![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmval | Structured version Visualization version GIF version |
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskmval | ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3499 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | grothtsk 10873 | . . . . 5 ⊢ ∪ Tarski = V | |
3 | 1, 2 | eleqtrrdi 2850 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∪ Tarski) |
4 | eluni2 4916 | . . . 4 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
5 | 3, 4 | sylib 218 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
6 | intexrab 5353 | . . 3 ⊢ (∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ↔ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) | |
7 | 5, 6 | sylib 218 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) |
8 | eleq1 2827 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
9 | 8 | rabbidv 3441 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
10 | 9 | inteqd 4956 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
11 | df-tskm 10876 | . . 3 ⊢ tarskiMap = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥}) | |
12 | 10, 11 | fvmptg 7014 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
13 | 1, 7, 12 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 {crab 3433 Vcvv 3478 ∪ cuni 4912 ∩ cint 4951 ‘cfv 6563 Tarskictsk 10786 tarskiMapctskm 10875 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-groth 10861 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-iota 6516 df-fun 6565 df-fv 6571 df-tsk 10787 df-tskm 10876 |
This theorem is referenced by: tskmid 10878 tskmcl 10879 sstskm 10880 eltskm 10881 |
Copyright terms: Public domain | W3C validator |