Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > df-tskm | Structured version Visualization version GIF version |
Description: A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) |
Ref | Expression |
---|---|
df-tskm | ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ctskm 10524 | . 2 class tarskiMap | |
2 | vx | . . 3 setvar 𝑥 | |
3 | cvv 3422 | . . 3 class V | |
4 | vy | . . . . . 6 setvar 𝑦 | |
5 | 2, 4 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑦 |
6 | ctsk 10435 | . . . . 5 class Tarski | |
7 | 5, 4, 6 | crab 3067 | . . . 4 class {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} |
8 | 7 | cint 4876 | . . 3 class ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} |
9 | 2, 3, 8 | cmpt 5153 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
10 | 1, 9 | wceq 1539 | 1 wff tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
Colors of variables: wff setvar class |
This definition is referenced by: tskmval 10526 |
Copyright terms: Public domain | W3C validator |