| Metamath
Proof Explorer Theorem List (p. 109 of 499) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30888) |
(30889-32411) |
(32412-49816) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Definition | df-ltnq 10801 | Define ordering relation on positive fractions. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. Similar to Definition 5 of [Suppes] p. 162. (Contributed by NM, 13-Feb-1996.) (New usage is discouraged.) |
| ⊢ <Q = ( <pQ ∩ (Q × Q)) | ||
| Theorem | enqbreq 10802 | Equivalence relation for positive fractions in terms of positive integers. (Contributed by NM, 27-Aug-1995.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ~Q 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) = (𝐵 ·N 𝐶))) | ||
| Theorem | enqbreq2 10803 | Equivalence relation for positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) = ((1st ‘𝐵) ·N (2nd ‘𝐴)))) | ||
| Theorem | enqer 10804 | The equivalence relation for positive fractions is an equivalence relation. Proposition 9-2.1 of [Gleason] p. 117. (Contributed by NM, 27-Aug-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
| ⊢ ~Q Er (N × N) | ||
| Theorem | enqex 10805 | The equivalence relation for positive fractions exists. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
| ⊢ ~Q ∈ V | ||
| Theorem | nqex 10806 | The class of positive fractions exists. (Contributed by NM, 16-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| ⊢ Q ∈ V | ||
| Theorem | 0nnq 10807 | The empty set is not a positive fraction. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ Q | ||
| Theorem | elpqn 10808 | Each positive fraction is an ordered pair of positive integers (the numerator and denominator, in "lowest terms". (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → 𝐴 ∈ (N × N)) | ||
| Theorem | ltrelnq 10809 | Positive fraction 'less than' is a relation on positive fractions. (Contributed by NM, 14-Feb-1996.) (Revised by Mario Carneiro, 27-Apr-2013.) (New usage is discouraged.) |
| ⊢ <Q ⊆ (Q × Q) | ||
| Theorem | pinq 10810 | The representatives of positive integers as positive fractions. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → 〈𝐴, 1o〉 ∈ Q) | ||
| Theorem | 1nq 10811 | The positive fraction 'one'. (Contributed by NM, 29-Oct-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ 1Q ∈ Q | ||
| Theorem | nqereu 10812* | There is a unique element of Q equivalent to each element of N × N. (Contributed by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ (N × N) → ∃!𝑥 ∈ Q 𝑥 ~Q 𝐴) | ||
| Theorem | nqerf 10813 | Corollary of nqereu 10812: the function [Q] is actually a function. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ [Q]:(N × N)⟶Q | ||
| Theorem | nqercl 10814 | Corollary of nqereu 10812: closure of [Q]. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ (N × N) → ([Q]‘𝐴) ∈ Q) | ||
| Theorem | nqerrel 10815 | Any member of (N × N) relates to the representative of its equivalence class. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ (N × N) → 𝐴 ~Q ([Q]‘𝐴)) | ||
| Theorem | nqerid 10816 | Corollary of nqereu 10812: the function [Q] acts as the identity on members of Q. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → ([Q]‘𝐴) = 𝐴) | ||
| Theorem | enqeq 10817 | Corollary of nqereu 10812: if two fractions are both reduced and equivalent, then they are equal. (Contributed by Mario Carneiro, 6-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q ∧ 𝐴 ~Q 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | nqereq 10818 | The function [Q] acts as a substitute for equivalence classes, and it satisfies the fundamental requirement for equivalence representatives: the representatives are equal iff the members are equivalent. (Contributed by Mario Carneiro, 6-May-2013.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ ([Q]‘𝐴) = ([Q]‘𝐵))) | ||
| Theorem | addpipq2 10819 | Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 +pQ 𝐵) = 〈(((1st ‘𝐴) ·N (2nd ‘𝐵)) +N ((1st ‘𝐵) ·N (2nd ‘𝐴))), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | ||
| Theorem | addpipq 10820 | Addition of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 +pQ 〈𝐶, 𝐷〉) = 〈((𝐴 ·N 𝐷) +N (𝐶 ·N 𝐵)), (𝐵 ·N 𝐷)〉) | ||
| Theorem | addpqnq 10821 | Addition of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) = ([Q]‘(𝐴 +pQ 𝐵))) | ||
| Theorem | mulpipq2 10822 | Multiplication of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N)) → (𝐴 ·pQ 𝐵) = 〈((1st ‘𝐴) ·N (1st ‘𝐵)), ((2nd ‘𝐴) ·N (2nd ‘𝐵))〉) | ||
| Theorem | mulpipq 10823 | Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ N ∧ 𝐵 ∈ N) ∧ (𝐶 ∈ N ∧ 𝐷 ∈ N)) → (〈𝐴, 𝐵〉 ·pQ 〈𝐶, 𝐷〉) = 〈(𝐴 ·N 𝐶), (𝐵 ·N 𝐷)〉) | ||
| Theorem | mulpqnq 10824 | Multiplication of positive fractions in terms of positive integers. (Contributed by NM, 28-Aug-1995.) (Revised by Mario Carneiro, 26-Dec-2014.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) = ([Q]‘(𝐴 ·pQ 𝐵))) | ||
| Theorem | ordpipq 10825 | Ordering of positive fractions in terms of positive integers. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (〈𝐴, 𝐵〉 <pQ 〈𝐶, 𝐷〉 ↔ (𝐴 ·N 𝐷) <N (𝐶 ·N 𝐵)) | ||
| Theorem | ordpinq 10826 | Ordering of positive fractions in terms of positive integers. (Contributed by NM, 13-Feb-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 <Q 𝐵 ↔ ((1st ‘𝐴) ·N (2nd ‘𝐵)) <N ((1st ‘𝐵) ·N (2nd ‘𝐴)))) | ||
| Theorem | addpqf 10827 | Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ +pQ :((N × N) × (N × N))⟶(N × N) | ||
| Theorem | addclnq 10828 | Closure of addition on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 +Q 𝐵) ∈ Q) | ||
| Theorem | mulpqf 10829 | Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ·pQ :((N × N) × (N × N))⟶(N × N) | ||
| Theorem | mulclnq 10830 | Closure of multiplication on positive fractions. (Contributed by NM, 29-Aug-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → (𝐴 ·Q 𝐵) ∈ Q) | ||
| Theorem | addnqf 10831 | Domain of addition on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| ⊢ +Q :(Q × Q)⟶Q | ||
| Theorem | mulnqf 10832 | Domain of multiplication on positive fractions. (Contributed by NM, 24-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| ⊢ ·Q :(Q × Q)⟶Q | ||
| Theorem | addcompq 10833 | Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 +pQ 𝐵) = (𝐵 +pQ 𝐴) | ||
| Theorem | addcomnq 10834 | Addition of positive fractions is commutative. (Contributed by NM, 30-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 +Q 𝐵) = (𝐵 +Q 𝐴) | ||
| Theorem | mulcompq 10835 | Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ·pQ 𝐵) = (𝐵 ·pQ 𝐴) | ||
| Theorem | mulcomnq 10836 | Multiplication of positive fractions is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ·Q 𝐵) = (𝐵 ·Q 𝐴) | ||
| Theorem | adderpqlem 10837 | Lemma for adderpq 10839. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 +pQ 𝐶) ~Q (𝐵 +pQ 𝐶))) | ||
| Theorem | mulerpqlem 10838 | Lemma for mulerpq 10840. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ (N × N) ∧ 𝐵 ∈ (N × N) ∧ 𝐶 ∈ (N × N)) → (𝐴 ~Q 𝐵 ↔ (𝐴 ·pQ 𝐶) ~Q (𝐵 ·pQ 𝐶))) | ||
| Theorem | adderpq 10839 | Addition is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (([Q]‘𝐴) +Q ([Q]‘𝐵)) = ([Q]‘(𝐴 +pQ 𝐵)) | ||
| Theorem | mulerpq 10840 | Multiplication is compatible with the equivalence relation. (Contributed by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (([Q]‘𝐴) ·Q ([Q]‘𝐵)) = ([Q]‘(𝐴 ·pQ 𝐵)) | ||
| Theorem | addassnq 10841 | Addition of positive fractions is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 +Q 𝐵) +Q 𝐶) = (𝐴 +Q (𝐵 +Q 𝐶)) | ||
| Theorem | mulassnq 10842 | Multiplication of positive fractions is associative. (Contributed by NM, 1-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ·Q 𝐵) ·Q 𝐶) = (𝐴 ·Q (𝐵 ·Q 𝐶)) | ||
| Theorem | mulcanenq 10843 | Lemma for distributive law: cancellation of common factor. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ N ∧ 𝐵 ∈ N ∧ 𝐶 ∈ N) → 〈(𝐴 ·N 𝐵), (𝐴 ·N 𝐶)〉 ~Q 〈𝐵, 𝐶〉) | ||
| Theorem | distrnq 10844 | Multiplication of positive fractions is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ·Q (𝐵 +Q 𝐶)) = ((𝐴 ·Q 𝐵) +Q (𝐴 ·Q 𝐶)) | ||
| Theorem | 1nqenq 10845 | The equivalence class of ratio 1. (Contributed by NM, 4-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ N → 1Q ~Q 〈𝐴, 𝐴〉) | ||
| Theorem | mulidnq 10846 | Multiplication identity element for positive fractions. (Contributed by NM, 3-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → (𝐴 ·Q 1Q) = 𝐴) | ||
| Theorem | recmulnq 10847 | Relationship between reciprocal and multiplication on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → ((*Q‘𝐴) = 𝐵 ↔ (𝐴 ·Q 𝐵) = 1Q)) | ||
| Theorem | recidnq 10848 | A positive fraction times its reciprocal is 1. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → (𝐴 ·Q (*Q‘𝐴)) = 1Q) | ||
| Theorem | recclnq 10849 | Closure law for positive fraction reciprocal. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 8-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → (*Q‘𝐴) ∈ Q) | ||
| Theorem | recrecnq 10850 | Reciprocal of reciprocal of positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 29-Apr-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → (*Q‘(*Q‘𝐴)) = 𝐴) | ||
| Theorem | dmrecnq 10851 | Domain of reciprocal on positive fractions. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
| ⊢ dom *Q = Q | ||
| Theorem | ltsonq 10852 | 'Less than' is a strict ordering on positive fractions. (Contributed by NM, 19-Feb-1996.) (Revised by Mario Carneiro, 4-May-2013.) (New usage is discouraged.) |
| ⊢ <Q Or Q | ||
| Theorem | lterpq 10853 | Compatibility of ordering on equivalent fractions. (Contributed by Mario Carneiro, 9-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 <pQ 𝐵 ↔ ([Q]‘𝐴) <Q ([Q]‘𝐵)) | ||
| Theorem | ltanq 10854 | Ordering property of addition for positive fractions. Proposition 9-2.6(ii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Q → (𝐴 <Q 𝐵 ↔ (𝐶 +Q 𝐴) <Q (𝐶 +Q 𝐵))) | ||
| Theorem | ltmnq 10855 | Ordering property of multiplication for positive fractions. Proposition 9-2.6(iii) of [Gleason] p. 120. (Contributed by NM, 6-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐶 ∈ Q → (𝐴 <Q 𝐵 ↔ (𝐶 ·Q 𝐴) <Q (𝐶 ·Q 𝐵))) | ||
| Theorem | 1lt2nq 10856 | One is less than two (one plus one). (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ 1Q <Q (1Q +Q 1Q) | ||
| Theorem | ltaddnq 10857 | The sum of two fractions is greater than one of them. (Contributed by NM, 14-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Q ∧ 𝐵 ∈ Q) → 𝐴 <Q (𝐴 +Q 𝐵)) | ||
| Theorem | ltexnq 10858* | Ordering on positive fractions in terms of existence of sum. Definition in Proposition 9-2.6 of [Gleason] p. 119. (Contributed by NM, 24-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐵 ∈ Q → (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 +Q 𝑥) = 𝐵)) | ||
| Theorem | halfnq 10859* | One-half of any positive fraction exists. Lemma for Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 16-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥(𝑥 +Q 𝑥) = 𝐴) | ||
| Theorem | nsmallnq 10860* | The is no smallest positive fraction. (Contributed by NM, 26-Apr-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 𝑥 <Q 𝐴) | ||
| Theorem | ltbtwnnq 10861* | There exists a number between any two positive fractions. Proposition 9-2.6(i) of [Gleason] p. 120. (Contributed by NM, 17-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 <Q 𝐵 ↔ ∃𝑥(𝐴 <Q 𝑥 ∧ 𝑥 <Q 𝐵)) | ||
| Theorem | ltrnq 10862 | Ordering property of reciprocal for positive fractions. Proposition 9-2.6(iv) of [Gleason] p. 120. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 <Q 𝐵 ↔ (*Q‘𝐵) <Q (*Q‘𝐴)) | ||
| Theorem | archnq 10863* | For any fraction, there is an integer that is greater than it. This is also known as the "archimedean property". (Contributed by Mario Carneiro, 10-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → ∃𝑥 ∈ N 𝐴 <Q 〈𝑥, 1o〉) | ||
| Definition | df-np 10864* | Define the set of positive reals. A "Dedekind cut" is a partition of the positive rational numbers into two classes such that all the numbers of one class are less than all the numbers of the other. A positive real is defined as the lower class of a Dedekind cut. Definition 9-3.1 of [Gleason] p. 121. (Note: This is a "temporary" definition used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction.) (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
| ⊢ P = {𝑥 ∣ ((∅ ⊊ 𝑥 ∧ 𝑥 ⊊ Q) ∧ ∀𝑦 ∈ 𝑥 (∀𝑧(𝑧 <Q 𝑦 → 𝑧 ∈ 𝑥) ∧ ∃𝑧 ∈ 𝑥 𝑦 <Q 𝑧))} | ||
| Definition | df-1p 10865 | Define the positive real constant 1. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. Definition of [Gleason] p. 122. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| ⊢ 1P = {𝑥 ∣ 𝑥 <Q 1Q} | ||
| Definition | df-plp 10866* | Define addition on positive reals. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| ⊢ +P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 +Q 𝑢)}) | ||
| Definition | df-mp 10867* | Define multiplication on positive reals. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-3.7 of [Gleason] p. 124. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| ⊢ ·P = (𝑥 ∈ P, 𝑦 ∈ P ↦ {𝑤 ∣ ∃𝑣 ∈ 𝑥 ∃𝑢 ∈ 𝑦 𝑤 = (𝑣 ·Q 𝑢)}) | ||
| Definition | df-ltp 10868* | Define ordering on positive reals. This is a "temporary" set used in the construction of complex numbers df-c 11004, and is intended to be used only by the construction. From Proposition 9-3.2 of [Gleason] p. 122. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| ⊢ <P = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ P ∧ 𝑦 ∈ P) ∧ 𝑥 ⊊ 𝑦)} | ||
| Theorem | npex 10869 | The class of positive reals is a set. (Contributed by NM, 31-Oct-1995.) (New usage is discouraged.) |
| ⊢ P ∈ V | ||
| Theorem | elnp 10870* | Membership in positive reals. (Contributed by NM, 16-Feb-1996.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ P ↔ ((∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | ||
| Theorem | elnpi 10871* | Membership in positive reals. (Contributed by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ P ↔ ((𝐴 ∈ V ∧ ∅ ⊊ 𝐴 ∧ 𝐴 ⊊ Q) ∧ ∀𝑥 ∈ 𝐴 (∀𝑦(𝑦 <Q 𝑥 → 𝑦 ∈ 𝐴) ∧ ∃𝑦 ∈ 𝐴 𝑥 <Q 𝑦))) | ||
| Theorem | prn0 10872 | A positive real is not empty. (Contributed by NM, 15-May-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ P → 𝐴 ≠ ∅) | ||
| Theorem | prpssnq 10873 | A positive real is a subset of the positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ P → 𝐴 ⊊ Q) | ||
| Theorem | elprnq 10874 | A positive real is a set of positive fractions. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → 𝐵 ∈ Q) | ||
| Theorem | 0npr 10875 | The empty set is not a positive real. (Contributed by NM, 15-Nov-1995.) (New usage is discouraged.) |
| ⊢ ¬ ∅ ∈ P | ||
| Theorem | prcdnq 10876 | A positive real is closed downwards under the positive fractions. Definition 9-3.1 (ii) of [Gleason] p. 121. (Contributed by NM, 25-Feb-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → (𝐶 <Q 𝐵 → 𝐶 ∈ 𝐴)) | ||
| Theorem | prub 10877 | A positive fraction not in a positive real is an upper bound. Remark (1) of [Gleason] p. 122. (Contributed by NM, 25-Feb-1996.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) ∧ 𝐶 ∈ Q) → (¬ 𝐶 ∈ 𝐴 → 𝐵 <Q 𝐶)) | ||
| Theorem | prnmax 10878* | A positive real has no largest member. Definition 9-3.1(iii) of [Gleason] p. 121. (Contributed by NM, 9-Mar-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 <Q 𝑥) | ||
| Theorem | npomex 10879 | A simplifying observation, and an indication of why any attempt to develop a theory of the real numbers without the Axiom of Infinity is doomed to failure: since every member of P is an infinite set, the negation of Infinity implies that P, and hence ℝ, is empty. (Note that this proof, which used the fact that Dedekind cuts have no maximum, could just as well have used that they have no minimum, since they are downward-closed by prcdnq 10876 and nsmallnq 10860). (Contributed by Mario Carneiro, 11-May-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ P → ω ∈ V) | ||
| Theorem | prnmadd 10880* | A positive real has no largest member. Addition version. (Contributed by NM, 7-Apr-1996.) (Revised by Mario Carneiro, 11-May-2013.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ 𝐴) → ∃𝑥(𝐵 +Q 𝑥) ∈ 𝐴) | ||
| Theorem | ltrelpr 10881 | Positive real 'less than' is a relation on positive reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
| ⊢ <P ⊆ (P × P) | ||
| Theorem | genpv 10882* | Value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) = {𝑓 ∣ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝑓 = (𝑔𝐺ℎ)}) | ||
| Theorem | genpelv 10883* | Membership in value of general operation (addition or multiplication) on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐶 ∈ (𝐴𝐹𝐵) ↔ ∃𝑔 ∈ 𝐴 ∃ℎ ∈ 𝐵 𝐶 = (𝑔𝐺ℎ))) | ||
| Theorem | genpprecl 10884* | Pre-closure law for general operation on positive reals. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ((𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → (𝐶𝐺𝐷) ∈ (𝐴𝐹𝐵))) | ||
| Theorem | genpdm 10885* | Domain of general operation on positive reals. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ dom 𝐹 = (P × P) | ||
| Theorem | genpn0 10886* | The result of an operation on positive reals is not empty. (Contributed by NM, 28-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ∅ ⊊ (𝐴𝐹𝐵)) | ||
| Theorem | genpss 10887* | The result of an operation on positive reals is a subset of the positive fractions. (Contributed by NM, 18-Nov-1995.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ⊆ Q) | ||
| Theorem | genpnnp 10888* | The result of an operation on positive reals is different from the set of positive fractions. (Contributed by NM, 29-Feb-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ (𝑧 ∈ Q → (𝑥 <Q 𝑦 ↔ (𝑧𝐺𝑥) <Q (𝑧𝐺𝑦))) & ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → ¬ (𝐴𝐹𝐵) = Q) | ||
| Theorem | genpcd 10889* | Downward closure of an operation on positive reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → (𝑥 <Q 𝑓 → 𝑥 ∈ (𝐴𝐹𝐵)))) | ||
| Theorem | genpnmax 10890* | An operation on positive reals has no largest member. (Contributed by NM, 10-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ (𝑣 ∈ Q → (𝑧 <Q 𝑤 ↔ (𝑣𝐺𝑧) <Q (𝑣𝐺𝑤))) & ⊢ (𝑧𝐺𝑤) = (𝑤𝐺𝑧) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝑓 ∈ (𝐴𝐹𝐵) → ∃𝑥 ∈ (𝐴𝐹𝐵)𝑓 <Q 𝑥)) | ||
| Theorem | genpcl 10891* | Closure of an operation on reals. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ (ℎ ∈ Q → (𝑓 <Q 𝑔 ↔ (ℎ𝐺𝑓) <Q (ℎ𝐺𝑔))) & ⊢ (𝑥𝐺𝑦) = (𝑦𝐺𝑥) & ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔𝐺ℎ) → 𝑥 ∈ (𝐴𝐹𝐵))) ⇒ ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴𝐹𝐵) ∈ P) | ||
| Theorem | genpass 10892* | Associativity of an operation on reals. (Contributed by NM, 18-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 𝐹 = (𝑤 ∈ P, 𝑣 ∈ P ↦ {𝑥 ∣ ∃𝑦 ∈ 𝑤 ∃𝑧 ∈ 𝑣 𝑥 = (𝑦𝐺𝑧)}) & ⊢ ((𝑦 ∈ Q ∧ 𝑧 ∈ Q) → (𝑦𝐺𝑧) ∈ Q) & ⊢ dom 𝐹 = (P × P) & ⊢ ((𝑓 ∈ P ∧ 𝑔 ∈ P) → (𝑓𝐹𝑔) ∈ P) & ⊢ ((𝑓𝐺𝑔)𝐺ℎ) = (𝑓𝐺(𝑔𝐺ℎ)) ⇒ ⊢ ((𝐴𝐹𝐵)𝐹𝐶) = (𝐴𝐹(𝐵𝐹𝐶)) | ||
| Theorem | plpv 10893* | Value of addition on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 +P 𝐵) = {𝑥 ∣ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 +Q 𝑧)}) | ||
| Theorem | mpv 10894* | Value of multiplication on positive reals. (Contributed by NM, 28-Feb-1996.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ P ∧ 𝐵 ∈ P) → (𝐴 ·P 𝐵) = {𝑥 ∣ ∃𝑦 ∈ 𝐴 ∃𝑧 ∈ 𝐵 𝑥 = (𝑦 ·Q 𝑧)}) | ||
| Theorem | dmplp 10895 | Domain of addition on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| ⊢ dom +P = (P × P) | ||
| Theorem | dmmp 10896 | Domain of multiplication on positive reals. (Contributed by NM, 18-Nov-1995.) (New usage is discouraged.) |
| ⊢ dom ·P = (P × P) | ||
| Theorem | nqpr 10897* | The canonical embedding of the rationals into the reals. (Contributed by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Q → {𝑥 ∣ 𝑥 <Q 𝐴} ∈ P) | ||
| Theorem | 1pr 10898 | The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) (New usage is discouraged.) |
| ⊢ 1P ∈ P | ||
| Theorem | addclprlem1 10899 | Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| ⊢ (((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → ((𝑥 ·Q (*Q‘(𝑔 +Q ℎ))) ·Q 𝑔) ∈ 𝐴)) | ||
| Theorem | addclprlem2 10900* | Lemma to prove downward closure in positive real addition. Part of proof of Proposition 9-3.5 of [Gleason] p. 123. (Contributed by NM, 13-Mar-1996.) (New usage is discouraged.) |
| ⊢ ((((𝐴 ∈ P ∧ 𝑔 ∈ 𝐴) ∧ (𝐵 ∈ P ∧ ℎ ∈ 𝐵)) ∧ 𝑥 ∈ Q) → (𝑥 <Q (𝑔 +Q ℎ) → 𝑥 ∈ (𝐴 +P 𝐵))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |