unirabeq 41957* Equality theorem for infimum of non-empty classes of ordinals. (Contributed by RP, 23-Jan-2025.)
(𝐴 = 𝐡 β†’ βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 π‘₯ βŠ† 𝑦} = βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐡 π‘₯ βŠ† 𝑦})
 
Theoremonmaxnelsup 41958* Two ways to say the maximum element of a class of ordinals is also the supremum of that class. (Contributed by RP, 27-Jan-2025.)
(𝐴 βŠ† On β†’ (Β¬ 𝐴 βŠ† βˆͺ 𝐴 ↔ βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯))
 
Theoremonsupneqmaxlim0 41959 If the supremum of a class of ordinals is not in that class, then the supremum is a limit ordinal or empty. (Contributed by RP, 27-Jan-2025.)
(𝐴 βŠ† On β†’ (𝐴 βŠ† βˆͺ 𝐴 β†’ βˆͺ 𝐴 = βˆͺ βˆͺ 𝐴))
 
Theoremonsupcl2 41960 The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
(𝐴 ∈ 𝒫 On β†’ βˆͺ 𝐴 ∈ On)
 
Theoremonuniintrab 41961* The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Closed form of uniordint 7786. (Contributed by RP, 28-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ βˆͺ 𝐴 = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯})
 
Theoremonintunirab 41962* The intersection of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 29-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 β‰  βˆ…) β†’ ∩ 𝐴 = βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 π‘₯ βŠ† 𝑦})
 
Theoremonsupnmax 41963 If the union of a class of ordinals is not the maximum element of that class, then the union is a limit ordinal or empty. But this isn't a biconditional since 𝐴 could be a non-empty set where a limit ordinal or the empty set happens to be the largest element. (Contributed by RP, 27-Jan-2025.)
(𝐴 βŠ† On β†’ (Β¬ βˆͺ 𝐴 ∈ 𝐴 β†’ βˆͺ 𝐴 = βˆͺ βˆͺ 𝐴))
 
Theoremonsupuni 41964 The supremum of a set of ordinals is the union of that set. Lemma 2.10 of [Schloeder] p. 5. (Contributed by RP, 19-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ sup(𝐴, On, E ) = βˆͺ 𝐴)
 
Theoremonsupuni2 41965 The supremum of a set of ordinals is the union of that set. (Contributed by RP, 22-Jan-2025.)
(𝐴 ∈ 𝒫 On β†’ sup(𝐴, On, E ) = βˆͺ 𝐴)
 
Theoremonsupintrab 41966* The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. Definition 2.9 of [Schloeder] p. 5. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ sup(𝐴, On, E ) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯})
 
Theoremonsupintrab2 41967* The supremum of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.)
(𝐴 ∈ 𝒫 On β†’ sup(𝐴, On, E ) = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯})
 
Theoremonsupcl3 41968* The supremum of a set of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯} ∈ On)
 
Theoremonsupex3 41969* The supremum of a set of ordinals exists. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯} ∈ V)
 
Theoremonuniintrab2 41970* The union of a set of ordinals is the intersection of every ordinal greater-than-or-equal to every member of the set. (Contributed by RP, 23-Jan-2025.)
(𝐴 ∈ 𝒫 On β†’ βˆͺ 𝐴 = ∩ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯})
 
Theoremoninfint 41971 The infimum of a non-empty class of ordinals is the intersection of that class. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 β‰  βˆ…) β†’ inf(𝐴, On, E ) = ∩ 𝐴)
 
Theoremoninfunirab 41972* The infimum of a non-empty class of ordinals is the union of every ordinal less-than-or-equal to every element of that class. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 β‰  βˆ…) β†’ inf(𝐴, On, E ) = βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 π‘₯ βŠ† 𝑦})
 
Theoremoninfcl2 41973* The infimum of a non-empty class of ordinals is an ordinal. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 β‰  βˆ…) β†’ βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 π‘₯ βŠ† 𝑦} ∈ On)
 
Theoremonsupmaxb 41974 The union of a class of ordinals is an element is an element of that class if and only if there is a maximum element of that class under the epsilon relation, which is to say that the domain of the restricted epsilon relation is not the whole class. (Contributed by RP, 25-Jan-2025.)
(𝐴 βŠ† On β†’ (dom ( E ∩ (𝐴 Γ— 𝐴)) = 𝐴 ↔ Β¬ βˆͺ 𝐴 ∈ 𝐴))
 
Theoremonexgt 41975* For any ordinal, there is always a larger ordinal. (Contributed by RP, 1-Feb-2025.)
(𝐴 ∈ On β†’ βˆƒπ‘₯ ∈ On 𝐴 ∈ π‘₯)
 
Theoremonexomgt 41976* For any ordinal, there is always a larger product of omega. (Contributed by RP, 1-Feb-2025.)
(𝐴 ∈ On β†’ βˆƒπ‘₯ ∈ On 𝐴 ∈ (Ο‰ Β·o π‘₯))
 
Theoremomlimcl2 41977 The product of a limit ordinal with any nonzero ordinal is a limit ordinal. (Contributed by RP, 8-Jan-2025.)
(((𝐴 ∈ On ∧ (𝐡 ∈ 𝐢 ∧ Lim 𝐡)) ∧ βˆ… ∈ 𝐴) β†’ Lim (𝐡 Β·o 𝐴))
 
Theoremonexlimgt 41978* For any ordinal, there is always a larger limit ordinal. (Contributed by RP, 1-Feb-2025.)
(𝐴 ∈ On β†’ βˆƒπ‘₯ ∈ On (Lim π‘₯ ∧ 𝐴 ∈ π‘₯))
 
Theoremonexoegt 41979* For any ordinal, there is always a larger power of omega. (Contributed by RP, 1-Feb-2025.)
(𝐴 ∈ On β†’ βˆƒπ‘₯ ∈ On 𝐴 ∈ (Ο‰ ↑o π‘₯))
 
Theoremoninfex2 41980* The infimum of a non-empty class of ordinals exists. (Contributed by RP, 23-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 β‰  βˆ…) β†’ βˆͺ {π‘₯ ∈ On ∣ βˆ€π‘¦ ∈ 𝐴 π‘₯ βŠ† 𝑦} ∈ V)
 
Theoremonsupeqmax 41981* Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ (βˆƒπ‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ 𝐴 𝑦 βŠ† π‘₯ ↔ βˆͺ 𝐴 ∈ 𝐴))
 
Theoremonsupeqnmax 41982* Condition when the supremum of a class of ordinals is not the maximum element of that class. (Contributed by RP, 27-Jan-2025.)
(𝐴 βŠ† On β†’ (βˆ€π‘₯ ∈ 𝐴 βˆƒπ‘¦ ∈ 𝐴 π‘₯ ∈ 𝑦 ↔ (βˆͺ 𝐴 = βˆͺ βˆͺ 𝐴 ∧ Β¬ βˆͺ 𝐴 ∈ 𝐴)))
 
Theoremonsuplub 41983* The supremum of a set of ordinals is the least upper bound. (Contributed by RP, 27-Jan-2025.)
(((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) ∧ 𝐡 ∈ On) β†’ (𝐡 ∈ βˆͺ 𝐴 ↔ βˆƒπ‘§ ∈ 𝐴 𝐡 ∈ 𝑧))
 
Theoremonsupnub 41984* An upper bound of a set of ordinals is not less than the supremum. (Contributed by RP, 27-Jan-2025.)
(((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) ∧ (𝐡 ∈ On ∧ βˆ€π‘§ ∈ 𝐴 𝑧 βŠ† 𝐡)) β†’ βˆͺ 𝐴 βŠ† 𝐡)
 
Theoremonfisupcl 41985 Sufficient condition when the supremum of a set of ordinals is the maximum element of that set. See ordunifi 9290. (Contributed by RP, 27-Jan-2025.)
((𝐴 βŠ† On ∧ 𝐴 ∈ 𝑉) β†’ ((𝐴 ∈ Fin ∧ 𝐴 β‰  βˆ…) β†’ βˆͺ 𝐴 ∈ 𝐴))
 
Theoremonelord 41986 Every element of a ordinal is an ordinal. Lemma 1.3 of [Schloeder] p. 1. Based on onelon 6387 and eloni 6372. (Contributed by RP, 15-Jan-2025.)
((𝐴 ∈ On ∧ 𝐡 ∈ 𝐴) β†’ Ord 𝐡)
 
Theoremonepsuc 41987 Every ordinal is less than its successor, relationship version. Lemma 1.7 of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
(𝐴 ∈ On β†’ 𝐴 E suc 𝐴)
 
Theoremepsoon 41988 The ordinals are strictly and completely (linearly) ordered. Theorem 1.9 of [Schloeder] p. 1. Based on epweon 7759 and weso 5667. (Contributed by RP, 15-Jan-2025.)
E Or On
 
Theoremepirron 41989 The strict order on the ordinals is irreflexive. Theorem 1.9(i) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
(𝐴 ∈ On β†’ Β¬ 𝐴 E 𝐴)
 
Theoremoneptr 41990 The strict order on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 E 𝐡 ∧ 𝐡 E 𝐢) β†’ 𝐴 E 𝐢))
 
Theoremoneltr 41991 The elementhood relation on the ordinals is transitive. Theorem 1.9(ii) of [Schloeder] p. 1. See ontr1 6408. (Contributed by RP, 15-Jan-2025.)
((𝐴 ∈ On ∧ 𝐡 ∈ On ∧ 𝐢 ∈ On) β†’ ((𝐴 ∈ 𝐡 ∧ 𝐡 ∈ 𝐢) β†’ 𝐴 ∈ 𝐢))
 
Theoremoneptri 41992 The strict, complete (linear) order on the ordinals is complete. Theorem 1.9(iii) of [Schloeder] p. 1. (Contributed by RP, 15-Jan-2025.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 E 𝐡 ∨ 𝐡 E 𝐴 ∨ 𝐴 = 𝐡))
 
Theoremoneltri 41993 The elementhood relation on the ordinals is complete, so we have triality. Theorem 1.9(iii) of [Schloeder] p. 1. See ordtri3or 6394. (Contributed by RP, 15-Jan-2025.)
((𝐴 ∈ On ∧ 𝐡 ∈ On) β†’ (𝐴 ∈ 𝐡 ∨ 𝐡 ∈ 𝐴 ∨ 𝐴 = 𝐡))
 
Theoremordeldif 41994 Membership in the difference of ordinals. (Contributed by RP, 15-Jan-2025.)
((Ord 𝐴 ∧ Ord 𝐡) β†’ (𝐢 ∈ (𝐴 βˆ– 𝐡) ↔ (𝐢 ∈ 𝐴 ∧ 𝐡 βŠ† 𝐢)))
 
Theoremordeldifsucon 41995 Membership in the difference of ordinal and successor ordinal. (Contributed by RP, 16-Jan-2025.)
((Ord 𝐴 ∧ 𝐡 ∈ On) β†’ (𝐢 ∈ (𝐴 βˆ– suc 𝐡) ↔ (𝐢 ∈ 𝐴 ∧ 𝐡 ∈ 𝐢)))
 
Theoremordeldif1o 41996 Membership in the difference of ordinal and ordinal one. (Contributed by RP, 16-Jan-2025.)
(Ord 𝐴 β†’ (𝐡 ∈ (𝐴 βˆ– 1o) ↔ (𝐡 ∈ 𝐴 ∧ 𝐡 β‰  βˆ…)))
 
Theoremordne0gt0 41997 Ordinal zero is less than every non-zero ordinal. Theorem 1.10 of [Schloeder] p. 2. Closely related to ord0eln0 6417. (Contributed by RP, 16-Jan-2025.)
((Ord 𝐴 ∧ 𝐴 β‰  βˆ…) β†’ βˆ… ∈ 𝐴)
 
Theoremondif1i 41998 Ordinal zero is less than every non-zero ordinal, class difference version. Theorem 1.10 of [Schloeder] p. 2. See ondif1 8498. (Contributed by RP, 16-Jan-2025.)
(𝐴 ∈ (On βˆ– 1o) β†’ βˆ… ∈ 𝐴)
 
Theoremonsucelab 41999* The successor of every ordinal is an element of the class of successor ordinals. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
(𝐴 ∈ On β†’ suc 𝐴 ∈ {π‘Ž ∈ On ∣ βˆƒπ‘ ∈ On π‘Ž = suc 𝑏})
 
Theoremdflim6 42000* A limit ordinal is a non-zero ordinal which is not a succesor ordinal. Definition 1.11 of [Schloeder] p. 2. (Contributed by RP, 16-Jan-2025.)
(Lim 𝐴 ↔ (Ord 𝐴 ∧ 𝐴 β‰  βˆ… ∧ Β¬ βˆƒπ‘ ∈ On 𝐴 = suc 𝑏))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47806
  Copyright terms: Public domain < Previous  Next >