MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskmval Structured version   Visualization version   GIF version

Theorem tskmval 10595
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.)
Assertion
Ref Expression
tskmval (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem tskmval
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 elex 3450 . 2 (𝐴𝑉𝐴 ∈ V)
2 grothtsk 10591 . . . . 5 Tarski = V
31, 2eleqtrrdi 2850 . . . 4 (𝐴𝑉𝐴 Tarski)
4 eluni2 4843 . . . 4 (𝐴 Tarski ↔ ∃𝑥 ∈ Tarski 𝐴𝑥)
53, 4sylib 217 . . 3 (𝐴𝑉 → ∃𝑥 ∈ Tarski 𝐴𝑥)
6 intexrab 5264 . . 3 (∃𝑥 ∈ Tarski 𝐴𝑥 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
75, 6sylib 217 . 2 (𝐴𝑉 {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V)
8 eleq1 2826 . . . . 5 (𝑦 = 𝐴 → (𝑦𝑥𝐴𝑥))
98rabbidv 3414 . . . 4 (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
109inteqd 4884 . . 3 (𝑦 = 𝐴 {𝑥 ∈ Tarski ∣ 𝑦𝑥} = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
11 df-tskm 10594 . . 3 tarskiMap = (𝑦 ∈ V ↦ {𝑥 ∈ Tarski ∣ 𝑦𝑥})
1210, 11fvmptg 6873 . 2 ((𝐴 ∈ V ∧ {𝑥 ∈ Tarski ∣ 𝐴𝑥} ∈ V) → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
131, 7, 12syl2anc 584 1 (𝐴𝑉 → (tarskiMap‘𝐴) = {𝑥 ∈ Tarski ∣ 𝐴𝑥})
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  Vcvv 3432   cuni 4839   cint 4879  cfv 6433  Tarskictsk 10504  tarskiMapctskm 10593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-groth 10579
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-tsk 10505  df-tskm 10594
This theorem is referenced by:  tskmid  10596  tskmcl  10597  sstskm  10598  eltskm  10599
  Copyright terms: Public domain W3C validator