![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tskmval | Structured version Visualization version GIF version |
Description: Value of our tarski map. (Contributed by FL, 30-Dec-2010.) (Revised by Mario Carneiro, 20-Sep-2014.) |
Ref | Expression |
---|---|
tskmval | β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex 3492 | . 2 β’ (π΄ β π β π΄ β V) | |
2 | grothtsk 10866 | . . . . 5 β’ βͺ Tarski = V | |
3 | 1, 2 | eleqtrrdi 2840 | . . . 4 β’ (π΄ β π β π΄ β βͺ Tarski) |
4 | eluni2 4916 | . . . 4 β’ (π΄ β βͺ Tarski β βπ₯ β Tarski π΄ β π₯) | |
5 | 3, 4 | sylib 217 | . . 3 β’ (π΄ β π β βπ₯ β Tarski π΄ β π₯) |
6 | intexrab 5346 | . . 3 β’ (βπ₯ β Tarski π΄ β π₯ β β© {π₯ β Tarski β£ π΄ β π₯} β V) | |
7 | 5, 6 | sylib 217 | . 2 β’ (π΄ β π β β© {π₯ β Tarski β£ π΄ β π₯} β V) |
8 | eleq1 2817 | . . . . 5 β’ (π¦ = π΄ β (π¦ β π₯ β π΄ β π₯)) | |
9 | 8 | rabbidv 3438 | . . . 4 β’ (π¦ = π΄ β {π₯ β Tarski β£ π¦ β π₯} = {π₯ β Tarski β£ π΄ β π₯}) |
10 | 9 | inteqd 4958 | . . 3 β’ (π¦ = π΄ β β© {π₯ β Tarski β£ π¦ β π₯} = β© {π₯ β Tarski β£ π΄ β π₯}) |
11 | df-tskm 10869 | . . 3 β’ tarskiMap = (π¦ β V β¦ β© {π₯ β Tarski β£ π¦ β π₯}) | |
12 | 10, 11 | fvmptg 7008 | . 2 β’ ((π΄ β V β§ β© {π₯ β Tarski β£ π΄ β π₯} β V) β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
13 | 1, 7, 12 | syl2anc 582 | 1 β’ (π΄ β π β (tarskiMapβπ΄) = β© {π₯ β Tarski β£ π΄ β π₯}) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1533 β wcel 2098 βwrex 3067 {crab 3430 Vcvv 3473 βͺ cuni 4912 β© cint 4953 βcfv 6553 Tarskictsk 10779 tarskiMapctskm 10868 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-groth 10854 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-int 4954 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6505 df-fun 6555 df-fv 6561 df-tsk 10780 df-tskm 10869 |
This theorem is referenced by: tskmid 10871 tskmcl 10872 sstskm 10873 eltskm 10874 |
Copyright terms: Public domain | W3C validator |