| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > df-tskm | Structured version Visualization version GIF version | ||
| Description: A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) |
| Ref | Expression |
|---|---|
| df-tskm | ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ctskm 10856 | . 2 class tarskiMap | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3464 | . . 3 class V | |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | wel 2110 | . . . . 5 wff 𝑥 ∈ 𝑦 |
| 6 | ctsk 10767 | . . . . 5 class Tarski | |
| 7 | 5, 4, 6 | crab 3420 | . . . 4 class {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} |
| 8 | 7 | cint 4927 | . . 3 class ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} |
| 9 | 2, 3, 8 | cmpt 5206 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
| 10 | 1, 9 | wceq 1540 | 1 wff tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) |
| Colors of variables: wff setvar class |
| This definition is referenced by: tskmval 10858 |
| Copyright terms: Public domain | W3C validator |