Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  df-vd2 Structured version   Visualization version   GIF version

Definition df-vd2 39480
Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.)
Assertion
Ref Expression
df-vd2 ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))

Detailed syntax breakdown of Definition df-vd2
StepHypRef Expression
1 wph . . 3 wff 𝜑
2 wps . . 3 wff 𝜓
3 wch . . 3 wff 𝜒
41, 2, 3wvd2 39479 . 2 wff (   𝜑   ,   𝜓   ▶   𝜒   )
51, 2wa 384 . . 3 wff (𝜑𝜓)
65, 3wi 4 . 2 wff ((𝜑𝜓) → 𝜒)
74, 6wb 197 1 wff ((   𝜑   ,   𝜓   ▶   𝜒   ) ↔ ((𝜑𝜓) → 𝜒))
Colors of variables: wff setvar class
This definition is referenced by:  dfvd2  39481
  Copyright terms: Public domain W3C validator