| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd2 | Structured version Visualization version GIF version | ||
| Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dfvd2 | ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vd2 44531 | . 2 ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ ((𝜑 ∧ 𝜓) → 𝜒)) | |
| 2 | impexp 450 | . 2 ⊢ (((𝜑 ∧ 𝜓) → 𝜒) ↔ (𝜑 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | bitri 275 | 1 ⊢ (( 𝜑 , 𝜓 ▶ 𝜒 ) ↔ (𝜑 → (𝜓 → 𝜒))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ( wvd2 44530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-vd2 44531 |
| This theorem is referenced by: dfvd2i 44538 dfvd2ir 44539 dfvd2imp 44556 dfvd2impr 44557 |
| Copyright terms: Public domain | W3C validator |