MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-tskm Structured version   Visualization version   GIF version

Definition df-tskm 10907
Description: A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.)
Assertion
Ref Expression
df-tskm tarskiMap = (𝑥 ∈ V ↦ {𝑦 ∈ Tarski ∣ 𝑥𝑦})
Distinct variable group:   𝑥,𝑦

Detailed syntax breakdown of Definition df-tskm
StepHypRef Expression
1 ctskm 10906 . 2 class tarskiMap
2 vx . . 3 setvar 𝑥
3 cvv 3488 . . 3 class V
4 vy . . . . . 6 setvar 𝑦
52, 4wel 2109 . . . . 5 wff 𝑥𝑦
6 ctsk 10817 . . . . 5 class Tarski
75, 4, 6crab 3443 . . . 4 class {𝑦 ∈ Tarski ∣ 𝑥𝑦}
87cint 4970 . . 3 class {𝑦 ∈ Tarski ∣ 𝑥𝑦}
92, 3, 8cmpt 5249 . 2 class (𝑥 ∈ V ↦ {𝑦 ∈ Tarski ∣ 𝑥𝑦})
101, 9wceq 1537 1 wff tarskiMap = (𝑥 ∈ V ↦ {𝑦 ∈ Tarski ∣ 𝑥𝑦})
Colors of variables: wff setvar class
This definition is referenced by:  tskmval  10908
  Copyright terms: Public domain W3C validator