MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Structured version   Visualization version   GIF version

Theorem tskmval 10870
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
Distinct variable group:   π‘₯,𝐴
Allowed substitution hint:   𝑉(π‘₯)

Proof of Theorem tskmval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3492 . 2 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ V)
2 grothtsk 10866 . . . . 5 βˆͺ Tarski = V
31, 2eleqtrrdi 2840 . . . 4 (𝐴 ∈ 𝑉 β†’ 𝐴 ∈ βˆͺ Tarski)
4 eluni2 4916 . . . 4 (𝐴 ∈ βˆͺ Tarski ↔ βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯)
53, 4sylib 217 . . 3 (𝐴 ∈ 𝑉 β†’ βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯)
6 intexrab 5346 . . 3 (βˆƒπ‘₯ ∈ Tarski 𝐴 ∈ π‘₯ ↔ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V)
75, 6sylib 217 . 2 (𝐴 ∈ 𝑉 β†’ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V)
8 eleq1 2817 . . . . 5 (𝑦 = 𝐴 β†’ (𝑦 ∈ π‘₯ ↔ 𝐴 ∈ π‘₯))
98rabbidv 3438 . . . 4 (𝑦 = 𝐴 β†’ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯} = {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
109inteqd 4958 . . 3 (𝑦 = 𝐴 β†’ ∩ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯} = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
11 df-tskm 10869 . . 3 tarskiMap = (𝑦 ∈ V ↦ ∩ {π‘₯ ∈ Tarski ∣ 𝑦 ∈ π‘₯})
1210, 11fvmptg 7008 . 2 ((𝐴 ∈ V ∧ ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯} ∈ V) β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
131, 7, 12syl2anc 582 1 (𝐴 ∈ 𝑉 β†’ (tarskiMapβ€˜π΄) = ∩ {π‘₯ ∈ Tarski ∣ 𝐴 ∈ π‘₯})
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   = wceq 1533   ∈ wcel 2098  βˆƒwrex 3067  {crab 3430  Vcvv 3473  βˆͺ cuni 4912  βˆ© cint 4953  β€˜cfv 6553  Tarskictsk 10779  tarskiMapctskm 10868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pr 5433  ax-groth 10854
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fv 6561  df-tsk 10780  df-tskm 10869
This theorem is referenced by:  tskmid  10871  tskmcl  10872  sstskm  10873  eltskm  10874
  Copyright terms: Public domain W3C validator