Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dfvd3 | Structured version Visualization version GIF version |
Description: Definition of a 3-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dfvd3 | ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vd3 41883 | . 2 ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃)) | |
2 | df-3an 1091 | . . . . 5 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
3 | 2 | imbi1i 353 | . . . 4 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃)) |
4 | impexp 454 | . . . 4 ⊢ ((((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) ↔ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))) | |
5 | 3, 4 | bitri 278 | . . 3 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ ((𝜑 ∧ 𝜓) → (𝜒 → 𝜃))) |
6 | impexp 454 | . . 3 ⊢ (((𝜑 ∧ 𝜓) → (𝜒 → 𝜃)) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) | |
7 | 5, 6 | bitri 278 | . 2 ⊢ (((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
8 | 1, 7 | bitri 278 | 1 ⊢ (( 𝜑 , 𝜓 , 𝜒 ▶ 𝜃 ) ↔ (𝜑 → (𝜓 → (𝜒 → 𝜃)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∧ w3a 1089 ( wvd3 41880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 df-vd3 41883 |
This theorem is referenced by: dfvd3i 41885 dfvd3ir 41886 |
Copyright terms: Public domain | W3C validator |