![]() |
Metamath
Proof Explorer Theorem List (p. 437 of 484) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30767) |
![]() (30768-32290) |
![]() (32291-48346) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | clsneifv3 43601* | Value of the neighborhoods (convergents) in terms of the closure (interior) function. (Contributed by RP, 27-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ π» = (πΉ β π·) & β’ (π β πΎπ»π) & β’ (π β π β π΅) β β’ (π β (πβπ) = {π β π« π΅ β£ Β¬ π β (πΎβ(π΅ β π ))}) | ||
Theorem | clsneifv4 43602* | Value of the closure (interior) function in terms of the neighborhoods (convergents) function. (Contributed by RP, 27-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ π» = (πΉ β π·) & β’ (π β πΎπ»π) & β’ (π β π β π« π΅) β β’ (π β (πΎβπ) = {π₯ β π΅ β£ Β¬ (π΅ β π) β (πβπ₯)}) | ||
Theorem | neicvgbex 43603 | If (pseudo-)neighborhood and (pseudo-)convergent functions are related by the composite operator, π», then the base set exists. (Contributed by RP, 4-Jun-2021.) |
β’ π· = (πβπ΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β π΅ β V) | ||
Theorem | neicvgrcomplex 43604 | The relative complement of the class π exists as a subset of the base set. (Contributed by RP, 26-Jun-2021.) |
β’ π· = (πβπ΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β (π΅ β π) β π« π΅) | ||
Theorem | neicvgf1o 43605* | If neighborhood and convergent functions are related by operator π», it is a one-to-one onto relation. (Contributed by RP, 11-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β π»:(π« π« π΅ βm π΅)β1-1-ontoβ(π« π« π΅ βm π΅)) | ||
Theorem | neicvgnvo 43606* | If neighborhood and convergent functions are related by operator π», it is its own converse function. (Contributed by RP, 11-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β β‘π» = π») | ||
Theorem | neicvgnvor 43607* | If neighborhood and convergent functions are related by operator π», the relationship holds with the functions swapped. (Contributed by RP, 11-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β ππ»π) | ||
Theorem | neicvgmex 43608* | If the neighborhoods and convergents functions are related, the convergents function exists. (Contributed by RP, 27-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β π β (π« π« π΅ βm π΅)) | ||
Theorem | neicvgnex 43609* | If the neighborhoods and convergents functions are related, the neighborhoods function exists. (Contributed by RP, 27-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) β β’ (π β π β (π« π« π΅ βm π΅)) | ||
Theorem | neicvgel1 43610* | A subset being an element of a neighborhood of a point is equivalent to the complement of that subset not being a element of the convergent of that point. (Contributed by RP, 12-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) & β’ (π β π β π΅) & β’ (π β π β π« π΅) β β’ (π β (π β (πβπ) β Β¬ (π΅ β π) β (πβπ))) | ||
Theorem | neicvgel2 43611* | The complement of a subset being an element of a neighborhood at a point is equivalent to that subset not being a element of the convergent at that point. (Contributed by RP, 12-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) & β’ (π β π β π΅) & β’ (π β π β π« π΅) β β’ (π β ((π΅ β π) β (πβπ) β Β¬ π β (πβπ))) | ||
Theorem | neicvgfv 43612* | The value of the neighborhoods (convergents) in terms of the convergents (neighborhoods) function. (Contributed by RP, 27-Jun-2021.) |
β’ π = (π β V, π β V β¦ (π β (π« π βm π) β¦ (π β π β¦ {π β π β£ π β (πβπ)}))) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π)))))) & β’ π· = (πβπ΅) & β’ πΉ = (π« π΅ππ΅) & β’ πΊ = (π΅ππ« π΅) & β’ π» = (πΉ β (π· β πΊ)) & β’ (π β ππ»π) & β’ (π β π β π΅) β β’ (π β (πβπ) = {π β π« π΅ β£ Β¬ (π΅ β π ) β (πβπ)}) | ||
Theorem | ntrrn 43613 | The range of the interior function of a topology a subset of the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΌ = (intβπ½) β β’ (π½ β Top β ran πΌ β π½) | ||
Theorem | ntrf 43614 | The interior function of a topology is a map from the powerset of the base set to the open sets of the topology. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΌ = (intβπ½) β β’ (π½ β Top β πΌ:π« πβΆπ½) | ||
Theorem | ntrf2 43615 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΌ = (intβπ½) β β’ (π½ β Top β πΌ:π« πβΆπ« π) | ||
Theorem | ntrelmap 43616 | The interior function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΌ = (intβπ½) β β’ (π½ β Top β πΌ β (π« π βm π« π)) | ||
Theorem | clsf2 43617 | The closure function is a map from the powerset of the base set to itself. This is less precise than clsf 22965. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΎ = (clsβπ½) β β’ (π½ β Top β πΎ:π« πβΆπ« π) | ||
Theorem | clselmap 43618 | The closure function is a map from the powerset of the base set to itself. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΎ = (clsβπ½) β β’ (π½ β Top β πΎ β (π« π βm π« π)) | ||
Theorem | dssmapntrcls 43619* | The interior and closure operators on a topology are duals of each other. See also kur14lem2 34870. (Contributed by RP, 21-Apr-2021.) |
β’ π = βͺ π½ & β’ πΎ = (clsβπ½) & β’ πΌ = (intβπ½) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π )))))) & β’ π· = (πβπ) β β’ (π½ β Top β πΌ = (π·βπΎ)) | ||
Theorem | dssmapclsntr 43620* | The closure and interior operators on a topology are duals of each other. See also kur14lem2 34870. (Contributed by RP, 22-Apr-2021.) |
β’ π = βͺ π½ & β’ πΎ = (clsβπ½) & β’ πΌ = (intβπ½) & β’ π = (π β V β¦ (π β (π« π βm π« π) β¦ (π β π« π β¦ (π β (πβ(π β π )))))) & β’ π· = (πβπ) β β’ (π½ β Top β πΎ = (π·βπΌ)) | ||
Any neighborhood space is an open set topology and any open set topology is a neighborhood space. Seifert and Threlfall define a generic neighborhood space which is a superset of what is now generally used and related concepts and the following will show that those definitions apply to elements of Top. Seifert and Threlfall do not allow neighborhood spaces on the empty set while sn0top 22915 is an example of a topology with an empty base set. This divergence is unlikely to pose serious problems. | ||
Theorem | gneispa 43621* | Each point π of the neighborhood space has at least one neighborhood; each neighborhood of π contains π. Axiom A of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
β’ π = βͺ π½ β β’ (π½ β Top β βπ β π (((neiβπ½)β{π}) β β β§ βπ β ((neiβπ½)β{π})π β π)) | ||
Theorem | gneispb 43622* | Given a neighborhood π of π, each subset of the neighborhood space containing this neighborhood is also a neighborhood of π. Axiom B of Seifert and Threlfall. (Contributed by RP, 5-Apr-2021.) |
β’ π = βͺ π½ β β’ ((π½ β Top β§ π β π β§ π β ((neiβπ½)β{π})) β βπ β π« π(π β π β π β ((neiβπ½)β{π}))) | ||
Theorem | gneispace2 43623* | The predicate that πΉ is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π β (πΉ β π΄ β (πΉ:dom πΉβΆ(π« (π« dom πΉ β {β }) β {β }) β§ βπ β dom πΉβπ β (πΉβπ)(π β π β§ βπ β π« dom πΉ(π β π β π β (πΉβπ)))))) | ||
Theorem | gneispace3 43624* | The predicate that πΉ is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π β (πΉ β π΄ β ((Fun πΉ β§ ran πΉ β (π« (π« dom πΉ β {β }) β {β })) β§ βπ β dom πΉβπ β (πΉβπ)(π β π β§ βπ β π« dom πΉ(π β π β π β (πΉβπ)))))) | ||
Theorem | gneispace 43625* | The predicate that πΉ is a (generic) Seifert and Threlfall neighborhood space. (Contributed by RP, 14-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π β (πΉ β π΄ β (Fun πΉ β§ ran πΉ β π« π« dom πΉ β§ βπ β dom πΉ((πΉβπ) β β β§ βπ β (πΉβπ)(π β π β§ βπ β π« dom πΉ(π β π β π β (πΉβπ))))))) | ||
Theorem | gneispacef 43626* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β πΉ:dom πΉβΆ(π« (π« dom πΉ β {β }) β {β })) | ||
Theorem | gneispacef2 43627* | A generic neighborhood space is a function with a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β πΉ:dom πΉβΆπ« π« dom πΉ) | ||
Theorem | gneispacefun 43628* | A generic neighborhood space is a function. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β Fun πΉ) | ||
Theorem | gneispacern 43629* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β ran πΉ β (π« (π« dom πΉ β {β }) β {β })) | ||
Theorem | gneispacern2 43630* | A generic neighborhood space has a range that is a subset of the powerset of the powerset of its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β ran πΉ β π« π« dom πΉ) | ||
Theorem | gneispace0nelrn 43631* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β βπ β dom πΉ(πΉβπ) β β ) | ||
Theorem | gneispace0nelrn2 43632* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ ((πΉ β π΄ β§ π β dom πΉ) β (πΉβπ) β β ) | ||
Theorem | gneispace0nelrn3 43633* | A generic neighborhood space has a nonempty set of neighborhoods for every point in its domain. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β Β¬ β β ran πΉ) | ||
Theorem | gneispaceel 43634* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β βπ β dom πΉβπ β (πΉβπ)π β π) | ||
Theorem | gneispaceel2 43635* | Every neighborhood of a point in a generic neighborhood space contains that point. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ ((πΉ β π΄ β§ π β dom πΉ β§ π β (πΉβπ)) β π β π) | ||
Theorem | gneispacess 43636* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (πΉ β π΄ β βπ β dom πΉβπ β (πΉβπ)βπ β π« dom πΉ(π β π β π β (πΉβπ))) | ||
Theorem | gneispacess2 43637* | All supersets of a neighborhood of a point (limited to the domain of the neighborhood space) are also neighborhoods of that point. (Contributed by RP, 15-Apr-2021.) |
β’ π΄ = {π β£ (π:dom πβΆ(π« (π« dom π β {β }) β {β }) β§ βπ β dom πβπ β (πβπ)(π β π β§ βπ β π« dom π(π β π β π β (πβπ))))} β β’ (((πΉ β π΄ β§ π β dom πΉ) β§ (π β (πΉβπ) β§ π β π« dom πΉ β§ π β π)) β π β (πΉβπ)) | ||
See https://kerodon.net/ for a work in progress by Jacob Lurie. | ||
See https://kerodon.net/tag/0004 for introduction to the topological simplex of dimension π. | ||
Theorem | k0004lem1 43638 | Application of ssin 4226 to range of a function. (Contributed by RP, 1-Apr-2021.) |
β’ (π· = (π΅ β© πΆ) β ((πΉ:π΄βΆπ΅ β§ (πΉ β π΄) β πΆ) β πΉ:π΄βΆπ·)) | ||
Theorem | k0004lem2 43639 | A mapping with a particular restricted range is also a mapping to that range. (Contributed by RP, 1-Apr-2021.) |
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π΅) β ((πΉ β (π΅ βm π΄) β§ (πΉ β π΄) β πΆ) β πΉ β (πΆ βm π΄))) | ||
Theorem | k0004lem3 43640 | When the value of a mapping on a singleton is known, the mapping is a completely known singleton. (Contributed by RP, 2-Apr-2021.) |
β’ ((π΄ β π β§ π΅ β π β§ πΆ β π΅) β ((πΉ β (π΅ βm {π΄}) β§ (πΉβπ΄) = πΆ) β πΉ = {β¨π΄, πΆβ©})) | ||
Theorem | k0004val 43641* | The topological simplex of dimension π is the set of real vectors where the components are nonnegative and sum to 1. (Contributed by RP, 29-Mar-2021.) |
β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) β β’ (π β β0 β (π΄βπ) = {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) | ||
Theorem | k0004ss1 43642* | The topological simplex of dimension π is a subset of the real vectors of dimension (π + 1). (Contributed by RP, 29-Mar-2021.) |
β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) β β’ (π β β0 β (π΄βπ) β (β βm (1...(π + 1)))) | ||
Theorem | k0004ss2 43643* | The topological simplex of dimension π is a subset of the base set of a real vector space of dimension (π + 1). (Contributed by RP, 29-Mar-2021.) |
β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) β β’ (π β β0 β (π΄βπ) β (Baseβ(β^β(1...(π + 1))))) | ||
Theorem | k0004ss3 43644* | The topological simplex of dimension π is a subset of the base set of Euclidean space of dimension (π + 1). (Contributed by RP, 29-Mar-2021.) |
β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) β β’ (π β β0 β (π΄βπ) β (Baseβ(πΌhilβ(π + 1)))) | ||
Theorem | k0004val0 43645* | The topological simplex of dimension 0 is a singleton. (Contributed by RP, 2-Apr-2021.) |
β’ π΄ = (π β β0 β¦ {π‘ β ((0[,]1) βm (1...(π + 1))) β£ Ξ£π β (1...(π + 1))(π‘βπ) = 1}) β β’ (π΄β0) = {{β¨1, 1β©}} | ||
Theorem | inductionexd 43646 | Simple induction example. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β β β 3 β₯ ((4βπ) + 5)) | ||
Theorem | wwlemuld 43647 | Natural deduction form of lemul2d 13087. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β (πΆ Β· π΄) β€ (πΆ Β· π΅)) & β’ (π β 0 < πΆ) β β’ (π β π΄ β€ π΅) | ||
Theorem | leeq1d 43648 | Specialization of breq1d 5154 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β€ πΆ) & β’ (π β π΄ = π΅) & β’ (π β π΄ β β) & β’ (π β πΆ β β) β β’ (π β π΅ β€ πΆ) | ||
Theorem | leeq2d 43649 | Specialization of breq2d 5156 to reals and less than. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β€ πΆ) & β’ (π β πΆ = π·) & β’ (π β π΄ β β) & β’ (π β πΆ β β) β β’ (π β π΄ β€ π·) | ||
Theorem | absmulrposd 43650 | Specialization of absmuld with absidd 15396. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β 0 β€ π΄) & β’ (π β π΄ β β) & β’ (π β π΅ β β) β β’ (π β (absβ(π΄ Β· π΅)) = (π΄ Β· (absβπ΅))) | ||
Theorem | imadisjld 43651 | Natural dduction form of one side of imadisj 6079. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β (dom π΄ β© π΅) = β ) β β’ (π β (π΄ β π΅) = β ) | ||
Theorem | wnefimgd 43652 | The image of a mapping from A is nonempty if A is nonempty. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β ) & β’ (π β πΉ:π΄βΆπ΅) β β’ (π β (πΉ β π΄) β β ) | ||
Theorem | fco2d 43653 | Natural deduction form of fco2 6744. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΊ:π΄βΆπ΅) & β’ (π β (πΉ βΎ π΅):π΅βΆπΆ) β β’ (π β (πΉ β πΊ):π΄βΆπΆ) | ||
Theorem | wfximgfd 43654 | The value of a function on its domain is in the image of the function. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΆ β π΄) & β’ (π β πΉ:π΄βΆπ΅) β β’ (π β (πΉβπΆ) β (πΉ β π΄)) | ||
Theorem | extoimad 43655* | If |f(x)| <= C for all x then it applies to all x in the image of |f(x)| (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ πΆ) β β’ (π β βπ₯ β (abs β (πΉ β β))π₯ β€ πΆ) | ||
Theorem | imo72b2lem0 43656* | Lemma for imo72b2 43663. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΊ:ββΆβ) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β ((πΉβ(π΄ + π΅)) + (πΉβ(π΄ β π΅))) = (2 Β· ((πΉβπ΄) Β· (πΊβπ΅)))) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) β β’ (π β ((absβ(πΉβπ΄)) Β· (absβ(πΊβπ΅))) β€ sup((abs β (πΉ β β)), β, < )) | ||
Theorem | suprleubrd 43657* | Natural deduction form of specialized suprleub 12205. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ β β ) & β’ (π β βπ₯ β β βπ¦ β π΄ π¦ β€ π₯) & β’ (π β π΅ β β) & β’ (π β βπ§ β π΄ π§ β€ π΅) β β’ (π β sup(π΄, β, < ) β€ π΅) | ||
Theorem | imo72b2lem2 43658* | Lemma for imo72b2 43663. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΆ β β) & β’ (π β βπ§ β β (absβ(πΉβπ§)) β€ πΆ) β β’ (π β sup((abs β (πΉ β β)), β, < ) β€ πΆ) | ||
Theorem | suprlubrd 43659* | Natural deduction form of specialized suprlub 12203. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ β β ) & β’ (π β βπ₯ β β βπ¦ β π΄ π¦ β€ π₯) & β’ (π β π΅ β β) & β’ (π β βπ§ β π΄ π΅ < π§) β β’ (π β π΅ < sup(π΄, β, < )) | ||
Theorem | imo72b2lem1 43660* | Lemma for imo72b2 43663. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β βπ₯ β β (πΉβπ₯) β 0) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) β β’ (π β 0 < sup((abs β (πΉ β β)), β, < )) | ||
Theorem | lemuldiv3d 43661 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β (π΅ Β· π΄) β€ πΆ) & β’ (π β 0 < π΄) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) β β’ (π β π΅ β€ (πΆ / π΄)) | ||
Theorem | lemuldiv4d 43662 | 'Less than or equal to' relationship between division and multiplication. (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β π΅ β€ (πΆ / π΄)) & β’ (π β 0 < π΄) & β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) β β’ (π β (π΅ Β· π΄) β€ πΆ) | ||
Theorem | imo72b2 43663* | IMO 1972 B2. (14th International Mathematical Olympiad in Poland, problem B2). (Contributed by Stanislas Polu, 9-Mar-2020.) |
β’ (π β πΉ:ββΆβ) & β’ (π β πΊ:ββΆβ) & β’ (π β π΅ β β) & β’ (π β βπ’ β β βπ£ β β ((πΉβ(π’ + π£)) + (πΉβ(π’ β π£))) = (2 Β· ((πΉβπ’) Β· (πΊβπ£)))) & β’ (π β βπ¦ β β (absβ(πΉβπ¦)) β€ 1) & β’ (π β βπ₯ β β (πΉβπ₯) β 0) β β’ (π β (absβ(πΊβπ΅)) β€ 1) | ||
This section formalizes theorems necessary to reproduce the equality and inequality generator described in "Neural Theorem Proving on Inequality Problems" http://aitp-conference.org/2020/abstract/paper_18.pdf. Other theorems required: 0red 11242 1red 11240 readdcld 11268 remulcld 11269 eqcomd 2731. | ||
Theorem | int-addcomd 43664 | AdditionCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ + πΆ) = (πΆ + π΄)) | ||
Theorem | int-addassocd 43665 | AdditionAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ + (πΆ + π·)) = ((π΄ + πΆ) + π·)) | ||
Theorem | int-addsimpd 43666 | AdditionSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β 0 = (π΄ β π΅)) | ||
Theorem | int-mulcomd 43667 | MultiplicationCommutativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· πΆ) = (πΆ Β· π΄)) | ||
Theorem | int-mulassocd 43668 | MultiplicationAssociativity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· (πΆ Β· π·)) = ((π΄ Β· πΆ) Β· π·)) | ||
Theorem | int-mulsimpd 43669 | MultiplicationSimplification generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) & β’ (π β π΅ β 0) β β’ (π β 1 = (π΄ / π΅)) | ||
Theorem | int-leftdistd 43670 | AdditionMultiplicationLeftDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β ((πΆ + π·) Β· π΅) = ((πΆ Β· π΄) + (π· Β· π΄))) | ||
Theorem | int-rightdistd 43671 | AdditionMultiplicationRightDistribution generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) β β’ (π β (π΅ Β· (πΆ + π·)) = ((π΄ Β· πΆ) + (π΄ Β· π·))) | ||
Theorem | int-sqdefd 43672 | SquareDefinition generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ Β· π΅) = (π΄β2)) | ||
Theorem | int-mul11d 43673 | First MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ Β· 1) = π΅) | ||
Theorem | int-mul12d 43674 | Second MultiplicationOne generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (1 Β· π΄) = π΅) | ||
Theorem | int-add01d 43675 | First AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (π΄ + 0) = π΅) | ||
Theorem | int-add02d 43676 | Second AdditionZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΄ = π΅) β β’ (π β (0 + π΄) = π΅) | ||
Theorem | int-sqgeq0d 43677 | SquareGEQZero generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β 0 β€ (π΄ Β· π΅)) | ||
Theorem | int-eqprincd 43678 | PrincipleOfEquality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ = π΅) & β’ (π β πΆ = π·) β β’ (π β (π΄ + πΆ) = (π΅ + π·)) | ||
Theorem | int-eqtransd 43679 | EqualityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ = π΅) & β’ (π β π΅ = πΆ) β β’ (π β π΄ = πΆ) | ||
Theorem | int-eqmvtd 43680 | EquMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΄ = π΅) & β’ (π β π΄ = (πΆ + π·)) β β’ (π β πΆ = (π΅ β π·)) | ||
Theorem | int-eqineqd 43681 | EquivalenceImpliesDoubleInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β π΄ = π΅) β β’ (π β π΅ β€ π΄) | ||
Theorem | int-ineqmvtd 43682 | IneqMoveTerm generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΅ β€ π΄) & β’ (π β π΄ = (πΆ + π·)) β β’ (π β (π΅ β π·) β€ πΆ) | ||
Theorem | int-ineq1stprincd 43683 | FirstPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π· β β) & β’ (π β π΅ β€ π΄) & β’ (π β π· β€ πΆ) β β’ (π β (π΅ + π·) β€ (π΄ + πΆ)) | ||
Theorem | int-ineq2ndprincd 43684 | SecondPrincipleOfInequality generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΅ β€ π΄) & β’ (π β 0 β€ πΆ) β β’ (π β (π΅ Β· πΆ) β€ (π΄ Β· πΆ)) | ||
Theorem | int-ineqtransd 43685 | InequalityTransitivity generator rule. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π β π΄ β β) & β’ (π β π΅ β β) & β’ (π β πΆ β β) & β’ (π β π΅ β€ π΄) & β’ (π β πΆ β€ π΅) β β’ (π β πΆ β€ π΄) | ||
This section formalizes theorems used in an n-digit addition proof generator. Other theorems required: deccl 12717 addcomli 11431 00id 11414 addridi 11426 addlidi 11427 eqid 2725 dec0h 12724 decadd 12756 decaddc 12757. | ||
Theorem | unitadd 43686 | Theorem used in conjunction with decaddc 12757 to absorb carry when generating n-digit addition synthetic proofs. (Contributed by Stanislas Polu, 7-Apr-2020.) |
β’ (π΄ + π΅) = πΉ & β’ (πΆ + 1) = π΅ & β’ π΄ β β0 & β’ πΆ β β0 β β’ ((π΄ + πΆ) + 1) = πΉ | ||
Theorem | gsumws3 43687 | Valuation of a length 3 word in a monoid. (Contributed by Stanislas Polu, 9-Sep-2020.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Mnd β§ (π β π΅ β§ (π β π΅ β§ π β π΅))) β (πΊ Ξ£g β¨βπππββ©) = (π + (π + π))) | ||
Theorem | gsumws4 43688 | Valuation of a length 4 word in a monoid. (Contributed by Stanislas Polu, 10-Sep-2020.) |
β’ π΅ = (BaseβπΊ) & β’ + = (+gβπΊ) β β’ ((πΊ β Mnd β§ (π β π΅ β§ (π β π΅ β§ (π β π΅ β§ π β π΅)))) β (πΊ Ξ£g β¨βππππββ©) = (π + (π + (π + π)))) | ||
Theorem | amgm2d 43689 | Arithmetic-geometric mean inequality for π = 2, derived from amgmlem 26935. (Contributed by Stanislas Polu, 8-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) β β’ (π β ((π΄ Β· π΅)βπ(1 / 2)) β€ ((π΄ + π΅) / 2)) | ||
Theorem | amgm3d 43690 | Arithmetic-geometric mean inequality for π = 3. (Contributed by Stanislas Polu, 11-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β πΆ β β+) β β’ (π β ((π΄ Β· (π΅ Β· πΆ))βπ(1 / 3)) β€ ((π΄ + (π΅ + πΆ)) / 3)) | ||
Theorem | amgm4d 43691 | Arithmetic-geometric mean inequality for π = 4. (Contributed by Stanislas Polu, 11-Sep-2020.) |
β’ (π β π΄ β β+) & β’ (π β π΅ β β+) & β’ (π β πΆ β β+) & β’ (π β π· β β+) β β’ (π β ((π΄ Β· (π΅ Β· (πΆ Β· π·)))βπ(1 / 4)) β€ ((π΄ + (π΅ + (πΆ + π·))) / 4)) | ||
Theorem | spALT 43692 | sp 2171 can be proven from the other classic axioms. (Contributed by Rohan Ridenour, 3-Nov-2023.) (Proof modification is discouraged.) Use sp 2171 instead. (New usage is discouraged.) |
β’ (βπ₯π β π) | ||
Theorem | elnelneqd 43693 | Two classes are not equal if there is an element of one which is not an element of the other. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ (π β πΆ β π΄) & β’ (π β Β¬ πΆ β π΅) β β’ (π β Β¬ π΄ = π΅) | ||
Theorem | elnelneq2d 43694 | Two classes are not equal if one but not the other is an element of a given class. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
β’ (π β π΄ β πΆ) & β’ (π β Β¬ π΅ β πΆ) β β’ (π β Β¬ π΄ = π΅) | ||
Theorem | rr-spce 43695* | Prove an existential. (Contributed by Rohan Ridenour, 12-Aug-2023.) |
β’ ((π β§ π₯ = π΄) β π) & β’ (π β π΄ β π) β β’ (π β βπ₯π) | ||
Theorem | rexlimdvaacbv 43696* | Unpack a restricted existential antecedent while changing the variable with implicit substitution. The equivalent of this theorem without the bound variable change is rexlimdvaa 3146. (Contributed by Rohan Ridenour, 3-Aug-2023.) |
β’ (π₯ = π¦ β (π β π)) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) β β’ (π β (βπ₯ β π΄ π β π)) | ||
Theorem | rexlimddvcbvw 43697* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43696. The equivalent of this theorem without the bound variable change is rexlimddv 3151. Version of rexlimddvcbv 43698 with a disjoint variable condition, which does not require ax-13 2365. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Revised by Gino Giotto, 2-Apr-2024.) |
β’ (π β βπ₯ β π΄ π) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) & β’ (π₯ = π¦ β (π β π)) β β’ (π β π) | ||
Theorem | rexlimddvcbv 43698* | Unpack a restricted existential assumption while changing the variable with implicit substitution. Similar to rexlimdvaacbv 43696. The equivalent of this theorem without the bound variable change is rexlimddv 3151. Usage of this theorem is discouraged because it depends on ax-13 2365, see rexlimddvcbvw 43697 for a weaker version that does not require it. (Contributed by Rohan Ridenour, 3-Aug-2023.) (New usage is discouraged.) |
β’ (π β βπ₯ β π΄ π) & β’ ((π β§ (π¦ β π΄ β§ π)) β π) & β’ (π₯ = π¦ β (π β π)) β β’ (π β π) | ||
Theorem | rr-elrnmpt3d 43699* | Elementhood in an image set. (Contributed by Rohan Ridenour, 11-Aug-2023.) |
β’ πΉ = (π₯ β π΄ β¦ π΅) & β’ (π β πΆ β π΄) & β’ (π β π· β π) & β’ ((π β§ π₯ = πΆ) β π΅ = π·) β β’ (π β π· β ran πΉ) | ||
Theorem | finnzfsuppd 43700* | If a function is zero outside of a finite set, it has finite support. (Contributed by Rohan Ridenour, 13-May-2024.) |
β’ (π β πΉ β π) & β’ (π β πΉ Fn π·) & β’ (π β π β π) & β’ (π β π΄ β Fin) & β’ ((π β§ π₯ β π·) β (π₯ β π΄ β¨ (πΉβπ₯) = π)) β β’ (π β πΉ finSupp π) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |