| Metamath
Proof Explorer Theorem List (p. 441 of 500) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30900) |
(30901-32423) |
(32424-49930) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | frege66a 44001 | Swap antecedents of frege65a 44000. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜒 → 𝜃) ∧ (𝜂 → 𝜁)) → (((𝜓 → 𝜒) ∧ (𝜏 → 𝜂)) → (if-(𝜑, 𝜓, 𝜏) → if-(𝜑, 𝜃, 𝜁)))) | ||
| Theorem | frege67a 44002 | Lemma for frege68a 44003. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ ((((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → (𝜓 ∧ 𝜒))) → (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒)))) | ||
| Theorem | frege68a 44003 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 17-Apr-2020.) (Proof modification is discouraged.) |
| ⊢ (((𝜓 ∧ 𝜒) ↔ 𝜃) → (𝜃 → if-(𝜑, 𝜓, 𝜒))) | ||
| Theorem | axfrege52c 44004 | Justification for ax-frege52c 44005. (Contributed by RP, 24-Dec-2019.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
| Axiom | ax-frege52c 44005 | One side of dfsbcq 3739. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ (𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) | ||
| Theorem | frege52b 44006 | The case when the content of 𝑥 is identical with the content of 𝑦 and in which a proposition controlled by an element for which we substitute the content of 𝑥 is affirmed and the same proposition, this time where we substitute the content of 𝑦, is denied does not take place. In [𝑥 / 𝑧]𝜑, 𝑥 can also occur in other than the argument (𝑧) places. Hence 𝑥 may still be contained in [𝑦 / 𝑧]𝜑. Part of Axiom 52 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) | ||
| Theorem | frege53b 44007 | Lemma for frege102 (via frege92 44072). Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (𝑦 = 𝑧 → [𝑧 / 𝑥]𝜑)) | ||
| Theorem | axfrege54c 44008 | Reflexive equality of classes. Identical to eqid 2733. Justification for ax-frege54c 44009. (Contributed by RP, 24-Dec-2019.) |
| ⊢ 𝐴 = 𝐴 | ||
| Axiom | ax-frege54c 44009 | Reflexive equality of sets (as classes). Part of Axiom 54 of [Frege1879] p. 50. Identical to eqid 2733. (Contributed by RP, 24-Dec-2019.) (New usage is discouraged.) |
| ⊢ 𝐴 = 𝐴 | ||
| Theorem | frege54b 44010 | Reflexive equality of sets. The content of 𝑥 is identical with the content of 𝑥. Part of Axiom 54 of [Frege1879] p. 50. Slightly specialized version of eqid 2733. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝑥 = 𝑥 | ||
| Theorem | frege54cor1b 44011 | Reflexive equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ [𝑥 / 𝑦]𝑦 = 𝑥 | ||
| Theorem | frege55lem1b 44012* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → [𝑥 / 𝑦]𝑦 = 𝑧) → (𝜑 → 𝑥 = 𝑧)) | ||
| Theorem | frege55lem2b 44013 | Lemma for frege55b 44014. Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → [𝑦 / 𝑧]𝑧 = 𝑥) | ||
| Theorem | frege55b 44014 |
Lemma for frege57b 44016. Proposition 55 of [Frege1879] p. 50.
Note that eqtr2 2754 incorporates eqcom 2740 which is stronger than this proposition which is identical to equcomi 2018. Is it possible that Frege tricked himself into assuming what he was out to prove? (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → 𝑦 = 𝑥) | ||
| Theorem | frege56b 44015 | Lemma for frege57b 44016. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((𝑥 = 𝑦 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑)) → (𝑦 = 𝑥 → ([𝑥 / 𝑧]𝜑 → [𝑦 / 𝑧]𝜑))) | ||
| Theorem | frege57b 44016 | Analogue of frege57aid 43989. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝑦 → ([𝑦 / 𝑧]𝜑 → [𝑥 / 𝑧]𝜑)) | ||
| Theorem | axfrege58b 44017 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2073. Justification for ax-frege58b 44018. (Contributed by RP, 28-Mar-2020.) |
| ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
| Axiom | ax-frege58b 44018 | If ∀𝑥𝜑 is affirmed, [𝑦 / 𝑥]𝜑 cannot be denied. Identical to stdpc4 2073. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (New usage is discouraged.) |
| ⊢ (∀𝑥𝜑 → [𝑦 / 𝑥]𝜑) | ||
| Theorem | frege58bid 44019 | If ∀𝑥𝜑 is affirmed, 𝜑 cannot be denied. Identical to sp 2188. See ax-frege58b 44018 and frege58c 44038 for versions which more closely track the original. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥𝜑 → 𝜑) | ||
| Theorem | frege58bcor 44020 | Lemma for frege59b 44021. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜓)) | ||
| Theorem | frege59b 44021 |
A kind of Aristotelian inference. Namely Felapton or Fesapo. Proposition
59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43930 incorrectly referenced where frege30 43949 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (¬ [𝑦 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | frege60b 44022 | Swap antecedents of ax-frege58b 44018. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝑦 / 𝑥]𝜓 → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege61b 44023 | Lemma for frege65b 44027. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (([𝑥 / 𝑦]𝜑 → 𝜓) → (∀𝑦𝜑 → 𝜓)) | ||
| Theorem | frege62b 44024 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2660 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝑦 / 𝑥]𝜓)) | ||
| Theorem | frege63b 44025 | Lemma for frege91 44071. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝑦 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege64b 44026 | Lemma for frege65b 44027. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜓) → (∀𝑦(𝜓 → 𝜒) → ([𝑥 / 𝑦]𝜑 → [𝑧 / 𝑦]𝜒))) | ||
| Theorem | frege65b 44027 |
A kind of Aristotelian inference. This judgement replaces the mode of
inference barbara 2660 when the minor premise has a general context.
Proposition 65 of [Frege1879] p. 53.
In Frege care is taken to point out that the variables in the first clauses are independent of each other and of the final term so another valid translation could be : ⊢ (∀𝑥([𝑥 / 𝑎]𝜑 → [𝑥 / 𝑏]𝜓) → (∀𝑦([𝑦 / 𝑏]𝜓 → [𝑦 / 𝑐]𝜒) → ([𝑧 / 𝑎]𝜑 → [𝑧 / 𝑐]𝜒))). But that is perhaps too pedantic a translation for this exploration. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝑦 / 𝑥]𝜑 → [𝑦 / 𝑥]𝜒))) | ||
| Theorem | frege66b 44028 | Swap antecedents of frege65b 44027. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝑦 / 𝑥]𝜒 → [𝑦 / 𝑥]𝜓))) | ||
| Theorem | frege67b 44029 | Lemma for frege68b 44030. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑))) | ||
| Theorem | frege68b 44030 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝑦 / 𝑥]𝜑)) | ||
Begriffsschrift Chapter II with equivalence of classes (where they are sets). | ||
| Theorem | frege53c 44031 | Proposition 53 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ ([𝐴 / 𝑥]𝜑 → (𝐴 = 𝐵 → [𝐵 / 𝑥]𝜑)) | ||
| Theorem | frege54cor1c 44032* | Reflexive equality. (Contributed by RP, 24-Dec-2019.) (Revised by RP, 25-Apr-2020.) |
| ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ [𝐴 / 𝑥]𝑥 = 𝐴 | ||
| Theorem | frege55lem1c 44033* | Necessary deduction regarding substitution of value in equality. (Contributed by RP, 24-Dec-2019.) |
| ⊢ ((𝜑 → [𝐴 / 𝑥]𝑥 = 𝐵) → (𝜑 → 𝐴 = 𝐵)) | ||
| Theorem | frege55lem2c 44034* | Core proof of Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝐴 → [𝐴 / 𝑧]𝑧 = 𝑥) | ||
| Theorem | frege55c 44035 | Proposition 55 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ (𝑥 = 𝐴 → 𝐴 = 𝑥) | ||
| Theorem | frege56c 44036* | Lemma for frege57c 44037. Proposition 56 of [Frege1879] p. 50. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐵 ∈ 𝐶 ⇒ ⊢ ((𝐴 = 𝐵 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑)) → (𝐵 = 𝐴 → ([𝐴 / 𝑥]𝜑 → [𝐵 / 𝑥]𝜑))) | ||
| Theorem | frege57c 44037* | Swap order of implication in ax-frege52c 44005. Proposition 57 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐶 ⇒ ⊢ (𝐴 = 𝐵 → ([𝐵 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜑)) | ||
| Theorem | frege58c 44038 | Principle related to sp 2188. Axiom 58 of [Frege1879] p. 51. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥𝜑 → [𝐴 / 𝑥]𝜑) | ||
| Theorem | frege59c 44039 |
A kind of Aristotelian inference. Proposition 59 of [Frege1879] p. 51.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the frege12 43930 incorrectly referenced where frege30 43949 is in the original. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (¬ [𝐴 / 𝑥]𝜓 → ¬ ∀𝑥(𝜑 → 𝜓))) | ||
| Theorem | frege60c 44040 | Swap antecedents of frege58c 44038. Proposition 60 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → (𝜓 → 𝜒)) → ([𝐴 / 𝑥]𝜓 → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege61c 44041 | Lemma for frege65c 44045. Proposition 61 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐴 / 𝑥]𝜑 → 𝜓) → (∀𝑥𝜑 → 𝜓)) | ||
| Theorem | frege62c 44042 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2660 when the minor premise has a particular context. Proposition 62 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (∀𝑥(𝜑 → 𝜓) → [𝐴 / 𝑥]𝜓)) | ||
| Theorem | frege63c 44043 | Analogue of frege63b 44025. Proposition 63 of [Frege1879] p. 52. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ([𝐴 / 𝑥]𝜑 → (𝜓 → (∀𝑥(𝜑 → 𝜒) → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege64c 44044 | Lemma for frege65c 44045. Proposition 64 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐶 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege65c 44045 | A kind of Aristotelian inference. This judgement replaces the mode of inference barbara 2660 when the minor premise has a general context. Proposition 65 of [Frege1879] p. 53. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜓 → 𝜒) → ([𝐴 / 𝑥]𝜑 → [𝐴 / 𝑥]𝜒))) | ||
| Theorem | frege66c 44046 | Swap antecedents of frege65c 44045. Proposition 66 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (∀𝑥(𝜑 → 𝜓) → (∀𝑥(𝜒 → 𝜑) → ([𝐴 / 𝑥]𝜒 → [𝐴 / 𝑥]𝜓))) | ||
| Theorem | frege67c 44047 | Lemma for frege68c 44048. Proposition 67 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → ∀𝑥𝜑)) → ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑))) | ||
| Theorem | frege68c 44048 | Combination of applying a definition and applying it to a specific instance. Proposition 68 of [Frege1879] p. 54. (Contributed by RP, 24-Dec-2019.) (Proof modification is discouraged.) |
| ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((∀𝑥𝜑 ↔ 𝜓) → (𝜓 → [𝐴 / 𝑥]𝜑)) | ||
(𝑅 “ 𝐴) ⊆ 𝐴 means membership in 𝐴 is hereditary in the sequence dictated by relation 𝑅. This differs from the set-theoretic notion that a set is hereditary in a property: that all of its elements have a property and all of their elements have the property and so-on. While the above notation is modern, it is cumbersome in the case when 𝐴 is complex and to more closely follow Frege, we abbreviate it with new notation 𝑅 hereditary 𝐴. This greatly shortens the statements for frege97 44077 and frege109 44089. dffrege69 44049 through frege75 44055 develop this, but translation to Metamath is pending some decisions. While Frege does not limit discussion to sets, we may have to depart from Frege by limiting 𝑅 or 𝐴 to sets when we quantify over all hereditary relations or all classes where membership is hereditary in a sequence dictated by 𝑅. | ||
| Theorem | dffrege69 44049* | If from the proposition that 𝑥 has property 𝐴 it can be inferred generally, whatever 𝑥 may be, that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then we say " Property 𝐴 is hereditary in the 𝑅-sequence. Definition 69 of [Frege1879] p. 55. (Contributed by RP, 28-Mar-2020.) |
| ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) ↔ 𝑅 hereditary 𝐴) | ||
| Theorem | frege70 44050* | Lemma for frege72 44052. Proposition 70 of [Frege1879] p. 58. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → ∀𝑦(𝑋𝑅𝑦 → 𝑦 ∈ 𝐴))) | ||
| Theorem | frege71 44051* | Lemma for frege72 44052. Proposition 71 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑉 ⇒ ⊢ ((∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴)))) | ||
| Theorem | frege72 44052 | If property 𝐴 is hereditary in the 𝑅-sequence, if 𝑥 has property 𝐴, and if 𝑦 is a result of an application of the procedure 𝑅 to 𝑥, then 𝑦 has property 𝐴. Proposition 72 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege73 44053 | Lemma for frege87 44067. Proposition 73 of [Frege1879] p. 59. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((𝑅 hereditary 𝐴 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege74 44054 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then every result of a application of the procedure 𝑅 to 𝑋 has the property 𝐴. Proposition 74 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋𝑅𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege75 44055* | If from the proposition that 𝑥 has property 𝐴, whatever 𝑥 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑥 has property 𝐴, then property 𝐴 is hereditary in the 𝑅-sequence. Proposition 75 of [Frege1879] p. 60. (Contributed by RP, 28-Mar-2020.) (Proof modification is discouraged.) |
| ⊢ (∀𝑥(𝑥 ∈ 𝐴 → ∀𝑦(𝑥𝑅𝑦 → 𝑦 ∈ 𝐴)) → 𝑅 hereditary 𝐴) | ||
𝑝(t+‘𝑅)𝑐 means 𝑐 follows 𝑝 in the 𝑅-sequence. dffrege76 44056 through frege98 44078 develop this. This will be shown to be the transitive closure of the relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
| Theorem | dffrege76 44056* |
If from the two propositions that every result of an application of
the procedure 𝑅 to 𝐵 has property 𝑓 and
that property
𝑓 is hereditary in the 𝑅-sequence, it can be inferred,
whatever 𝑓 may be, that 𝐸 has property 𝑓, then
we say
𝐸 follows 𝐵 in the 𝑅-sequence. Definition 76 of
[Frege1879] p. 60.
Each of 𝐵, 𝐸 and 𝑅 must be sets. (Contributed by RP, 2-Jul-2020.) |
| ⊢ 𝐵 ∈ 𝑈 & ⊢ 𝐸 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑎(𝐵𝑅𝑎 → 𝑎 ∈ 𝑓) → 𝐸 ∈ 𝑓)) ↔ 𝐵(t+‘𝑅)𝐸) | ||
| Theorem | frege77 44057* | If 𝑌 follows 𝑋 in the 𝑅-sequence, if property 𝐴 is hereditary in the 𝑅-sequence, and if every result of an application of the procedure 𝑅 to 𝑋 has the property 𝐴, then 𝑌 has property 𝐴. Proposition 77 of [Frege1879] p. 62. (Contributed by RP, 29-Jun-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege78 44058* | Commuted form of frege77 44057. Proposition 78 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴) → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege79 44059* | Distributed form of frege78 44058. Proposition 79 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 3-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴)) → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege80 44060* | Add additional condition to both clauses of frege79 44059. Proposition 80 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → ∀𝑎(𝑋𝑅𝑎 → 𝑎 ∈ 𝐴))) → (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
| Theorem | frege81 44061 | If 𝑋 has a property 𝐴 that is hereditary in the 𝑅 -sequence, and if 𝑌 follows 𝑋 in the 𝑅-sequence, then 𝑌 has property 𝐴. This is a form of induction attributed to Jakob Bernoulli. Proposition 81 of [Frege1879] p. 63. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋 ∈ 𝐴 → (𝑅 hereditary 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege82 44062 | Closed-form deduction based on frege81 44061. Proposition 82 of [Frege1879] p. 64. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ ((𝜑 → 𝑋 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝜑 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴)))) | ||
| Theorem | frege83 44063 | Apply commuted form of frege81 44061 when the property 𝑅 is hereditary in a disjunction of two properties, only one of which is known to be held by 𝑋. Proposition 83 of [Frege1879] p. 65. Here we introduce the union of classes where Frege has a disjunction of properties which are represented by membership in either of the classes. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑆 & ⊢ 𝑌 ∈ 𝑇 & ⊢ 𝑅 ∈ 𝑈 & ⊢ 𝐵 ∈ 𝑉 & ⊢ 𝐶 ∈ 𝑊 ⇒ ⊢ (𝑅 hereditary (𝐵 ∪ 𝐶) → (𝑋 ∈ 𝐵 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ (𝐵 ∪ 𝐶)))) | ||
| Theorem | frege84 44064 | Commuted form of frege81 44061. Proposition 84 of [Frege1879] p. 65. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑅 hereditary 𝐴 → (𝑋 ∈ 𝐴 → (𝑋(t+‘𝑅)𝑌 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege85 44065* | Commuted form of frege77 44057. Proposition 85 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴))) | ||
| Theorem | frege86 44066* | Conclusion about element one past 𝑌 in the 𝑅-sequence. Proposition 86 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (((𝑅 hereditary 𝐴 → 𝑌 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))) → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴))))) | ||
| Theorem | frege87 44067* | If 𝑍 is a result of an application of the procedure 𝑅 to an object 𝑌 that follows 𝑋 in the 𝑅-sequence and if every result of an application of the procedure 𝑅 to 𝑋 has a property 𝐴 that is hereditary in the 𝑅-sequence, then 𝑍 has property 𝐴. Proposition 87 of [Frege1879] p. 66. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → (𝑌𝑅𝑍 → 𝑍 ∈ 𝐴)))) | ||
| Theorem | frege88 44068* | Commuted form of frege87 44067. Proposition 88 of [Frege1879] p. 67. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝑆 & ⊢ 𝐴 ∈ 𝐵 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝐴) → (𝑅 hereditary 𝐴 → 𝑍 ∈ 𝐴)))) | ||
| Theorem | frege89 44069* | One direction of dffrege76 44056. Proposition 89 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
| Theorem | frege90 44070* | Add antecedent to frege89 44069. Proposition 90 of [Frege1879] p. 68. (Contributed by RP, 1-Jul-2020.) (Revised by RP, 2-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝜑 → ∀𝑓(𝑅 hereditary 𝑓 → (∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → 𝑌 ∈ 𝑓))) → (𝜑 → 𝑋(t+‘𝑅)𝑌)) | ||
| Theorem | frege91 44071 | Every result of an application of a procedure 𝑅 to an object 𝑋 follows that 𝑋 in the 𝑅-sequence. Proposition 91 of [Frege1879] p. 68. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋𝑅𝑌 → 𝑋(t+‘𝑅)𝑌) | ||
| Theorem | frege92 44072 | Inference from frege91 44071. Proposition 92 of [Frege1879] p. 69. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (𝑋 = 𝑍 → (𝑋𝑅𝑌 → 𝑍(t+‘𝑅)𝑌)) | ||
| Theorem | frege93 44073* | Necessary condition for two elements to be related by the transitive closure. Proposition 93 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ (∀𝑓(∀𝑧(𝑋𝑅𝑧 → 𝑧 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑌 ∈ 𝑓)) → 𝑋(t+‘𝑅)𝑌) | ||
| Theorem | frege94 44074* | Looking one past a pair related by transitive closure of a relation. Proposition 94 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 5-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ ((𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → ∀𝑓(∀𝑤(𝑋𝑅𝑤 → 𝑤 ∈ 𝑓) → (𝑅 hereditary 𝑓 → 𝑍 ∈ 𝑓)))) → (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍))) | ||
| Theorem | frege95 44075 | Looking one past a pair related by transitive closure of a relation. Proposition 95 of [Frege1879] p. 70. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑌𝑅𝑍 → (𝑋(t+‘𝑅)𝑌 → 𝑋(t+‘𝑅)𝑍)) | ||
| Theorem | frege96 44076 | Every result of an application of the procedure 𝑅 to an object that follows 𝑋 in the 𝑅-sequence follows 𝑋 in the 𝑅 -sequence. Proposition 96 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝑍 ∈ 𝑊 & ⊢ 𝑅 ∈ 𝐴 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌𝑅𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
| Theorem | frege97 44077 |
The property of following 𝑋 in the 𝑅-sequence is hereditary
in the 𝑅-sequence. Proposition 97 of [Frege1879] p. 71.
Here we introduce the image of a singleton under a relation as class which stands for the property of following 𝑋 in the 𝑅 -sequence. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑊 ⇒ ⊢ 𝑅 hereditary ((t+‘𝑅) “ {𝑋}) | ||
| Theorem | frege98 44078 | If 𝑌 follows 𝑋 and 𝑍 follows 𝑌 in the 𝑅-sequence then 𝑍 follows 𝑋 in the 𝑅-sequence because the transitive closure of a relation has the transitive property. Proposition 98 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) (Revised by RP, 6-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑍 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋(t+‘𝑅)𝑌 → (𝑌(t+‘𝑅)𝑍 → 𝑋(t+‘𝑅)𝑍)) | ||
𝑝((t+‘𝑅) ∪ I )𝑐 means 𝑐 is a member of the 𝑅 -sequence beginning with 𝑝 and 𝑝 is a member of the 𝑅 -sequence ending with 𝑐. dffrege99 44079 through frege114 44094 develop this. This will be shown to be related to the transitive-reflexive closure of relation 𝑅. But more work needs to be done on transitive closure of relations before this is ready for Metamath. | ||
| Theorem | dffrege99 44079 | If 𝑍 is identical with 𝑋 or follows 𝑋 in the 𝑅 -sequence, then we say : "𝑍 belongs to the 𝑅-sequence beginning with 𝑋 " or "𝑋 belongs to the 𝑅-sequence ending with 𝑍". Definition 99 of [Frege1879] p. 71. (Contributed by RP, 2-Jul-2020.) |
| ⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) ↔ 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
| Theorem | frege100 44080 | One direction of dffrege99 44079. Proposition 100 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋)) | ||
| Theorem | frege101 44081 | Lemma for frege102 44082. Proposition 101 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑈 ⇒ ⊢ ((𝑍 = 𝑋 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → ((𝑋(t+‘𝑅)𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)))) | ||
| Theorem | frege102 44082 | If 𝑍 belongs to the 𝑅-sequence beginning with 𝑋, then every result of an application of the procedure 𝑅 to 𝑍 follows 𝑋 in the 𝑅-sequence. Proposition 102 of [Frege1879] p. 72. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑍 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (𝑍𝑅𝑉 → 𝑋(t+‘𝑅)𝑉)) | ||
| Theorem | frege103 44083 | Proposition 103 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍 = 𝑋 → 𝑋 = 𝑍) → (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍))) | ||
| Theorem | frege104 44084 |
Proposition 104 of [Frege1879] p. 73.
Note: in the Bauer-Meenfelberg translation published in van Heijenoort's collection From Frege to Goedel, this proof has the minor clause and result swapped. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋((t+‘𝑅) ∪ I )𝑍 → (¬ 𝑋(t+‘𝑅)𝑍 → 𝑋 = 𝑍)) | ||
| Theorem | frege105 44085 | Proposition 105 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((¬ 𝑋(t+‘𝑅)𝑍 → 𝑍 = 𝑋) → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
| Theorem | frege106 44086 | Whatever follows 𝑋 in the 𝑅-sequence belongs to the 𝑅 -sequence beginning with 𝑋. Proposition 106 of [Frege1879] p. 73. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑋(t+‘𝑅)𝑍 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
| Theorem | frege107 44087 | Proposition 107 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑉 ∈ 𝐴 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍(t+‘𝑅)𝑉)) → (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
| Theorem | frege108 44088 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍. Proposition 108 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → 𝑍((t+‘𝑅) ∪ I )𝑉)) | ||
| Theorem | frege109 44089 | The property of belonging to the 𝑅-sequence beginning with 𝑋 is hereditary in the 𝑅-sequence. Proposition 109 of [Frege1879] p. 74. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑅 ∈ 𝑉 ⇒ ⊢ 𝑅 hereditary (((t+‘𝑅) ∪ I ) “ {𝑋}) | ||
| Theorem | frege110 44090* | Proposition 110 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑀 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (∀𝑎(𝑌𝑅𝑎 → 𝑋((t+‘𝑅) ∪ I )𝑎) → (𝑌(t+‘𝑅)𝑀 → 𝑋((t+‘𝑅) ∪ I )𝑀)) | ||
| Theorem | frege111 44091 | If 𝑌 belongs to the 𝑅-sequence beginning with 𝑍, then every result of an application of the procedure 𝑅 to 𝑌 belongs to the 𝑅-sequence beginning with 𝑍 or precedes 𝑍 in the 𝑅-sequence. Proposition 111 of [Frege1879] p. 75. (Contributed by RP, 7-Jul-2020.) (Revised by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝐴 & ⊢ 𝑌 ∈ 𝐵 & ⊢ 𝑉 ∈ 𝐶 & ⊢ 𝑅 ∈ 𝐷 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑌 → (𝑌𝑅𝑉 → (¬ 𝑉(t+‘𝑅)𝑍 → 𝑍((t+‘𝑅) ∪ I )𝑉))) | ||
| Theorem | frege112 44092 | Identity implies belonging to the 𝑅-sequence beginning with self. Proposition 112 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍 = 𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍) | ||
| Theorem | frege113 44093 | Proposition 113 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ ((𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑍 = 𝑋)) → (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍))) | ||
| Theorem | frege114 44094 | If 𝑋 belongs to the 𝑅-sequence beginning with 𝑍, then 𝑍 belongs to the 𝑅-sequence beginning with 𝑋 or 𝑋 follows 𝑍 in the 𝑅-sequence. Proposition 114 of [Frege1879] p. 76. (Contributed by RP, 7-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑍 ∈ 𝑉 ⇒ ⊢ (𝑍((t+‘𝑅) ∪ I )𝑋 → (¬ 𝑍(t+‘𝑅)𝑋 → 𝑋((t+‘𝑅) ∪ I )𝑍)) | ||
Fun ◡◡𝑅 means the relationship content of procedure 𝑅 is single-valued. The double converse allows to simply apply this syntax in place of Frege's even though the original never explicitly limited discussion of propositional statements which vary on two variables to relations. dffrege115 44095 through frege133 44113 develop this and how functions relate to transitive and transitive-reflexive closures. | ||
| Theorem | dffrege115 44095* | If from the circumstance that 𝑐 is a result of an application of the procedure 𝑅 to 𝑏, whatever 𝑏 may be, it can be inferred that every result of an application of the procedure 𝑅 to 𝑏 is the same as 𝑐, then we say : "The procedure 𝑅 is single-valued". Definition 115 of [Frege1879] p. 77. (Contributed by RP, 7-Jul-2020.) |
| ⊢ (∀𝑐∀𝑏(𝑏𝑅𝑐 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑐)) ↔ Fun ◡◡𝑅) | ||
| Theorem | frege116 44096* | One direction of dffrege115 44095. Proposition 116 of [Frege1879] p. 77. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ (Fun ◡◡𝑅 → ∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋))) | ||
| Theorem | frege117 44097* | Lemma for frege118 44098. Proposition 117 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 ⇒ ⊢ ((∀𝑏(𝑏𝑅𝑋 → ∀𝑎(𝑏𝑅𝑎 → 𝑎 = 𝑋)) → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋)))) | ||
| Theorem | frege118 44098* | Simplified application of one direction of dffrege115 44095. Proposition 118 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → ∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋))) | ||
| Theorem | frege119 44099* | Lemma for frege120 44100. Proposition 119 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 ⇒ ⊢ ((∀𝑎(𝑌𝑅𝑎 → 𝑎 = 𝑋) → (𝑌𝑅𝐴 → 𝐴 = 𝑋)) → (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋)))) | ||
| Theorem | frege120 44100 | Simplified application of one direction of dffrege115 44095. Proposition 120 of [Frege1879] p. 78. (Contributed by RP, 8-Jul-2020.) (Proof modification is discouraged.) |
| ⊢ 𝑋 ∈ 𝑈 & ⊢ 𝑌 ∈ 𝑉 & ⊢ 𝐴 ∈ 𝑊 ⇒ ⊢ (Fun ◡◡𝑅 → (𝑌𝑅𝑋 → (𝑌𝑅𝐴 → 𝐴 = 𝑋))) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |