MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Structured version   Visualization version   GIF version

Theorem tskmval 10830
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem tskmval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ V)
2 grothtsk 10826 . . . . 5 βˆͺ Tarski = V
31, 2eleqtrrdi 2844 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ βˆͺ Tarski)
4 eluni2 4911 . . . 4 (𝐴 ∈ βˆͺ Tarski ↔ βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯)
53, 4sylib 217 . . 3 (𝐴 ∈ 𝑉 β†’ βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯)
6 intexrab 5339 . . 3 (βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯ ↔ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V)
75, 6sylib 217 . 2 (𝐴 ∈ 𝑉 β†’ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V)
8 eleq1 2821 . . . . 5 (𝑦 = 𝐴 β†’ (𝑦 ∈ π‘₯ ↔ 𝐴 ∈ π‘₯))
98rabbidv 3440 . . . 4 (𝑦 = 𝐴 β†’ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯} = {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
109inteqd 4954 . . 3 (𝑦 = 𝐴 β†’ ∩ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯} = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
11 df-tskm 10829 . . 3 tarskiMap = (𝑦 ∈ V ↦ ∩ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯})
1210, 11fvmptg 6993 . 2 ((𝐴 ∈ V ∧ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V) β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
131, 7, 12syl2anc 584 1 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1541   ∈ wcel 2106  βˆƒwrex 3070  {crab 3432  Vcvv 3474  βˆͺ cuni 4907  βˆ© cint 4949  β€˜cfv 6540  Tarskictsk 10739  tarskiMapctskm 10828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-groth 10814
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-iota 6492  df-fun 6542  df-fv 6548  df-tsk 10740  df-tskm 10829
This theorem is referenced by:  tskmid  10831  tskmcl  10832  sstskm  10833  eltskm  10834
  Copyright terms: Public domain W3C validator