Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > df-vd2 | Structured version Visualization version GIF version |
Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.) |
Ref | Expression |
---|---|
df-vd2 | ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wph | . . 3 wff 𝜑 | |
2 | wps | . . 3 wff 𝜓 | |
3 | wch | . . 3 wff 𝜒 | |
4 | 1, 2, 3 | wvd2 42086 | . 2 wff ( 𝜑 , 𝜓 ▶ 𝜒 ) |
5 | 1, 2 | wa 395 | . . 3 wff (𝜑 ∧ 𝜓) |
6 | 5, 3 | wi 4 | . 2 wff ((𝜑 ∧ 𝜓) → 𝜒) |
7 | 4, 6 | wb 205 | 1 wff (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) |
Colors of variables: wff setvar class |
This definition is referenced by: dfvd2 42088 |
Copyright terms: Public domain | W3C validator |