|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > df-tskm | Structured version Visualization version GIF version | ||
| Description: A function that maps a set 𝑥 to the smallest Tarski class that contains the set. (Contributed by FL, 30-Dec-2010.) | 
| Ref | Expression | 
|---|---|
| df-tskm | ⊢ tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ctskm 10877 | . 2 class tarskiMap | |
| 2 | vx | . . 3 setvar 𝑥 | |
| 3 | cvv 3480 | . . 3 class V | |
| 4 | vy | . . . . . 6 setvar 𝑦 | |
| 5 | 2, 4 | wel 2109 | . . . . 5 wff 𝑥 ∈ 𝑦 | 
| 6 | ctsk 10788 | . . . . 5 class Tarski | |
| 7 | 5, 4, 6 | crab 3436 | . . . 4 class {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} | 
| 8 | 7 | cint 4946 | . . 3 class ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦} | 
| 9 | 2, 3, 8 | cmpt 5225 | . 2 class (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | 
| 10 | 1, 9 | wceq 1540 | 1 wff tarskiMap = (𝑥 ∈ V ↦ ∩ {𝑦 ∈ Tarski ∣ 𝑥 ∈ 𝑦}) | 
| Colors of variables: wff setvar class | 
| This definition is referenced by: tskmval 10879 | 
| Copyright terms: Public domain | W3C validator |