| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tskmval | Structured version Visualization version GIF version | ||
| Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
| Ref | Expression |
|---|---|
| tskmval | ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex 3468 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
| 2 | grothtsk 10788 | . . . . 5 ⊢ ∪ Tarski = V | |
| 3 | 1, 2 | eleqtrrdi 2839 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∪ Tarski) |
| 4 | eluni2 4875 | . . . 4 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
| 5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
| 6 | intexrab 5302 | . . 3 ⊢ (∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ↔ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) | |
| 7 | 5, 6 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) |
| 8 | eleq1 2816 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
| 9 | 8 | rabbidv 3413 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
| 10 | 9 | inteqd 4915 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
| 11 | df-tskm 10791 | . . 3 ⊢ tarskiMap = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥}) | |
| 12 | 10, 11 | fvmptg 6966 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
| 13 | 1, 7, 12 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3405 Vcvv 3447 ∪ cuni 4871 ∩ cint 4910 ‘cfv 6511 Tarskictsk 10701 tarskiMapctskm 10790 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-groth 10776 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-iota 6464 df-fun 6513 df-fv 6519 df-tsk 10702 df-tskm 10791 |
| This theorem is referenced by: tskmid 10793 tskmcl 10794 sstskm 10795 eltskm 10796 |
| Copyright terms: Public domain | W3C validator |