MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Structured version   Visualization version   GIF version

Theorem tskmval 10737
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskmval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3458 . 2 (𝐴𝑉𝐴 ∈ V)
2 grothtsk 10733 . . . . 5 Tarski = V
31, 2eleqtrrdi 2844 . . . 4 (𝐴𝑉𝐴 Tarski)
4 eluni2 4862 . . . 4 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
53, 4sylib 218 . . 3 (𝐴𝑉 → ∃𝑥 ∈ Tarski 𝐴𝑥)
6 intexrab 5287 . . 3 (∃𝑥 ∈ Tarski 𝐴𝑥 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
75, 6sylib 218 . 2 (𝐴𝑉 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
8 eleq1 2821 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
98rabbidv 3403 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
109inteqd 4902 . . 3 (𝑦 = 𝐴 {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
11 df-tskm 10736 . . 3 tarskiMap = (𝑦 ∈ V ↦ {𝑥 ∈ Tarski ∣ 𝑦𝑥})
1210, 11fvmptg 6933 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V) → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
131, 7, 12syl2anc 584 1 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  wrex 3057  {crab 3396  Vcvv 3437   cuni 4858   cint 4897  cfv 6486  Tarskictsk 10646  tarskiMapctskm 10735
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372  ax-groth 10721
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-tsk 10647  df-tskm 10736
This theorem is referenced by:  tskmid  10738  tskmcl  10739  sstskm  10740  eltskm  10741
  Copyright terms: Public domain W3C validator