![]() |
Metamath
Proof Explorer Theorem List (p. 437 of 475) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30034) |
![]() (30035-31557) |
![]() (31558-47500) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ssdf2 43601 | A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | ||
Theorem | rabssd 43602 | Restricted class abstraction in a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜒) → 𝑥 ∈ 𝐵) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} ⊆ 𝐵) | ||
Theorem | rexnegd 43603 | Minus a real number. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → -𝑒𝐴 = -𝐴) | ||
Theorem | rexlimd3 43604 | * Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝜒 & ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) ⇒ ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) | ||
Theorem | resabs1i 43605 | Absorption law for restriction. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ 𝐵 ⊆ 𝐶 ⇒ ⊢ ((𝐴 ↾ 𝐶) ↾ 𝐵) = (𝐴 ↾ 𝐵) | ||
Theorem | nel1nelin 43606 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (¬ 𝐴 ∈ 𝐵 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
Theorem | nel2nelin 43607 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ (¬ 𝐴 ∈ 𝐶 → ¬ 𝐴 ∈ (𝐵 ∩ 𝐶)) | ||
Theorem | nel1nelini 43608 | Membership in an intersection implies membership in the first set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ¬ 𝐴 ∈ 𝐵 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
Theorem | nel2nelini 43609 | Membership in an intersection implies membership in the second set. (Contributed by Glauco Siliprandi, 2-Jan-2022.) |
⊢ ¬ 𝐴 ∈ 𝐶 ⇒ ⊢ ¬ 𝐴 ∈ (𝐵 ∩ 𝐶) | ||
Theorem | eliunid 43610* | Membership in indexed union. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ ((𝑥 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ ∪ 𝑥 ∈ 𝐴 𝐵) | ||
Theorem | reximddv3 43611* | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
Theorem | reximdd 43612 | Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝜓) → 𝜒) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜒) | ||
Theorem | unfid 43613 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | inopnd 43614 | The intersection of two open sets of a topology is an open set. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) & ⊢ (𝜑 → 𝐵 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐴 ∩ 𝐵) ∈ 𝐽) | ||
Theorem | ss2rabdf 43615 | Deduction of restricted abstraction subclass from implication. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜒)) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} ⊆ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | restopn3 43616 | If 𝐴 is open, then 𝐴 is open in the restriction to itself. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ ((𝐽 ∈ Top ∧ 𝐴 ∈ 𝐽) → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
Theorem | restopnssd 43617 | A topology restricted to an open set is a subset of the original topology. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ∈ 𝐽) ⇒ ⊢ (𝜑 → (𝐽 ↾t 𝐴) ⊆ 𝐽) | ||
Theorem | restsubel 43618 | A subset belongs in the space it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ (𝜑 → 𝐽 ∈ 𝑉) & ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
Theorem | toprestsubel 43619 | A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ (𝜑 → 𝐽 ∈ Top) & ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) ⇒ ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) | ||
Theorem | rabidd 43620 | An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ (𝜑 → 𝑥 ∈ 𝐴) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) | ||
Theorem | iunssdf 43621 | Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐶 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | iinss2d 43622 | Subset implication for an indexed intersection. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐶 & ⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) ⇒ ⊢ (𝜑 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) | ||
Theorem | r19.3rzf 43623 | Restricted quantification of wff not containing quantified variable. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥 ∈ 𝐴 𝜑)) | ||
Theorem | r19.28zf 43624 | Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 ≠ ∅ → (∀𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∀𝑥 ∈ 𝐴 𝜓))) | ||
Theorem | iindif2f 43625 | Indexed intersection of class difference. Generalization of half of theorem "De Morgan's laws". (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 ⇒ ⊢ (𝐴 ≠ ∅ → ∩ 𝑥 ∈ 𝐴 (𝐵 ∖ 𝐶) = (𝐵 ∖ ∪ 𝑥 ∈ 𝐴 𝐶)) | ||
Theorem | ralfal 43626 | Two ways of expressing empty set. (Contributed by Glauco Siliprandi, 24-Jan-2024.) |
⊢ Ⅎ𝑥𝐴 ⇒ ⊢ (𝐴 = ∅ ↔ ∀𝑥 ∈ 𝐴 ⊥) | ||
Theorem | archd 43627* | Archimedean property of real numbers. For any real number, there is an integer greater than it. Theorem I.29 of [Apostol] p. 26. (Contributed by Glauco Siliprandi, 1-Feb-2025.) |
⊢ (𝜑 → 𝐴 ∈ ℝ) ⇒ ⊢ (𝜑 → ∃𝑛 ∈ ℕ 𝐴 < 𝑛) | ||
Theorem | eliund 43628* | Membership in indexed union. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝐴 ∈ 𝐶) ⇒ ⊢ (𝜑 → 𝐴 ∈ ∪ 𝑥 ∈ 𝐵 𝐶) | ||
Theorem | nimnbi 43629 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ ¬ (𝜑 → 𝜓) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
Theorem | nimnbi2 43630 | If an implication is false, the biconditional is false. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ ¬ (𝜓 → 𝜑) ⇒ ⊢ ¬ (𝜑 ↔ 𝜓) | ||
Theorem | notbicom 43631 | Commutative law for the negation of a biconditional. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ ¬ (𝜑 ↔ 𝜓) ⇒ ⊢ ¬ (𝜓 ↔ 𝜑) | ||
Theorem | rexeqif 43632 | Equality inference for restricted existential quantifier. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = 𝐵 ⇒ ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐵 𝜑) | ||
Theorem | rspced 43633 | Restricted existential specialization, using implicit substitution. (Contributed by Glauco Siliprandi, 15-Feb-2025.) |
⊢ Ⅎ𝑥𝜒 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑥𝐵 & ⊢ (𝜑 → 𝐴 ∈ 𝐵) & ⊢ (𝜑 → 𝜒) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜒)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜓) | ||
Theorem | feq1dd 43634 | Equality deduction for functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹 = 𝐺) & ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) ⇒ ⊢ (𝜑 → 𝐺:𝐴⟶𝐵) | ||
Theorem | fnresdmss 43635 | A function does not change when restricted to a set that contains its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ⊆ 𝐵) → (𝐹 ↾ 𝐵) = 𝐹) | ||
Theorem | fmptsnxp 43636* | Maps-to notation and Cartesian product for a singleton function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑥 ∈ {𝐴} ↦ 𝐵) = ({𝐴} × {𝐵})) | ||
Theorem | fvmpt2bd 43637* | Value of a function given by the maps-to notation. Deduction version. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵)) ⇒ ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝐵 ∈ 𝐶) → (𝐹‘𝑥) = 𝐵) | ||
Theorem | rnmptfi 43638* | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ (𝐵 ∈ Fin → ran 𝐴 ∈ Fin) | ||
Theorem | fresin2 43639 | Restriction of a function with respect to the intersection with its domain. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝐹:𝐴⟶𝐵 → (𝐹 ↾ (𝐶 ∩ 𝐴)) = (𝐹 ↾ 𝐶)) | ||
Theorem | ffi 43640 | A function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
Theorem | suprnmpt 43641* | An explicit bound for the range of a bounded function. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ (𝜑 → 𝐴 ≠ ∅) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) & ⊢ (𝜑 → ∃𝑦 ∈ ℝ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝑦) & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ 𝐶 = sup(ran 𝐹, ℝ, < ) ⇒ ⊢ (𝜑 → (𝐶 ∈ ℝ ∧ ∀𝑥 ∈ 𝐴 𝐵 ≤ 𝐶)) | ||
Theorem | rnffi 43642 | The range of a function with finite domain is finite. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝐴 ∈ Fin) → ran 𝐹 ∈ Fin) | ||
Theorem | mptelpm 43643* | A function in maps-to notation is a partial map . (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) & ⊢ (𝜑 → 𝐴 ⊆ 𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (𝐶 ↑pm 𝐷)) | ||
Theorem | rnmptpr 43644* | Range of a function defined on an unordered pair. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐹 = (𝑥 ∈ {𝐴, 𝐵} ↦ 𝐶) & ⊢ (𝑥 = 𝐴 → 𝐶 = 𝐷) & ⊢ (𝑥 = 𝐵 → 𝐶 = 𝐸) ⇒ ⊢ (𝜑 → ran 𝐹 = {𝐷, 𝐸}) | ||
Theorem | resmpti 43645* | Restriction of the mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐵 ⊆ 𝐴 ⇒ ⊢ ((𝑥 ∈ 𝐴 ↦ 𝐶) ↾ 𝐵) = (𝑥 ∈ 𝐵 ↦ 𝐶) | ||
Theorem | founiiun 43646* | Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐹:𝐴–onto→𝐵 → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
Theorem | rnresun 43647 | Distribution law for range of a restriction over a union. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ran (𝐹 ↾ (𝐴 ∪ 𝐵)) = (ran (𝐹 ↾ 𝐴) ∪ ran (𝐹 ↾ 𝐵)) | ||
Theorem | dffo3f 43648* | An onto mapping expressed in terms of function values. As dffo3 7088 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ (𝐹:𝐴–onto→𝐵 ↔ (𝐹:𝐴⟶𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = (𝐹‘𝑥))) | ||
Theorem | elrnmptf 43649 | The range of a function in maps-to notation. Same as elrnmpt 5947, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) | ||
Theorem | rnmptssrn 43650* | Inclusion relation for two ranges expressed in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐶 𝐵 = 𝐷) ⇒ ⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ran (𝑦 ∈ 𝐶 ↦ 𝐷)) | ||
Theorem | disjf1 43651* | A 1 to 1 mapping built from disjoint, nonempty sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) ⇒ ⊢ (𝜑 → 𝐹:𝐴–1-1→𝑉) | ||
Theorem | rnsnf 43652 | The range of a function whose domain is a singleton. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐹:{𝐴}⟶𝐵) ⇒ ⊢ (𝜑 → ran 𝐹 = {(𝐹‘𝐴)}) | ||
Theorem | wessf1ornlem 43653* | Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ 𝐺 = (𝑦 ∈ ran 𝐹 ↦ (℩𝑥 ∈ (◡𝐹 “ {𝑦})∀𝑧 ∈ (◡𝐹 “ {𝑦}) ¬ 𝑧𝑅𝑥)) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) | ||
Theorem | wessf1orn 43654* | Given a function 𝐹 on a well-ordered domain 𝐴 there exists a subset of 𝐴 such that 𝐹 restricted to such subset is injective and onto the range of 𝐹 (without using the axiom of choice). (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝜑 → 𝐹 Fn 𝐴) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑅 We 𝐴) ⇒ ⊢ (𝜑 → ∃𝑥 ∈ 𝒫 𝐴(𝐹 ↾ 𝑥):𝑥–1-1-onto→ran 𝐹) | ||
Theorem | foelrnf 43655* | Property of a surjective function. As foelrn 7092 but with less disjoint vars constraints. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐹 ⇒ ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐶 ∈ 𝐵) → ∃𝑥 ∈ 𝐴 𝐶 = (𝐹‘𝑥)) | ||
Theorem | nelrnres 43656 | If 𝐴 is not in the range, it is not in the range of any restriction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (¬ 𝐴 ∈ ran 𝐵 → ¬ 𝐴 ∈ ran (𝐵 ↾ 𝐶)) | ||
Theorem | disjrnmpt2 43657* | Disjointness of the range of a function in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) ⇒ ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 → Disj 𝑦 ∈ ran 𝐹 𝑦) | ||
Theorem | elrnmpt1sf 43658* | Elementhood in an image set. Same as elrnmpt1s 5948, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝐶 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) ⇒ ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) | ||
Theorem | founiiun0 43659* | Union expressed as an indexed union, when a map onto is given. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ (𝐹:𝐴–onto→(𝐵 ∪ {∅}) → ∪ 𝐵 = ∪ 𝑥 ∈ 𝐴 (𝐹‘𝑥)) | ||
Theorem | disjf1o 43660* | A bijection built from disjoint sets. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ 𝐶 = {𝑥 ∈ 𝐴 ∣ 𝐵 ≠ ∅} & ⊢ 𝐷 = (ran 𝐹 ∖ {∅}) ⇒ ⊢ (𝜑 → (𝐹 ↾ 𝐶):𝐶–1-1-onto→𝐷) | ||
Theorem | fompt 43661* | Express being onto for a mapping operation. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐶) ⇒ ⊢ (𝐹:𝐴–onto→𝐵 ↔ (∀𝑥 ∈ 𝐴 𝐶 ∈ 𝐵 ∧ ∀𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝑦 = 𝐶)) | ||
Theorem | disjinfi 43662* | Only a finite number of disjoint sets can have a nonempty intersection with a finite set 𝐶. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → Disj 𝑥 ∈ 𝐴 𝐵) & ⊢ (𝜑 → 𝐶 ∈ Fin) ⇒ ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ (𝐵 ∩ 𝐶) ≠ ∅} ∈ Fin) | ||
Theorem | fvovco 43663 | Value of the composition of an operator, with a given function. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐹:𝑋⟶(𝑉 × 𝑊)) & ⊢ (𝜑 → 𝑌 ∈ 𝑋) ⇒ ⊢ (𝜑 → ((𝑂 ∘ 𝐹)‘𝑌) = ((1st ‘(𝐹‘𝑌))𝑂(2nd ‘(𝐹‘𝑌)))) | ||
Theorem | ssnnf1octb 43664* | There exists a bijection between a subset of ℕ and a given nonempty countable set. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ((𝐴 ≼ ω ∧ 𝐴 ≠ ∅) → ∃𝑓(dom 𝑓 ⊆ ℕ ∧ 𝑓:dom 𝑓–1-1-onto→𝐴)) | ||
Theorem | nnf1oxpnn 43665 | There is a bijection between the set of positive integers and the Cartesian product of the set of positive integers with itself. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ ∃𝑓 𝑓:ℕ–1-1-onto→(ℕ × ℕ) | ||
Theorem | rnmptssd 43666* | The range of a function given by the maps-to notation as a subset. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝐶) ⇒ ⊢ (𝜑 → ran 𝐹 ⊆ 𝐶) | ||
Theorem | projf1o 43667* | A biijection from a set to a projection in a two dimensional space. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ 〈𝐴, 𝑥〉) ⇒ ⊢ (𝜑 → 𝐹:𝐵–1-1-onto→({𝐴} × 𝐵)) | ||
Theorem | fvmap 43668 | Function value for a member of a set exponentiation. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐹 ∈ (𝐴 ↑m 𝐵)) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝐴) | ||
Theorem | fvixp2 43669* | Projection of a factor of an indexed Cartesian product. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ ((𝐹 ∈ X𝑥 ∈ 𝐴 𝐵 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝐵) | ||
Theorem | choicefi 43670* | For a finite set, a choice function exists, without using the axiom of choice. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝐴 ∧ ∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝐵)) | ||
Theorem | mpct 43671 | The exponentiation of a countable set to a finite set is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ↑m 𝐵) ≼ ω) | ||
Theorem | cnmetcoval 43672 | Value of the distance function of the metric space of complex numbers, composed with a function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ 𝐷 = (abs ∘ − ) & ⊢ (𝜑 → 𝐹:𝐴⟶(ℂ × ℂ)) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) ⇒ ⊢ (𝜑 → ((𝐷 ∘ 𝐹)‘𝐵) = (abs‘((1st ‘(𝐹‘𝐵)) − (2nd ‘(𝐹‘𝐵))))) | ||
Theorem | fcomptss 43673* | Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐵 ⊆ 𝐶) & ⊢ (𝜑 → 𝐺:𝐶⟶𝐷) ⇒ ⊢ (𝜑 → (𝐺 ∘ 𝐹) = (𝑥 ∈ 𝐴 ↦ (𝐺‘(𝐹‘𝑥)))) | ||
Theorem | elmapsnd 43674 | Membership in a set exponentiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹 Fn {𝐴}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝐹 ∈ (𝐵 ↑m {𝐴})) | ||
Theorem | mapss2 43675 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | fsneq 43676 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) = (𝐺‘𝐴))) | ||
Theorem | difmap 43677 | Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → ((𝐴 ∖ 𝐵) ↑m 𝐶) ⊆ ((𝐴 ↑m 𝐶) ∖ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmap 43678 | Given a subset of a set exponentiation, the base set can be restricted. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐴)) ⇒ ⊢ (𝜑 → 𝑋 ⊆ (ran ∪ 𝑋 ↑m 𝐴)) | ||
Theorem | inmap 43679 | Intersection of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m 𝐶) ∩ (𝐵 ↑m 𝐶)) = ((𝐴 ∩ 𝐵) ↑m 𝐶)) | ||
Theorem | fcoss 43680 | Composition of two mappings. Similar to fco 6728, but with a weaker condition on the domain of 𝐹. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → 𝐺:𝐷⟶𝐶) ⇒ ⊢ (𝜑 → (𝐹 ∘ 𝐺):𝐷⟶𝐵) | ||
Theorem | fsneqrn 43681 | Equality condition for two functions defined on a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ 𝐵 = {𝐴} & ⊢ (𝜑 → 𝐹 Fn 𝐵) & ⊢ (𝜑 → 𝐺 Fn 𝐵) ⇒ ⊢ (𝜑 → (𝐹 = 𝐺 ↔ (𝐹‘𝐴) ∈ ran 𝐺)) | ||
Theorem | difmapsn 43682 | Difference of two sets exponentiatiated to a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ((𝐴 ↑m {𝐶}) ∖ (𝐵 ↑m {𝐶})) = ((𝐴 ∖ 𝐵) ↑m {𝐶})) | ||
Theorem | mapssbi 43683 | Subset inheritance for set exponentiation. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) & ⊢ (𝜑 → 𝐶 ≠ ∅) ⇒ ⊢ (𝜑 → (𝐴 ⊆ 𝐵 ↔ (𝐴 ↑m 𝐶) ⊆ (𝐵 ↑m 𝐶))) | ||
Theorem | unirnmapsn 43684 | Equality theorem for a subset of a set exponentiation, where the exponent is a singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ 𝐶 = {𝐴} & ⊢ (𝜑 → 𝑋 ⊆ (𝐵 ↑m 𝐶)) ⇒ ⊢ (𝜑 → 𝑋 = (ran ∪ 𝑋 ↑m 𝐶)) | ||
Theorem | iunmapss 43685* | The indexed union of set exponentiations is a subset of the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m 𝐶) ⊆ (∪ 𝑥 ∈ 𝐴 𝐵 ↑m 𝐶)) | ||
Theorem | ssmapsn 43686* | A subset 𝐶 of a set exponentiation to a singleton, is its projection 𝐷 exponentiated to the singleton. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑓𝐷 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ⊆ (𝐵 ↑m {𝐴})) & ⊢ 𝐷 = ∪ 𝑓 ∈ 𝐶 ran 𝑓 ⇒ ⊢ (𝜑 → 𝐶 = (𝐷 ↑m {𝐴})) | ||
Theorem | iunmapsn 43687* | The indexed union of set exponentiations to a singleton is equal to the set exponentiation of the indexed union. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑊) & ⊢ (𝜑 → 𝐶 ∈ 𝑍) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 (𝐵 ↑m {𝐶}) = (∪ 𝑥 ∈ 𝐴 𝐵 ↑m {𝐶})) | ||
Theorem | absfico 43688 | Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ abs:ℂ⟶(0[,)+∞) | ||
Theorem | icof 43689 | The set of left-closed right-open intervals of extended reals maps to subsets of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
⊢ [,):(ℝ* × ℝ*)⟶𝒫 ℝ* | ||
Theorem | elpmrn 43690 | The range of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → ran 𝐹 ⊆ 𝐴) | ||
Theorem | imaexi 43691 | The image of a set is a set. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ (𝐴 “ 𝐵) ∈ V | ||
Theorem | axccdom 43692* | Relax the constraint on ax-cc to dominance instead of equinumerosity. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝑋 ≼ ω) & ⊢ ((𝜑 ∧ 𝑧 ∈ 𝑋) → 𝑧 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓(𝑓 Fn 𝑋 ∧ ∀𝑧 ∈ 𝑋 (𝑓‘𝑧) ∈ 𝑧)) | ||
Theorem | dmmptdff 43693 | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑥𝐵 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | dmmptdf 43694* | The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ 𝐴 = (𝑥 ∈ 𝐵 ↦ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐶 ∈ 𝑉) ⇒ ⊢ (𝜑 → dom 𝐴 = 𝐵) | ||
Theorem | elpmi2 43695 | The domain of a partial function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝐹 ∈ (𝐴 ↑pm 𝐵) → dom 𝐹 ⊆ 𝐵) | ||
Theorem | dmrelrnrel 43696* | A relation preserving function. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → (𝐹‘𝑥)𝑆(𝐹‘𝑦))) & ⊢ (𝜑 → 𝐵 ∈ 𝐴) & ⊢ (𝜑 → 𝐶 ∈ 𝐴) & ⊢ (𝜑 → 𝐵𝑅𝐶) ⇒ ⊢ (𝜑 → (𝐹‘𝐵)𝑆(𝐹‘𝐶)) | ||
Theorem | fvcod 43697 | Value of a function composition. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → Fun 𝐺) & ⊢ (𝜑 → 𝐴 ∈ dom 𝐺) & ⊢ 𝐻 = (𝐹 ∘ 𝐺) ⇒ ⊢ (𝜑 → (𝐻‘𝐴) = (𝐹‘(𝐺‘𝐴))) | ||
Theorem | elrnmpoid 43698* | Membership in the range of an operation class abstraction. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) ⇒ ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝐶 ∈ 𝑉) → (𝑥𝐹𝑦) ∈ ran 𝐹) | ||
Theorem | axccd 43699* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≈ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) | ||
Theorem | axccd2 43700* | An alternative version of the axiom of countable choice. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
⊢ (𝜑 → 𝐴 ≼ ω) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ≠ ∅) ⇒ ⊢ (𝜑 → ∃𝑓∀𝑥 ∈ 𝐴 (𝑓‘𝑥) ∈ 𝑥) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |