![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmval | Structured version Visualization version GIF version |
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskmval | β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π΄ β π β π΄ β V) | |
2 | grothtsk 10826 | . . . . 5 β’ βͺ Tarski = V | |
3 | 1, 2 | eleqtrrdi 2844 | . . . 4 β’ (π΄ β π β π΄ β βͺ Tarski) |
4 | eluni2 4911 | . . . 4 β’ (π΄ β βͺ Tarski β βπ₯ β Tarski π΄ β π₯) | |
5 | 3, 4 | sylib 217 | . . 3 β’ (π΄ β π β βπ₯ β Tarski π΄ β π₯) |
6 | intexrab 5339 | . . 3 β’ (βπ₯ β Tarski π΄ β π₯ β β© {π₯ β Tarski β£ π΄ β π₯} β V) | |
7 | 5, 6 | sylib 217 | . 2 β’ (π΄ β π β β© {π₯ β Tarski β£ π΄ β π₯} β V) |
8 | eleq1 2821 | . . . . 5 β’ (π¦ = π΄ β (π¦ β π₯ β π΄ β π₯)) | |
9 | 8 | rabbidv 3440 | . . . 4 β’ (π¦ = π΄ β {π₯ β Tarski β£ π¦ β π₯} = {π₯ β Tarski β£ π΄ β π₯}) |
10 | 9 | inteqd 4954 | . . 3 β’ (π¦ = π΄ β β© {π₯ β Tarski β£ π¦ β π₯} = β© {π₯ β Tarski β£ π΄ β π₯}) |
11 | df-tskm 10829 | . . 3 β’ tarskiMap = (π¦ β V β¦ β© {π₯ β Tarski β£ π¦ β π₯}) | |
12 | 10, 11 | fvmptg 6993 | . 2 β’ ((π΄ β V β§ β© {π₯ β Tarski β£ π΄ β π₯} β V) β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
13 | 1, 7, 12 | syl2anc 584 | 1 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 βwrex 3070 {crab 3432 Vcvv 3474 βͺ cuni 4907 β© cint 4949 βcfv 6540 Tarskictsk 10739 tarskiMapctskm 10828 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 ax-groth 10814 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6492 df-fun 6542 df-fv 6548 df-tsk 10740 df-tskm 10829 |
This theorem is referenced by: tskmid 10831 tskmcl 10832 sstskm 10833 eltskm 10834 |
Copyright terms: Public domain | W3C validator |