| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > df-vd3 | Structured version Visualization version GIF version | ||
| Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| df-vd3 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wph | . . 3 wff 𝜑 | |
| 2 | wps | . . 3 wff 𝜓 | |
| 3 | wch | . . 3 wff 𝜒 | |
| 4 | wth | . . 3 wff 𝜃 | |
| 5 | 1, 2, 3, 4 | wvd3 44607 | . 2 wff ( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) |
| 6 | 1, 2, 3 | w3a 1087 | . . 3 wff (𝜑 ∧ 𝜓 ∧ 𝜒) |
| 7 | 6, 4 | wi 4 | . 2 wff ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
| 8 | 5, 7 | wb 206 | 1 wff (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| This definition is referenced by: dfvd3 44611 |
| Copyright terms: Public domain | W3C validator |