Home | Metamath
Proof Explorer Theorem List (p. 109 of 465) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29259) |
Hilbert Space Explorer
(29260-30782) |
Users' Mathboxes
(30783-46465) |
Type | Label | Description |
---|---|---|
Statement | ||
Definition | df-1r 10801 | Define signed real constant 1. This is a "temporary" set used in the construction of complex numbers df-c 10861, and is intended to be used only by the construction. From Proposition 9-4.2 of [Gleason] p. 126. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 1R = [〈(1P +P 1P), 1P〉] ~R | ||
Definition | df-m1r 10802 | Define signed real constant -1. This is a "temporary" set used in the construction of complex numbers df-c 10861, and is intended to be used only by the construction. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ -1R = [〈1P, (1P +P 1P)〉] ~R | ||
Theorem | enrer 10803 | The equivalence relation for signed reals is an equivalence relation. Proposition 9-4.1 of [Gleason] p. 126. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 6-Jul-2015.) (New usage is discouraged.) |
⊢ ~R Er (P × P) | ||
Theorem | nrex1 10804 | The class of signed reals is a set. Note that a shorter proof is possible using qsex 8539 (and not requiring enrer 10803), but it would add a dependency on ax-rep 5213. (Contributed by Mario Carneiro, 17-Nov-2014.) Extract proof from that of axcnex 10887. (Revised by BJ, 4-Feb-2023.) (New usage is discouraged.) |
⊢ R ∈ V | ||
Theorem | enrbreq 10805 | Equivalence relation for signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → (〈𝐴, 𝐵〉 ~R 〈𝐶, 𝐷〉 ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enreceq 10806 | Equivalence class equality of positive fractions in terms of positive integers. (Contributed by NM, 29-Nov-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R = [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷) = (𝐵 +P 𝐶))) | ||
Theorem | enrex 10807 | The equivalence relation for signed reals exists. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ ~R ∈ V | ||
Theorem | ltrelsr 10808 | Signed real 'less than' is a relation on signed reals. (Contributed by NM, 14-Feb-1996.) (New usage is discouraged.) |
⊢ <R ⊆ (R × R) | ||
Theorem | addcmpblnr 10809 | Lemma showing compatibility of addition. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈(𝐴 +P 𝐹), (𝐵 +P 𝐺)〉 ~R 〈(𝐶 +P 𝑅), (𝐷 +P 𝑆)〉)) | ||
Theorem | mulcmpblnrlem 10810 | Lemma used in lemma showing compatibility of multiplication. (Contributed by NM, 4-Sep-1995.) (New usage is discouraged.) |
⊢ (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)) +P ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅)))) = ((𝐷 ·P 𝐹) +P (((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹)) +P ((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆))))) | ||
Theorem | mulcmpblnr 10811 | Lemma showing compatibility of multiplication. (Contributed by NM, 5-Sep-1995.) (New usage is discouraged.) |
⊢ ((((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) ∧ ((𝐹 ∈ P ∧ 𝐺 ∈ P) ∧ (𝑅 ∈ P ∧ 𝑆 ∈ P))) → (((𝐴 +P 𝐷) = (𝐵 +P 𝐶) ∧ (𝐹 +P 𝑆) = (𝐺 +P 𝑅)) → 〈((𝐴 ·P 𝐹) +P (𝐵 ·P 𝐺)), ((𝐴 ·P 𝐺) +P (𝐵 ·P 𝐹))〉 ~R 〈((𝐶 ·P 𝑅) +P (𝐷 ·P 𝑆)), ((𝐶 ·P 𝑆) +P (𝐷 ·P 𝑅))〉)) | ||
Theorem | prsrlem1 10812* | Decomposing signed reals into positive reals. Lemma for addsrpr 10815 and mulsrpr 10816. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ (((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) ∧ ((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ (𝐴 = [〈𝑠, 𝑓〉] ~R ∧ 𝐵 = [〈𝑔, ℎ〉] ~R ))) → ((((𝑤 ∈ P ∧ 𝑣 ∈ P) ∧ (𝑠 ∈ P ∧ 𝑓 ∈ P)) ∧ ((𝑢 ∈ P ∧ 𝑡 ∈ P) ∧ (𝑔 ∈ P ∧ ℎ ∈ P))) ∧ ((𝑤 +P 𝑓) = (𝑣 +P 𝑠) ∧ (𝑢 +P ℎ) = (𝑡 +P 𝑔)))) | ||
Theorem | addsrmo 10813* | There is at most one result from adding signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈(𝑤 +P 𝑢), (𝑣 +P 𝑡)〉] ~R )) | ||
Theorem | mulsrmo 10814* | There is at most one result from multiplying signed reals. (Contributed by Jim Kingdon, 30-Dec-2019.) |
⊢ ((𝐴 ∈ ((P × P) / ~R ) ∧ 𝐵 ∈ ((P × P) / ~R )) → ∃*𝑧∃𝑤∃𝑣∃𝑢∃𝑡((𝐴 = [〈𝑤, 𝑣〉] ~R ∧ 𝐵 = [〈𝑢, 𝑡〉] ~R ) ∧ 𝑧 = [〈((𝑤 ·P 𝑢) +P (𝑣 ·P 𝑡)), ((𝑤 ·P 𝑡) +P (𝑣 ·P 𝑢))〉] ~R )) | ||
Theorem | addsrpr 10815 | Addition of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R +R [〈𝐶, 𝐷〉] ~R ) = [〈(𝐴 +P 𝐶), (𝐵 +P 𝐷)〉] ~R ) | ||
Theorem | mulsrpr 10816 | Multiplication of signed reals in terms of positive reals. (Contributed by NM, 3-Sep-1995.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ P ∧ 𝐵 ∈ P) ∧ (𝐶 ∈ P ∧ 𝐷 ∈ P)) → ([〈𝐴, 𝐵〉] ~R ·R [〈𝐶, 𝐷〉] ~R ) = [〈((𝐴 ·P 𝐶) +P (𝐵 ·P 𝐷)), ((𝐴 ·P 𝐷) +P (𝐵 ·P 𝐶))〉] ~R ) | ||
Theorem | ltsrpr 10817 | Ordering of signed reals in terms of positive reals. (Contributed by NM, 20-Feb-1996.) (Revised by Mario Carneiro, 12-Aug-2015.) (New usage is discouraged.) |
⊢ ([〈𝐴, 𝐵〉] ~R <R [〈𝐶, 𝐷〉] ~R ↔ (𝐴 +P 𝐷)<P (𝐵 +P 𝐶)) | ||
Theorem | gt0srpr 10818 | Greater than zero in terms of positive reals. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ (0R <R [〈𝐴, 𝐵〉] ~R ↔ 𝐵<P 𝐴) | ||
Theorem | 0nsr 10819 | The empty set is not a signed real. (Contributed by NM, 25-Aug-1995.) (Revised by Mario Carneiro, 10-Jul-2014.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ R | ||
Theorem | 0r 10820 | The constant 0R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 0R ∈ R | ||
Theorem | 1sr 10821 | The constant 1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ 1R ∈ R | ||
Theorem | m1r 10822 | The constant -1R is a signed real. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ -1R ∈ R | ||
Theorem | addclsr 10823 | Closure of addition on signed reals. (Contributed by NM, 25-Jul-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 +R 𝐵) ∈ R) | ||
Theorem | mulclsr 10824 | Closure of multiplication on signed reals. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (𝐴 ·R 𝐵) ∈ R) | ||
Theorem | dmaddsr 10825 | Domain of addition on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom +R = (R × R) | ||
Theorem | dmmulsr 10826 | Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995.) (New usage is discouraged.) |
⊢ dom ·R = (R × R) | ||
Theorem | addcomsr 10827 | Addition of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 +R 𝐵) = (𝐵 +R 𝐴) | ||
Theorem | addasssr 10828 | Addition of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 +R 𝐵) +R 𝐶) = (𝐴 +R (𝐵 +R 𝐶)) | ||
Theorem | mulcomsr 10829 | Multiplication of signed reals is commutative. (Contributed by NM, 31-Aug-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R 𝐵) = (𝐵 ·R 𝐴) | ||
Theorem | mulasssr 10830 | Multiplication of signed reals is associative. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ ((𝐴 ·R 𝐵) ·R 𝐶) = (𝐴 ·R (𝐵 ·R 𝐶)) | ||
Theorem | distrsr 10831 | Multiplication of signed reals is distributive. (Contributed by NM, 2-Sep-1995.) (Revised by Mario Carneiro, 28-Apr-2015.) (New usage is discouraged.) |
⊢ (𝐴 ·R (𝐵 +R 𝐶)) = ((𝐴 ·R 𝐵) +R (𝐴 ·R 𝐶)) | ||
Theorem | m1p1sr 10832 | Minus one plus one is zero for signed reals. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ (-1R +R 1R) = 0R | ||
Theorem | m1m1sr 10833 | Minus one times minus one is plus one for signed reals. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (-1R ·R -1R) = 1R | ||
Theorem | ltsosr 10834 | Signed real 'less than' is a strict ordering. (Contributed by NM, 19-Feb-1996.) (New usage is discouraged.) |
⊢ <R Or R | ||
Theorem | 0lt1sr 10835 | 0 is less than 1 for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ 0R <R 1R | ||
Theorem | 1ne0sr 10836 | 1 and 0 are distinct for signed reals. (Contributed by NM, 26-Mar-1996.) (New usage is discouraged.) |
⊢ ¬ 1R = 0R | ||
Theorem | 0idsr 10837 | The signed real number 0 is an identity element for addition of signed reals. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R 0R) = 𝐴) | ||
Theorem | 1idsr 10838 | 1 is an identity element for multiplication. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 1R) = 𝐴) | ||
Theorem | 00sr 10839 | A signed real times 0 is 0. (Contributed by NM, 10-Apr-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 ·R 0R) = 0R) | ||
Theorem | ltasr 10840 | Ordering property of addition. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ (𝐶 ∈ R → (𝐴 <R 𝐵 ↔ (𝐶 +R 𝐴) <R (𝐶 +R 𝐵))) | ||
Theorem | pn0sr 10841 | A signed real plus its negative is zero. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → (𝐴 +R (𝐴 ·R -1R)) = 0R) | ||
Theorem | negexsr 10842* | Existence of negative signed real. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ R → ∃𝑥 ∈ R (𝐴 +R 𝑥) = 0R) | ||
Theorem | recexsrlem 10843* | The reciprocal of a positive signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ (0R <R 𝐴 → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | addgt0sr 10844 | The sum of two positive signed reals is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 +R 𝐵)) | ||
Theorem | mulgt0sr 10845 | The product of two positive signed reals is positive. (Contributed by NM, 13-May-1996.) (New usage is discouraged.) |
⊢ ((0R <R 𝐴 ∧ 0R <R 𝐵) → 0R <R (𝐴 ·R 𝐵)) | ||
Theorem | sqgt0sr 10846 | The square of a nonzero signed real is positive. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → 0R <R (𝐴 ·R 𝐴)) | ||
Theorem | recexsr 10847* | The reciprocal of a nonzero signed real exists. Part of Proposition 9-4.3 of [Gleason] p. 126. (Contributed by NM, 15-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐴 ≠ 0R) → ∃𝑥 ∈ R (𝐴 ·R 𝑥) = 1R) | ||
Theorem | mappsrpr 10848 | Mapping from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R (𝐶 +R [〈𝐴, 1P〉] ~R ) ↔ 𝐴 ∈ P) | ||
Theorem | ltpsrpr 10849 | Mapping of order from positive signed reals to positive reals. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R [〈𝐴, 1P〉] ~R ) <R (𝐶 +R [〈𝐵, 1P〉] ~R ) ↔ 𝐴<P 𝐵) | ||
Theorem | map2psrpr 10850* | Equivalence for positive signed real. (Contributed by NM, 17-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 +R -1R) <R 𝐴 ↔ ∃𝑥 ∈ P (𝐶 +R [〈𝑥, 1P〉] ~R ) = 𝐴) | ||
Theorem | supsrlem 10851* | Lemma for supremum theorem. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ 𝐵 = {𝑤 ∣ (𝐶 +R [〈𝑤, 1P〉] ~R ) ∈ 𝐴} & ⊢ 𝐶 ∈ R ⇒ ⊢ ((𝐶 ∈ 𝐴 ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Theorem | supsr 10852* | A nonempty, bounded set of signed reals has a supremum. (Contributed by NM, 21-May-1996.) (Revised by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ ((𝐴 ≠ ∅ ∧ ∃𝑥 ∈ R ∀𝑦 ∈ 𝐴 𝑦 <R 𝑥) → ∃𝑥 ∈ R (∀𝑦 ∈ 𝐴 ¬ 𝑥 <R 𝑦 ∧ ∀𝑦 ∈ R (𝑦 <R 𝑥 → ∃𝑧 ∈ 𝐴 𝑦 <R 𝑧))) | ||
Syntax | cc 10853 | Class of complex numbers. |
class ℂ | ||
Syntax | cr 10854 | Class of real numbers. |
class ℝ | ||
Syntax | cc0 10855 | Extend class notation to include the complex number 0. |
class 0 | ||
Syntax | c1 10856 | Extend class notation to include the complex number 1. |
class 1 | ||
Syntax | ci 10857 | Extend class notation to include the complex number i. |
class i | ||
Syntax | caddc 10858 | Addition on complex numbers. |
class + | ||
Syntax | cltrr 10859 | 'Less than' predicate (defined over real subset of complex numbers). |
class <ℝ | ||
Syntax | cmul 10860 | Multiplication on complex numbers. The token · is a center dot. |
class · | ||
Definition | df-c 10861 | Define the set of complex numbers. The 23 axioms for complex numbers start at axresscn 10888. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℂ = (R × R) | ||
Definition | df-0 10862 | Define the complex number 0. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 0 = 〈0R, 0R〉 | ||
Definition | df-1 10863 | Define the complex number 1. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ 1 = 〈1R, 0R〉 | ||
Definition | df-i 10864 | Define the complex number i (the imaginary unit). (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ i = 〈0R, 1R〉 | ||
Definition | df-r 10865 | Define the set of real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ℝ = (R × {0R}) | ||
Definition | df-add 10866* | Define addition over complex numbers. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ + = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈(𝑤 +R 𝑢), (𝑣 +R 𝑓)〉))} | ||
Definition | df-mul 10867* | Define multiplication over complex numbers. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ · = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) ∧ ∃𝑤∃𝑣∃𝑢∃𝑓((𝑥 = 〈𝑤, 𝑣〉 ∧ 𝑦 = 〈𝑢, 𝑓〉) ∧ 𝑧 = 〈((𝑤 ·R 𝑢) +R (-1R ·R (𝑣 ·R 𝑓))), ((𝑣 ·R 𝑢) +R (𝑤 ·R 𝑓))〉))} | ||
Definition | df-lt 10868* | Define 'less than' on the real subset of complex numbers. Proofs should typically use < instead; see df-ltxr 10998. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ = {〈𝑥, 𝑦〉 ∣ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) ∧ ∃𝑧∃𝑤((𝑥 = 〈𝑧, 0R〉 ∧ 𝑦 = 〈𝑤, 0R〉) ∧ 𝑧 <R 𝑤))} | ||
Theorem | opelcn 10869 | Ordered pair membership in the class of complex numbers. (Contributed by NM, 14-May-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 𝐵〉 ∈ ℂ ↔ (𝐴 ∈ R ∧ 𝐵 ∈ R)) | ||
Theorem | opelreal 10870 | Ordered pair membership in class of real subset of complex numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 ∈ ℝ ↔ 𝐴 ∈ R) | ||
Theorem | elreal 10871* | Membership in class of real numbers. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ∃𝑥 ∈ R 〈𝑥, 0R〉 = 𝐴) | ||
Theorem | elreal2 10872 | Ordered pair membership in the class of complex numbers. (Contributed by Mario Carneiro, 15-Jun-2013.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ℝ ↔ ((1st ‘𝐴) ∈ R ∧ 𝐴 = 〈(1st ‘𝐴), 0R〉)) | ||
Theorem | 0ncn 10873 | The empty set is not a complex number. Note: do not use this after the real number axioms are developed, since it is a construction-dependent property. (Contributed by NM, 2-May-1996.) (New usage is discouraged.) |
⊢ ¬ ∅ ∈ ℂ | ||
Theorem | ltrelre 10874 | 'Less than' is a relation on real numbers. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ <ℝ ⊆ (ℝ × ℝ) | ||
Theorem | addcnsr 10875 | Addition of complex numbers in terms of signed reals. (Contributed by NM, 28-May-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 + 〈𝐶, 𝐷〉) = 〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉) | ||
Theorem | mulcnsr 10876 | Multiplication of complex numbers in terms of signed reals. (Contributed by NM, 9-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → (〈𝐴, 𝐵〉 · 〈𝐶, 𝐷〉) = 〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉) | ||
Theorem | eqresr 10877 | Equality of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (〈𝐴, 0R〉 = 〈𝐵, 0R〉 ↔ 𝐴 = 𝐵) | ||
Theorem | addresr 10878 | Addition of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 + 〈𝐵, 0R〉) = 〈(𝐴 +R 𝐵), 0R〉) | ||
Theorem | mulresr 10879 | Multiplication of real numbers in terms of intermediate signed reals. (Contributed by NM, 10-May-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ R ∧ 𝐵 ∈ R) → (〈𝐴, 0R〉 · 〈𝐵, 0R〉) = 〈(𝐴 ·R 𝐵), 0R〉) | ||
Theorem | ltresr 10880 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ (〈𝐴, 0R〉 <ℝ 〈𝐵, 0R〉 ↔ 𝐴 <R 𝐵) | ||
Theorem | ltresr2 10881 | Ordering of real subset of complex numbers in terms of signed reals. (Contributed by NM, 22-Feb-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 <ℝ 𝐵 ↔ (1st ‘𝐴) <R (1st ‘𝐵))) | ||
Theorem | dfcnqs 10882 | Technical trick to permit reuse of previous lemmas to prove arithmetic operation laws in ℂ from those in R. The trick involves qsid 8546, which shows that the coset of the converse membership relation (which is not an equivalence relation) acts as an identity divisor for the quotient set operation. This lets us "pretend" that ℂ is a quotient set, even though it is not (compare df-c 10861), and allows us to reuse some of the equivalence class lemmas we developed for the transition from positive reals to signed reals, etc. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ ℂ = ((R × R) / ◡ E ) | ||
Theorem | addcnsrec 10883 | Technical trick to permit re-use of some equivalence class lemmas for operation laws. See dfcnqs 10882 and mulcnsrec 10884. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E + [〈𝐶, 𝐷〉]◡ E ) = [〈(𝐴 +R 𝐶), (𝐵 +R 𝐷)〉]◡ E ) | ||
Theorem | mulcnsrec 10884 |
Technical trick to permit re-use of some equivalence class lemmas for
operation laws. The trick involves ecid 8545,
which shows that the coset of
the converse membership relation (which is not an equivalence relation)
leaves a set unchanged. See also dfcnqs 10882.
Note: This is the last lemma (from which the axioms will be derived) in the construction of real and complex numbers. The construction starts at cnpi 10584. (Contributed by NM, 13-Aug-1995.) (New usage is discouraged.) |
⊢ (((𝐴 ∈ R ∧ 𝐵 ∈ R) ∧ (𝐶 ∈ R ∧ 𝐷 ∈ R)) → ([〈𝐴, 𝐵〉]◡ E · [〈𝐶, 𝐷〉]◡ E ) = [〈((𝐴 ·R 𝐶) +R (-1R ·R (𝐵 ·R 𝐷))), ((𝐵 ·R 𝐶) +R (𝐴 ·R 𝐷))〉]◡ E ) | ||
Theorem | axaddf 10885 | Addition is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axaddcl 10891. This construction-dependent theorem should not be referenced directly; instead, use ax-addf 10934. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ + :(ℂ × ℂ)⟶ℂ | ||
Theorem | axmulf 10886 | Multiplication is an operation on the complex numbers. This theorem can be used as an alternate axiom for complex numbers in place of the less specific axmulcl 10893. This construction-dependent theorem should not be referenced directly; instead, use ax-mulf 10935. (Contributed by NM, 8-Feb-2005.) (New usage is discouraged.) |
⊢ · :(ℂ × ℂ)⟶ℂ | ||
Theorem | axcnex 10887 | The complex numbers form a set. This axiom is redundant in the presence of the other axioms (see cnexALT 12708), but the proof requires the axiom of replacement, while the derivation from the construction here does not. Thus, we can avoid ax-rep 5213 in later theorems by invoking Axiom ax-cnex 10911 instead of cnexALT 12708. Use cnex 10936 instead. (Contributed by Mario Carneiro, 17-Nov-2014.) (New usage is discouraged.) |
⊢ ℂ ∈ V | ||
Theorem | axresscn 10888 | The real numbers are a subset of the complex numbers. Axiom 1 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-resscn 10912. (Contributed by NM, 1-Mar-1995.) (Proof shortened by Andrew Salmon, 12-Aug-2011.) (New usage is discouraged.) |
⊢ ℝ ⊆ ℂ | ||
Theorem | ax1cn 10889 | 1 is a complex number. Axiom 2 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1cn 10913. (Contributed by NM, 12-Apr-2007.) (New usage is discouraged.) |
⊢ 1 ∈ ℂ | ||
Theorem | axicn 10890 | i is a complex number. Axiom 3 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-icn 10914. (Contributed by NM, 23-Feb-1996.) (New usage is discouraged.) |
⊢ i ∈ ℂ | ||
Theorem | axaddcl 10891 | Closure law for addition of complex numbers. Axiom 4 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addcl 10915 be used later. Instead, in most cases use addcl 10937. (Contributed by NM, 14-Jun-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 + 𝐵) ∈ ℂ) | ||
Theorem | axaddrcl 10892 | Closure law for addition in the real subfield of complex numbers. Axiom 5 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addrcl 10916 be used later. Instead, in most cases use readdcl 10938. (Contributed by NM, 31-Mar-1996.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 + 𝐵) ∈ ℝ) | ||
Theorem | axmulcl 10893 | Closure law for multiplication of complex numbers. Axiom 6 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcl 10917 be used later. Instead, in most cases use mulcl 10939. (Contributed by NM, 10-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) ∈ ℂ) | ||
Theorem | axmulrcl 10894 | Closure law for multiplication in the real subfield of complex numbers. Axiom 7 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulrcl 10918 be used later. Instead, in most cases use remulcl 10940. (New usage is discouraged.) (Contributed by NM, 31-Mar-1996.) |
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ) | ||
Theorem | axmulcom 10895 | Multiplication of complex numbers is commutative. Axiom 8 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-mulcom 10919 be used later. Instead, use mulcom 10941. (Contributed by NM, 31-Aug-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (𝐴 · 𝐵) = (𝐵 · 𝐴)) | ||
Theorem | axaddass 10896 | Addition of complex numbers is associative. This theorem transfers the associative laws for the real and imaginary signed real components of complex number pairs, to complex number addition itself. Axiom 9 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-addass 10920 be used later. Instead, use addass 10942. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 + 𝐵) + 𝐶) = (𝐴 + (𝐵 + 𝐶))) | ||
Theorem | axmulass 10897 | Multiplication of complex numbers is associative. Axiom 10 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-mulass 10921. (Contributed by NM, 3-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → ((𝐴 · 𝐵) · 𝐶) = (𝐴 · (𝐵 · 𝐶))) | ||
Theorem | axdistr 10898 | Distributive law for complex numbers (left-distributivity). Axiom 11 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly, nor should the proven axiom ax-distr 10922 be used later. Instead, use adddi 10944. (Contributed by NM, 2-Sep-1995.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) → (𝐴 · (𝐵 + 𝐶)) = ((𝐴 · 𝐵) + (𝐴 · 𝐶))) | ||
Theorem | axi2m1 10899 | i-squared equals -1 (expressed as i-squared plus 1 is 0). Axiom 12 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-i2m1 10923. (Contributed by NM, 5-May-1996.) (New usage is discouraged.) |
⊢ ((i · i) + 1) = 0 | ||
Theorem | ax1ne0 10900 | 1 and 0 are distinct. Axiom 13 of 22 for real and complex numbers, derived from ZF set theory. This construction-dependent theorem should not be referenced directly; instead, use ax-1ne0 10924. (Contributed by NM, 19-Mar-1996.) (New usage is discouraged.) |
⊢ 1 ≠ 0 |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |