| Metamath
Proof Explorer Theorem List (p. 437 of 497) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30904) |
(30905-32427) |
(32428-49636) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | clublem 43601* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
| Theorem | clss2lem 43602* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
| Theorem | dfid7 43603* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | mptrcllem 43604* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
| ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
| Theorem | cotrintab 43605 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
| ⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
| Theorem | rclexi 43606* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexlem 43607 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
| Theorem | rtrclex 43608* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
| Theorem | trclubgNEW 43609* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclubNEW 43610* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
| Theorem | trclexi 43611* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexi 43612* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
| Theorem | clrellem 43613* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
| Theorem | clcnvlem 43614* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
| Theorem | cnvtrucl0 43615* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | cnvrcl0 43616* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
| Theorem | cnvtrcl0 43617* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
| Theorem | dmtrcl 43618* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
| Theorem | rntrcl 43619* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
| Theorem | dfrtrcl5 43620* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
| ⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) | ||
| Theorem | trcleq2lemRP 43621 | Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
| ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
This is based on the observation that the real and imaginary parts of a complex number can be calculated from the number's absolute and real part and the sign of its imaginary part. Formalization of the formula in sqrtcval 43632 was motivated by a short Michael Penn video. | ||
| Theorem | sqrtcvallem1 43622 | Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 43632. (Contributed by RP, 17-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+)) | ||
| Theorem | reabsifneg 43623 | Alternate expression for the absolute value of a real number. Lemma for sqrtcval 43632. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | ||
| Theorem | reabsifnpos 43624 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 ≤ 0, -𝐴, 𝐴)) | ||
| Theorem | reabsifpos 43625 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) | ||
| Theorem | reabsifnneg 43626 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 ≤ 𝐴, 𝐴, -𝐴)) | ||
| Theorem | reabssgn 43627 | Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) | ||
| Theorem | sqrtcvallem2 43628 | Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 43632. See imsqrtval 43635. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) | ||
| Theorem | sqrtcvallem3 43629 | Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval 43632, sqrtcval2 43633, resqrtval 43634, and imsqrtval 43635. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
| Theorem | sqrtcvallem4 43630 | Equivalent to saying that the square of the real component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 43632. See resqrtval 43634. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)) | ||
| Theorem | sqrtcvallem5 43631 | Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval 43634 and imsqrtval 43635. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
| Theorem | sqrtcval 43632 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15216 and crimi 15217. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | ||
| Theorem | sqrtcval2 43633 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43632. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) | ||
| Theorem | resqrtval 43634 | Real part of the complex square root. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(√‘𝐴)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) | ||
| Theorem | imsqrtval 43635 | Imaginary part of the complex square root. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘(√‘𝐴)) = (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) | ||
| Theorem | resqrtvalex 43636 | Example for resqrtval 43634. (Contributed by RP, 21-May-2024.) |
| ⊢ (ℜ‘(√‘(;15 + (i · 8)))) = 4 | ||
| Theorem | imsqrtvalex 43637 | Example for imsqrtval 43635. (Contributed by RP, 21-May-2024.) |
| ⊢ (ℑ‘(√‘(;15 + (i · 8)))) = 1 | ||
| Theorem | al3im 43638 | Version of ax-4 1809 for a nested implication. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → (𝜒 → 𝜃))) → (∀𝑥𝜑 → (∀𝑥𝜓 → (∀𝑥𝜒 → ∀𝑥𝜃)))) | ||
| Theorem | intima0 43639* | Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
| ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
| Theorem | elimaint 43640* | Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
| Theorem | cnviun 43641* | Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
| ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 | ||
| Theorem | imaiun1 43642* | The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) | ||
| Theorem | coiun1 43643* | Composition with an indexed union. Proof analogous to that of coiun 6250. (Contributed by RP, 20-Jun-2020.) |
| ⊢ (∪ 𝑥 ∈ 𝐶 𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
| Theorem | elintima 43644* | Element of intersection of images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
| Theorem | intimass 43645* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
| Theorem | intimass2 43646* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) | ||
| Theorem | intimag 43647* | Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) | ||
| Theorem | intimasn 43648* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | ||
| Theorem | intimasn2 43649* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) | ||
| Theorem | ss2iundf 43650* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | ss2iundv 43651* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | cbviuneq12df 43652* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | cbviuneq12dv 43653* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | conrel1d 43654 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) | ||
| Theorem | conrel2d 43655 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | ||
| Theorem | trrelind 43656 | The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) & ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) ⇒ ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) | ||
| Theorem | xpintrreld 43657 | The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
| Theorem | restrreld 43658 | The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
| Theorem | trrelsuperreldg 43659 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
| Theorem | trficl 43660* | The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | cnvtrrel 43661 | The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) | ||
| Theorem | trrelsuperrel2dg 43662 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.) |
| ⊢ (𝜑 → 𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
| Syntax | crcl 43663 | Extend class notation with reflexive closure. |
| class r* | ||
| Definition | df-rcl 43664* | Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) | ||
| Theorem | dfrcl2 43665 | Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) | ||
| Theorem | dfrcl3 43666 | Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ ((𝑥↑𝑟0) ∪ (𝑥↑𝑟1))) | ||
| Theorem | dfrcl4 43667* | Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
| ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) | ||
In order for theorems on the transitive closure of a relation to be grouped together before the concept of continuity, we really need an analogue of ↑𝑟 that works on finite ordinals or finite sets instead of natural numbers. | ||
| Theorem | relexp2 43668 | A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟2) = (𝑅 ∘ 𝑅)) | ||
| Theorem | relexpnul 43669 | If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ Rel 𝑅) ∧ (𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)) → ((dom (𝑅↑𝑟𝑁) ∩ ran (𝑅↑𝑟𝑀)) = ∅ ↔ (𝑅↑𝑟(𝑁 + 𝑀)) = ∅)) | ||
| Theorem | eliunov2 43670* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 15082. (Contributed by RP, 1-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
| Theorem | eltrclrec 43671* | Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
| Theorem | elrtrclrec 43672* | Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
| Theorem | briunov2 43673* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
| Theorem | brmptiunrelexpd 43674* | If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 15082. (Contributed by RP, 21-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | fvmptiunrelexplb0d 43675* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) | ||
| Theorem | fvmptiunrelexplb0da 43676* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) | ||
| Theorem | fvmptiunrelexplb1d 43677* | If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 1 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝐶‘𝑅)) | ||
| Theorem | brfvid 43678 | If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
| Theorem | brfvidRP 43679 | If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 43674. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
| Theorem | fvilbd 43680 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
| Theorem | fvilbdRP 43681 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
| Theorem | brfvrcld 43682 | If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) | ||
| Theorem | brfvrcld2 43683 | If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) | ||
| Theorem | fvrcllb0d 43684 | A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (r*‘𝑅)) | ||
| Theorem | fvrcllb0da 43685 | A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (r*‘𝑅)) | ||
| Theorem | fvrcllb1d 43686 | A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (r*‘𝑅)) | ||
| Theorem | brtrclrec 43687* | Two classes related by the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
| Theorem | brrtrclrec 43688* | Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
| Theorem | briunov2uz 43689* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
| Theorem | eliunov2uz 43690* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
| Theorem | ov2ssiunov2 43691* | Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 15081 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) | ||
| Theorem | relexp0eq 43692 | The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) | ||
| Theorem | iunrelexp0 43693* | Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) | ||
| Theorem | relexpxpnnidm 43694 | Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) | ||
| Theorem | relexpiidm 43695 | Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) | ||
| Theorem | relexpss1d 43696 | The relational power of a subset is a subset. (Contributed by RP, 17-Jun-2020.) |
| ⊢ (𝜑 → 𝐴 ⊆ 𝐵) & ⊢ (𝜑 → 𝐵 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ ℕ0) ⇒ ⊢ (𝜑 → (𝐴↑𝑟𝑁) ⊆ (𝐵↑𝑟𝑁)) | ||
| Theorem | comptiunov2i 43697* | The composition two indexed unions is sometimes a similar indexed union. (Contributed by RP, 10-Jun-2020.) |
| ⊢ 𝑋 = (𝑎 ∈ V ↦ ∪ 𝑖 ∈ 𝐼 (𝑎 ↑ 𝑖)) & ⊢ 𝑌 = (𝑏 ∈ V ↦ ∪ 𝑗 ∈ 𝐽 (𝑏 ↑ 𝑗)) & ⊢ 𝑍 = (𝑐 ∈ V ↦ ∪ 𝑘 ∈ 𝐾 (𝑐 ↑ 𝑘)) & ⊢ 𝐼 ∈ V & ⊢ 𝐽 ∈ V & ⊢ 𝐾 = (𝐼 ∪ 𝐽) & ⊢ ∪ 𝑘 ∈ 𝐼 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑘 ∈ 𝐽 (𝑑 ↑ 𝑘) ⊆ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) & ⊢ ∪ 𝑖 ∈ 𝐼 (∪ 𝑗 ∈ 𝐽 (𝑑 ↑ 𝑗) ↑ 𝑖) ⊆ ∪ 𝑘 ∈ (𝐼 ∪ 𝐽)(𝑑 ↑ 𝑘) ⇒ ⊢ (𝑋 ∘ 𝑌) = 𝑍 | ||
| Theorem | corclrcl 43698 | The reflexive closure is idempotent. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (r* ∘ r*) = r* | ||
| Theorem | iunrelexpmin1 43699* | The indexed union of relation exponentiation over the natural numbers is the minimum transitive relation that includes the relation. (Contributed by RP, 4-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑁 = ℕ) → ∀𝑠((𝑅 ⊆ 𝑠 ∧ (𝑠 ∘ 𝑠) ⊆ 𝑠) → (𝐶‘𝑅) ⊆ 𝑠)) | ||
| Theorem | relexpmulnn 43700 | With exponents limited to the counting numbers, the composition of powers of a relation is the relation raised to the product of exponents. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ 𝐼 = (𝐽 · 𝐾)) ∧ (𝐽 ∈ ℕ ∧ 𝐾 ∈ ℕ)) → ((𝑅↑𝑟𝐽)↑𝑟𝐾) = (𝑅↑𝑟𝐼)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |