| Metamath
Proof Explorer Theorem List (p. 437 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | reflexg 43601* | Two ways of saying a relation is reflexive over its domain and range. (Contributed by RP, 4-Aug-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 ↔ ∀𝑥∀𝑦(𝑥𝐴𝑦 → (𝑥𝐴𝑥 ∧ 𝑦𝐴𝑦))) | ||
| Theorem | cnvssco 43602* | A condition weaker than reflexivity. (Contributed by RP, 3-Aug-2020.) |
| ⊢ (◡𝐴 ⊆ ◡(𝐵 ∘ 𝐶) ↔ ∀𝑥∀𝑦∃𝑧(𝑥𝐴𝑦 → (𝑥𝐶𝑧 ∧ 𝑧𝐵𝑦))) | ||
| Theorem | refimssco 43603 | Reflexive relations are subsets of their self-composition. (Contributed by RP, 4-Aug-2020.) |
| ⊢ (( I ↾ (dom 𝐴 ∪ ran 𝐴)) ⊆ 𝐴 → ◡𝐴 ⊆ ◡(𝐴 ∘ 𝐴)) | ||
| Theorem | cleq2lem 43604 | Equality implies bijection. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) ⇒ ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ 𝜑) ↔ (𝑅 ⊆ 𝐵 ∧ 𝜓))) | ||
| Theorem | cbvcllem 43605* | Change of bound variable in class of supersets of a with a property. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜓)) ⇒ ⊢ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜑)} = {𝑦 ∣ (𝑋 ⊆ 𝑦 ∧ 𝜓)} | ||
| Theorem | clublem 43606* | If a superset 𝑌 of 𝑋 possesses the property parameterized in 𝑥 in 𝜓, then 𝑌 is a superset of the closure of that property for the set 𝑋. (Contributed by RP, 23-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝑥 = 𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ 𝑌) | ||
| Theorem | clss2lem 43607* | The closure of a property is a superset of the closure of a less restrictive property. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → (𝜒 → 𝜓)) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} ⊆ ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜒)}) | ||
| Theorem | dfid7 43608* | Definition of identity relation as the trivial closure. (Contributed by RP, 26-Jul-2020.) |
| ⊢ I = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | mptrcllem 43609* | Show two versions of a closure with reflexive properties are equal. (Contributed by RP, 19-Oct-2020.) |
| ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} ∈ V) & ⊢ (𝑥 ∈ 𝑉 → 𝜒) & ⊢ (𝑥 ∈ 𝑉 → 𝜃) & ⊢ (𝑥 ∈ 𝑉 → 𝜏) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (𝜑 ↔ 𝜒)) & ⊢ (𝑦 = ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)} → (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ↔ 𝜃)) & ⊢ (𝑧 = ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))} → (𝜓 ↔ 𝜏)) ⇒ ⊢ (𝑥 ∈ 𝑉 ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (𝜑 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦))}) = (𝑥 ∈ 𝑉 ↦ ∩ {𝑧 ∣ ((𝑥 ∪ ( I ↾ (dom 𝑥 ∪ ran 𝑥))) ⊆ 𝑧 ∧ 𝜓)}) | ||
| Theorem | cotrintab 43610 | The intersection of a class is a transitive relation if membership in the class implies the member is a transitive relation. (Contributed by RP, 28-Oct-2020.) |
| ⊢ (𝜑 → (𝑥 ∘ 𝑥) ⊆ 𝑥) ⇒ ⊢ (∩ {𝑥 ∣ 𝜑} ∘ ∩ {𝑥 ∣ 𝜑}) ⊆ ∩ {𝑥 ∣ 𝜑} | ||
| Theorem | rclexi 43611* | The reflexive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexlem 43612 | Existence of relation implies existence of union with Cartesian product of domain and range. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅 ∪ ((dom 𝑅 ∪ ran 𝑅) × (dom 𝑅 ∪ ran 𝑅))) ∈ V) | ||
| Theorem | rtrclex 43613* | The reflexive-transitive closure of a set exists. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝐴 ∈ V ↔ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V) | ||
| Theorem | trclubgNEW 43614* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (𝑅 ∪ (dom 𝑅 × ran 𝑅))) | ||
| Theorem | trclubNEW 43615* | If a relation exists then the transitive closure has an upper bound. (Contributed by RP, 24-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → Rel 𝑅) ⇒ ⊢ (𝜑 → ∩ {𝑥 ∣ (𝑅 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ⊆ (dom 𝑅 × ran 𝑅)) | ||
| Theorem | trclexi 43616* | The transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} ∈ V | ||
| Theorem | rtrclexi 43617* | The reflexive-transitive closure of a set exists. (Contributed by RP, 27-Oct-2020.) |
| ⊢ 𝐴 ∈ 𝑉 ⇒ ⊢ ∩ {𝑥 ∣ (𝐴 ⊆ 𝑥 ∧ ((𝑥 ∘ 𝑥) ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥))} ∈ V | ||
| Theorem | clrellem 43618* | When the property 𝜓 holds for a relation substituted for 𝑥, then the closure on that property is a relation if the base set is a relation. (Contributed by RP, 30-Jul-2020.) |
| ⊢ (𝜑 → 𝑌 ∈ V) & ⊢ (𝜑 → Rel 𝑋) & ⊢ (𝑥 = ◡◡𝑌 → (𝜓 ↔ 𝜒)) & ⊢ (𝜑 → 𝑋 ⊆ 𝑌) & ⊢ (𝜑 → 𝜒) ⇒ ⊢ (𝜑 → Rel ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)}) | ||
| Theorem | clcnvlem 43619* | When 𝐴, an upper bound of the closure, exists and certain substitutions hold the converse of the closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 = (◡𝑦 ∪ (𝑋 ∖ ◡◡𝑋))) → (𝜒 → 𝜓)) & ⊢ ((𝜑 ∧ 𝑦 = ◡𝑥) → (𝜓 → 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜃)) & ⊢ (𝜑 → 𝑋 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝜃) ⇒ ⊢ (𝜑 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ 𝜓)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ 𝜒)}) | ||
| Theorem | cnvtrucl0 43620* | The converse of the trivial closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ⊤)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ⊤)}) | ||
| Theorem | cnvrcl0 43621* | The converse of the reflexive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ ( I ↾ (dom 𝑥 ∪ ran 𝑥)) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ ( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦)}) | ||
| Theorem | cnvtrcl0 43622* | The converse of the transitive closure is equal to the closure of the converse. (Contributed by RP, 18-Oct-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ◡∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ∩ {𝑦 ∣ (◡𝑋 ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦)}) | ||
| Theorem | dmtrcl 43623* | The domain of the transitive closure is equal to the domain of its base relation. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → dom ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = dom 𝑋) | ||
| Theorem | rntrcl 43624* | The range of the transitive closure is equal to the range of its base relation. (Contributed by RP, 1-Nov-2020.) |
| ⊢ (𝑋 ∈ 𝑉 → ran ∩ {𝑥 ∣ (𝑋 ⊆ 𝑥 ∧ (𝑥 ∘ 𝑥) ⊆ 𝑥)} = ran 𝑋) | ||
| Theorem | dfrtrcl5 43625* | Definition of reflexive-transitive closure as a standard closure. (Contributed by RP, 1-Nov-2020.) |
| ⊢ t* = (𝑥 ∈ V ↦ ∩ {𝑦 ∣ (𝑥 ⊆ 𝑦 ∧ (( I ↾ (dom 𝑦 ∪ ran 𝑦)) ⊆ 𝑦 ∧ (𝑦 ∘ 𝑦) ⊆ 𝑦))}) | ||
| Theorem | trcleq2lemRP 43626 | Equality implies bijection. (Contributed by RP, 5-May-2020.) (Proof modification is discouraged.) |
| ⊢ (𝐴 = 𝐵 → ((𝑅 ⊆ 𝐴 ∧ (𝐴 ∘ 𝐴) ⊆ 𝐴) ↔ (𝑅 ⊆ 𝐵 ∧ (𝐵 ∘ 𝐵) ⊆ 𝐵))) | ||
This is based on the observation that the real and imaginary parts of a complex number can be calculated from the number's absolute and real part and the sign of its imaginary part. Formalization of the formula in sqrtcval 43637 was motivated by a short Michael Penn video. | ||
| Theorem | sqrtcvallem1 43627 | Two ways of saying a complex number does not lie on the positive real axis. Lemma for sqrtcval 43637. (Contributed by RP, 17-May-2024.) |
| ⊢ (𝜑 → 𝐴 ∈ ℂ) ⇒ ⊢ (𝜑 → (((ℑ‘𝐴) = 0 → (ℜ‘𝐴) ≤ 0) ↔ ¬ 𝐴 ∈ ℝ+)) | ||
| Theorem | reabsifneg 43628 | Alternate expression for the absolute value of a real number. Lemma for sqrtcval 43637. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 < 0, -𝐴, 𝐴)) | ||
| Theorem | reabsifnpos 43629 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(𝐴 ≤ 0, -𝐴, 𝐴)) | ||
| Theorem | reabsifpos 43630 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 < 𝐴, 𝐴, -𝐴)) | ||
| Theorem | reabsifnneg 43631 | Alternate expression for the absolute value of a real number. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = if(0 ≤ 𝐴, 𝐴, -𝐴)) | ||
| Theorem | reabssgn 43632 | Alternate expression for the absolute value of a real number. (Contributed by RP, 22-May-2024.) |
| ⊢ (𝐴 ∈ ℝ → (abs‘𝐴) = ((sgn‘𝐴) · 𝐴)) | ||
| Theorem | sqrtcvallem2 43633 | Equivalent to saying that the square of the imaginary component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 43637. See imsqrtval 43640. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) − (ℜ‘𝐴)) / 2)) | ||
| Theorem | sqrtcvallem3 43634 | Equivalent to saying that the absolute value of the imaginary component of the square root of a complex number is a real number. Lemma for sqrtcval 43637, sqrtcval2 43638, resqrtval 43639, and imsqrtval 43640. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
| Theorem | sqrtcvallem4 43635 | Equivalent to saying that the square of the real component of the square root of a complex number is a nonnegative real number. Lemma for sqrtcval 43637. See resqrtval 43639. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → 0 ≤ (((abs‘𝐴) + (ℜ‘𝐴)) / 2)) | ||
| Theorem | sqrtcvallem5 43636 | Equivalent to saying that the real component of the square root of a complex number is a real number. Lemma for resqrtval 43639 and imsqrtval 43640. (Contributed by RP, 11-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) ∈ ℝ) | ||
| Theorem | sqrtcval 43637 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right-hand side is decomposed into real and imaginary parts in the format expected by crrei 15165 and crimi 15166. This formula can be found in section 3.7.27 of Handbook of Mathematical Functions, ed. M. Abramowitz and I. A. Stegun (1965, Dover Press). (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (i · (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))))) | ||
| Theorem | sqrtcval2 43638 | Explicit formula for the complex square root in terms of the square root of nonnegative reals. The right side is slightly more compact than sqrtcval 43637. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (√‘𝐴) = ((√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2)) + (if((ℑ‘𝐴) < 0, -i, i) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2))))) | ||
| Theorem | resqrtval 43639 | Real part of the complex square root. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (ℜ‘(√‘𝐴)) = (√‘(((abs‘𝐴) + (ℜ‘𝐴)) / 2))) | ||
| Theorem | imsqrtval 43640 | Imaginary part of the complex square root. (Contributed by RP, 18-May-2024.) |
| ⊢ (𝐴 ∈ ℂ → (ℑ‘(√‘𝐴)) = (if((ℑ‘𝐴) < 0, -1, 1) · (√‘(((abs‘𝐴) − (ℜ‘𝐴)) / 2)))) | ||
| Theorem | resqrtvalex 43641 | Example for resqrtval 43639. (Contributed by RP, 21-May-2024.) |
| ⊢ (ℜ‘(√‘(;15 + (i · 8)))) = 4 | ||
| Theorem | imsqrtvalex 43642 | Example for imsqrtval 43640. (Contributed by RP, 21-May-2024.) |
| ⊢ (ℑ‘(√‘(;15 + (i · 8)))) = 1 | ||
| Theorem | al3im 43643 | Version of ax-4 1809 for a nested implication. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → (𝜒 → 𝜃))) → (∀𝑥𝜑 → (∀𝑥𝜓 → (∀𝑥𝜒 → ∀𝑥𝜃)))) | ||
| Theorem | intima0 43644* | Two ways of expressing the intersection of images of a class. (Contributed by RP, 13-Apr-2020.) |
| ⊢ ∩ 𝑎 ∈ 𝐴 (𝑎 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
| Theorem | elimaint 43645* | Element of image of intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝑦 ∈ (∩ 𝐴 “ 𝐵) ↔ ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
| Theorem | cnviun 43646* | Converse of indexed union. (Contributed by RP, 20-Jun-2020.) |
| ⊢ ◡∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑥 ∈ 𝐴 ◡𝐵 | ||
| Theorem | imaiun1 43647* | The image of an indexed union is the indexed union of the images. (Contributed by RP, 29-Jun-2020.) |
| ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 “ 𝐶) = ∪ 𝑥 ∈ 𝐴 (𝐵 “ 𝐶) | ||
| Theorem | coiun1 43648* | Composition with an indexed union. Proof analogous to that of coiun 6232. (Contributed by RP, 20-Jun-2020.) |
| ⊢ (∪ 𝑥 ∈ 𝐶 𝐴 ∘ 𝐵) = ∪ 𝑥 ∈ 𝐶 (𝐴 ∘ 𝐵) | ||
| Theorem | elintima 43649* | Element of intersection of images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝑦 ∈ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} ↔ ∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎) | ||
| Theorem | intimass 43650* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)} | ||
| Theorem | intimass2 43651* | The image under the intersection of relations is a subset of the intersection of the images. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∩ 𝐴 “ 𝐵) ⊆ ∩ 𝑥 ∈ 𝐴 (𝑥 “ 𝐵) | ||
| Theorem | intimag 43652* | Requirement for the image under the intersection of relations to equal the intersection of the images of those relations. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (∀𝑦(∀𝑎 ∈ 𝐴 ∃𝑏 ∈ 𝐵 〈𝑏, 𝑦〉 ∈ 𝑎 → ∃𝑏 ∈ 𝐵 ∀𝑎 ∈ 𝐴 〈𝑏, 𝑦〉 ∈ 𝑎) → (∩ 𝐴 “ 𝐵) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ 𝐵)}) | ||
| Theorem | intimasn 43653* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ {𝑥 ∣ ∃𝑎 ∈ 𝐴 𝑥 = (𝑎 “ {𝐵})}) | ||
| Theorem | intimasn2 43654* | Two ways to express the image of a singleton when the relation is an intersection. (Contributed by RP, 13-Apr-2020.) |
| ⊢ (𝐵 ∈ 𝑉 → (∩ 𝐴 “ {𝐵}) = ∩ 𝑥 ∈ 𝐴 (𝑥 “ {𝐵})) | ||
| Theorem | ss2iundf 43655* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | ss2iundv 43656* | Subclass theorem for indexed union. (Contributed by RP, 17-Jul-2020.) |
| ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐺) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | cbviuneq12df 43657* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
| ⊢ Ⅎ𝑥𝜑 & ⊢ Ⅎ𝑦𝜑 & ⊢ Ⅎ𝑥𝑋 & ⊢ Ⅎ𝑦𝑌 & ⊢ Ⅎ𝑥𝐴 & ⊢ Ⅎ𝑦𝐴 & ⊢ Ⅎ𝑦𝐵 & ⊢ Ⅎ𝑥𝐶 & ⊢ Ⅎ𝑦𝐶 & ⊢ Ⅎ𝑥𝐷 & ⊢ Ⅎ𝑥𝐹 & ⊢ Ⅎ𝑦𝐺 & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | cbviuneq12dv 43658* | Rule used to change the bound variables and classes in an indexed union, with the substitution specified implicitly by the hypothesis. (Contributed by RP, 17-Jul-2020.) |
| ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝑋 ∈ 𝐴) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑌 ∈ 𝐶) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶 ∧ 𝑥 = 𝑋) → 𝐵 = 𝐹) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴 ∧ 𝑦 = 𝑌) → 𝐷 = 𝐺) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 = 𝐺) & ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐷 = 𝐹) ⇒ ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 = ∪ 𝑦 ∈ 𝐶 𝐷) | ||
| Theorem | conrel1d 43659 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐴 ∘ 𝐵) = ∅) | ||
| Theorem | conrel2d 43660 | Deduction about composition with a class with no relational content. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → ◡𝐴 = ∅) ⇒ ⊢ (𝜑 → (𝐵 ∘ 𝐴) = ∅) | ||
| Theorem | trrelind 43661 | The intersection of transitive relations is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) & ⊢ (𝜑 → 𝑇 = (𝑅 ∩ 𝑆)) ⇒ ⊢ (𝜑 → (𝑇 ∘ 𝑇) ⊆ 𝑇) | ||
| Theorem | xpintrreld 43662 | The intersection of a transitive relation with a Cartesian product is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ∩ (𝐴 × 𝐵))) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
| Theorem | restrreld 43663 | The restriction of a transitive relation is a transitive relation. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝜑 → (𝑅 ∘ 𝑅) ⊆ 𝑅) & ⊢ (𝜑 → 𝑆 = (𝑅 ↾ 𝐴)) ⇒ ⊢ (𝜑 → (𝑆 ∘ 𝑆) ⊆ 𝑆) | ||
| Theorem | trrelsuperreldg 43664 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑆 = (dom 𝑅 × ran 𝑅)) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
| Theorem | trficl 43665* | The class of all transitive relations has the finite intersection property. (Contributed by RP, 1-Jan-2020.) (Proof shortened by RP, 3-Jan-2020.) |
| ⊢ 𝐴 = {𝑧 ∣ (𝑧 ∘ 𝑧) ⊆ 𝑧} ⇒ ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 | ||
| Theorem | cnvtrrel 43666 | The converse of a transitive relation is a transitive relation. (Contributed by RP, 25-Dec-2019.) |
| ⊢ ((𝑆 ∘ 𝑆) ⊆ 𝑆 ↔ (◡𝑆 ∘ ◡𝑆) ⊆ ◡𝑆) | ||
| Theorem | trrelsuperrel2dg 43667 | Concrete construction of a superclass of relation 𝑅 which is a transitive relation. (Contributed by RP, 20-Jul-2020.) |
| ⊢ (𝜑 → 𝑆 = (𝑅 ∪ (dom 𝑅 × ran 𝑅))) ⇒ ⊢ (𝜑 → (𝑅 ⊆ 𝑆 ∧ (𝑆 ∘ 𝑆) ⊆ 𝑆)) | ||
| Syntax | crcl 43668 | Extend class notation with reflexive closure. |
| class r* | ||
| Definition | df-rcl 43669* | Reflexive closure of a relation. This is the smallest superset which has the reflexive property. (Contributed by RP, 5-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ ∩ {𝑧 ∣ (𝑥 ⊆ 𝑧 ∧ ( I ↾ (dom 𝑧 ∪ ran 𝑧)) ⊆ 𝑧)}) | ||
| Theorem | dfrcl2 43670 | Reflexive closure of a relation as union with restricted identity relation. (Contributed by RP, 6-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ (( I ↾ (dom 𝑥 ∪ ran 𝑥)) ∪ 𝑥)) | ||
| Theorem | dfrcl3 43671 | Reflexive closure of a relation as union of powers of the relation. (Contributed by RP, 6-Jun-2020.) |
| ⊢ r* = (𝑥 ∈ V ↦ ((𝑥↑𝑟0) ∪ (𝑥↑𝑟1))) | ||
| Theorem | dfrcl4 43672* | Reflexive closure of a relation as indexed union of powers of the relation. (Contributed by RP, 8-Jun-2020.) |
| ⊢ r* = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ {0, 1} (𝑟↑𝑟𝑛)) | ||
In order for theorems on the transitive closure of a relation to be grouped together before the concept of continuity, we really need an analogue of ↑𝑟 that works on finite ordinals or finite sets instead of natural numbers. | ||
| Theorem | relexp2 43673 | A set operated on by the relation exponent to the second power is equal to the composition of the set with itself. (Contributed by RP, 1-Jun-2020.) |
| ⊢ (𝑅 ∈ 𝑉 → (𝑅↑𝑟2) = (𝑅 ∘ 𝑅)) | ||
| Theorem | relexpnul 43674 | If the domain and range of powers of a relation are disjoint then the relation raised to the sum of those exponents is empty. (Contributed by RP, 1-Jun-2020.) |
| ⊢ (((𝑅 ∈ 𝑉 ∧ Rel 𝑅) ∧ (𝑁 ∈ ℕ0 ∧ 𝑀 ∈ ℕ0)) → ((dom (𝑅↑𝑟𝑁) ∩ ran (𝑅↑𝑟𝑀)) = ∅ ↔ (𝑅↑𝑟(𝑁 + 𝑀)) = ∅)) | ||
| Theorem | eliunov2 43675* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 15031. (Contributed by RP, 1-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
| Theorem | eltrclrec 43676* | Membership in the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
| Theorem | elrtrclrec 43677* | Membership in the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the element is a member of that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ ℕ0 𝑋 ∈ (𝑅↑𝑟𝑛))) | ||
| Theorem | briunov2 43678* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. (Contributed by RP, 1-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
| Theorem | brmptiunrelexpd 43679* | If two elements are connected by an indexed union of relational powers, then they are connected via 𝑛 instances the relation, for some 𝑛. Generalization of dfrtrclrec2 15031. (Contributed by RP, 21-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ⊆ ℕ0) ⇒ ⊢ (𝜑 → (𝐴(𝐶‘𝑅)𝐵 ↔ ∃𝑛 ∈ 𝑁 𝐴(𝑅↑𝑟𝑛)𝐵)) | ||
| Theorem | fvmptiunrelexplb0d 43680* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (𝐶‘𝑅)) | ||
| Theorem | fvmptiunrelexplb0da 43681* | If the indexed union ranges over the zeroth power of the relation, then a restriction of the identity relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 0 ∈ 𝑁) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (𝐶‘𝑅)) | ||
| Theorem | fvmptiunrelexplb1d 43682* | If the indexed union ranges over the first power of the relation, then the relation is a subset of the appliction of the function to the relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟↑𝑟𝑛)) & ⊢ (𝜑 → 𝑅 ∈ V) & ⊢ (𝜑 → 𝑁 ∈ V) & ⊢ (𝜑 → 1 ∈ 𝑁) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (𝐶‘𝑅)) | ||
| Theorem | brfvid 43683 | If two elements are connected by a value of the identity relation, then they are connected via the argument. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
| Theorem | brfvidRP 43684 | If two elements are connected by a value of the identity relation, then they are connected via the argument. This is an example which uses brmptiunrelexpd 43679. (Contributed by RP, 21-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴( I ‘𝑅)𝐵 ↔ 𝐴𝑅𝐵)) | ||
| Theorem | fvilbd 43685 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
| Theorem | fvilbdRP 43686 | A set is a subset of its image under the identity relation. (Contributed by RP, 22-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ ( I ‘𝑅)) | ||
| Theorem | brfvrcld 43687 | If two elements are connected by the reflexive closure of a relation, then they are connected via zero or one instances the relation. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ (𝐴(𝑅↑𝑟0)𝐵 ∨ 𝐴(𝑅↑𝑟1)𝐵))) | ||
| Theorem | brfvrcld2 43688 | If two elements are connected by the reflexive closure of a relation, then they are equal or related by relation. (Contributed by RP, 21-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → (𝐴(r*‘𝑅)𝐵 ↔ ((𝐴 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐵 ∈ (dom 𝑅 ∪ ran 𝑅) ∧ 𝐴 = 𝐵) ∨ 𝐴𝑅𝐵))) | ||
| Theorem | fvrcllb0d 43689 | A restriction of the identity relation is a subset of the reflexive closure of a set. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ (dom 𝑅 ∪ ran 𝑅)) ⊆ (r*‘𝑅)) | ||
| Theorem | fvrcllb0da 43690 | A restriction of the identity relation is a subset of the reflexive closure of a relation. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → Rel 𝑅) & ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → ( I ↾ ∪ ∪ 𝑅) ⊆ (r*‘𝑅)) | ||
| Theorem | fvrcllb1d 43691 | A set is a subset of its image under the reflexive closure. (Contributed by RP, 22-Jul-2020.) |
| ⊢ (𝜑 → 𝑅 ∈ V) ⇒ ⊢ (𝜑 → 𝑅 ⊆ (r*‘𝑅)) | ||
| Theorem | brtrclrec 43692* | Two classes related by the indexed union of relation exponentiation over the natural numbers is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
| Theorem | brrtrclrec 43693* | Two classes related by the indexed union of relation exponentiation over the natural numbers (including zero) is equivalent to the existence of at least one number such that the two classes are related by that relationship power. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 (𝑟↑𝑟𝑛)) ⇒ ⊢ (𝑅 ∈ 𝑉 → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ ℕ0 𝑋(𝑅↑𝑟𝑛)𝑌)) | ||
| Theorem | briunov2uz 43694* | Two classes related by the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the two classes are related by that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋(𝐶‘𝑅)𝑌 ↔ ∃𝑛 ∈ 𝑁 𝑋(𝑅 ↑ 𝑛)𝑌)) | ||
| Theorem | eliunov2uz 43695* | Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. The index set 𝑁 is restricted to an upper range of integers. (Contributed by RP, 2-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 = (ℤ≥‘𝑀)) → (𝑋 ∈ (𝐶‘𝑅) ↔ ∃𝑛 ∈ 𝑁 𝑋 ∈ (𝑅 ↑ 𝑛))) | ||
| Theorem | ov2ssiunov2 43696* | Any particular operator value is the subset of the index union over a set of operator values. Generalized from rtrclreclem1 15030 and rtrclreclem2 . (Contributed by RP, 4-Jun-2020.) |
| ⊢ 𝐶 = (𝑟 ∈ V ↦ ∪ 𝑛 ∈ 𝑁 (𝑟 ↑ 𝑛)) ⇒ ⊢ ((𝑅 ∈ 𝑈 ∧ 𝑁 ∈ 𝑉 ∧ 𝑀 ∈ 𝑁) → (𝑅 ↑ 𝑀) ⊆ (𝐶‘𝑅)) | ||
| Theorem | relexp0eq 43697 | The zeroth power of relationships is the same if and only if the union of their domain and ranges is the same. (Contributed by RP, 11-Jun-2020.) |
| ⊢ ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉) → ((dom 𝐴 ∪ ran 𝐴) = (dom 𝐵 ∪ ran 𝐵) ↔ (𝐴↑𝑟0) = (𝐵↑𝑟0))) | ||
| Theorem | iunrelexp0 43698* | Simplification of zeroth power of indexed union of powers of relations. (Contributed by RP, 19-Jun-2020.) |
| ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑍 ⊆ ℕ0 ∧ ({0, 1} ∩ 𝑍) ≠ ∅) → (∪ 𝑥 ∈ 𝑍 (𝑅↑𝑟𝑥)↑𝑟0) = (𝑅↑𝑟0)) | ||
| Theorem | relexpxpnnidm 43699 | Any positive power of a Cartesian product of non-disjoint sets is itself. (Contributed by RP, 13-Jun-2020.) |
| ⊢ (𝑁 ∈ ℕ → ((𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑉 ∧ (𝐴 ∩ 𝐵) ≠ ∅) → ((𝐴 × 𝐵)↑𝑟𝑁) = (𝐴 × 𝐵))) | ||
| Theorem | relexpiidm 43700 | Any power of any restriction of the identity relation is itself. (Contributed by RP, 12-Jun-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑁 ∈ ℕ0) → (( I ↾ 𝐴)↑𝑟𝑁) = ( I ↾ 𝐴)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |