Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tskmval | Structured version Visualization version GIF version |
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskmval | ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3459 | . 2 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ V) | |
2 | grothtsk 10692 | . . . . 5 ⊢ ∪ Tarski = V | |
3 | 1, 2 | eleqtrrdi 2848 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ ∪ Tarski) |
4 | eluni2 4856 | . . . 4 ⊢ (𝐴 ∈ ∪ Tarski ↔ ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) | |
5 | 3, 4 | sylib 217 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥) |
6 | intexrab 5284 | . . 3 ⊢ (∃𝑥 ∈ Tarski 𝐴 ∈ 𝑥 ↔ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) | |
7 | 5, 6 | sylib 217 | . 2 ⊢ (𝐴 ∈ 𝑉 → ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) |
8 | eleq1 2824 | . . . . 5 ⊢ (𝑦 = 𝐴 → (𝑦 ∈ 𝑥 ↔ 𝐴 ∈ 𝑥)) | |
9 | 8 | rabbidv 3411 | . . . 4 ⊢ (𝑦 = 𝐴 → {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
10 | 9 | inteqd 4899 | . . 3 ⊢ (𝑦 = 𝐴 → ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥} = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
11 | df-tskm 10695 | . . 3 ⊢ tarskiMap = (𝑦 ∈ V ↦ ∩ {𝑥 ∈ Tarski ∣ 𝑦 ∈ 𝑥}) | |
12 | 10, 11 | fvmptg 6929 | . 2 ⊢ ((𝐴 ∈ V ∧ ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥} ∈ V) → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
13 | 1, 7, 12 | syl2anc 584 | 1 ⊢ (𝐴 ∈ 𝑉 → (tarskiMap‘𝐴) = ∩ {𝑥 ∈ Tarski ∣ 𝐴 ∈ 𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3070 {crab 3403 Vcvv 3441 ∪ cuni 4852 ∩ cint 4894 ‘cfv 6479 Tarskictsk 10605 tarskiMapctskm 10694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-sep 5243 ax-nul 5250 ax-pr 5372 ax-groth 10680 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-br 5093 df-opab 5155 df-mpt 5176 df-id 5518 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-iota 6431 df-fun 6481 df-fv 6487 df-tsk 10606 df-tskm 10695 |
This theorem is referenced by: tskmid 10697 tskmcl 10698 sstskm 10699 eltskm 10700 |
Copyright terms: Public domain | W3C validator |