HomeHome Metamath Proof Explorer
Theorem List (p. 441 of 479)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-30171)
  Hilbert Space Explorer  Hilbert Space Explorer
(30172-31694)
  Users' Mathboxes  Users' Mathboxes
(31695-47852)
 

Theorem List for Metamath Proof Explorer - 44001-44100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnnne1ge2 44001 A positive integer which is not 1 is greater than or equal to 2. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝑁 ∈ β„• ∧ 𝑁 β‰  1) β†’ 2 ≀ 𝑁)
 
Theoremlefldiveq 44002 A closed enough, smaller real 𝐢 has the same floor of 𝐴 when both are divided by 𝐡. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝐢 ∈ ((𝐴 βˆ’ (𝐴 mod 𝐡))[,]𝐴))    β‡’   (πœ‘ β†’ (βŒŠβ€˜(𝐴 / 𝐡)) = (βŒŠβ€˜(𝐢 / 𝐡)))
 
Theoremnegsubdi3d 44003 Distribution of negative over subtraction. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    β‡’   (πœ‘ β†’ -(𝐴 βˆ’ 𝐡) = (-𝐴 βˆ’ -𝐡))
 
Theoremltdiv2dd 44004 Division of a positive number by both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    &   (πœ‘ β†’ 𝐢 ∈ ℝ+)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ (𝐢 / 𝐡) < (𝐢 / 𝐴))
 
Theoremabssinbd 44005 Bound for the absolute value of the sine of a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝐴 ∈ ℝ β†’ (absβ€˜(sinβ€˜π΄)) ≀ 1)
 
Theoremhalffl 44006 Floor of (1 / 2). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(βŒŠβ€˜(1 / 2)) = 0
 
Theoremmonoords 44007* Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((πœ‘ ∧ π‘˜ ∈ (𝑀...𝑁)) β†’ (πΉβ€˜π‘˜) ∈ ℝ)    &   ((πœ‘ ∧ π‘˜ ∈ (𝑀..^𝑁)) β†’ (πΉβ€˜π‘˜) < (πΉβ€˜(π‘˜ + 1)))    &   (πœ‘ β†’ 𝐼 ∈ (𝑀...𝑁))    &   (πœ‘ β†’ 𝐽 ∈ (𝑀...𝑁))    &   (πœ‘ β†’ 𝐼 < 𝐽)    β‡’   (πœ‘ β†’ (πΉβ€˜πΌ) < (πΉβ€˜π½))
 
Theoremhashssle 44008 The size of a subset of a finite set is less than the size of the containing set. (Contributed by Glauco Siliprandi, 11-Dec-2019.) TODO (NM): usage (2 times) should be replaced by hashss 14369, and hashssle 44008 should be deleted afterwards.
((𝐴 ∈ Fin ∧ 𝐡 βŠ† 𝐴) β†’ (β™―β€˜π΅) ≀ (β™―β€˜π΄))
 
Theoremlttri5d 44009 Not equal and not larger implies smaller. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    &   (πœ‘ β†’ Β¬ 𝐡 < 𝐴)    β‡’   (πœ‘ β†’ 𝐴 < 𝐡)
 
Theoremfzisoeu 44010* A finite ordered set has a unique order isomorphism to a generic finite sequence of integers. This theorem generalizes fz1iso 14423 for the base index and also states the uniqueness condition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐻 ∈ Fin)    &   (πœ‘ β†’ < Or 𝐻)    &   (πœ‘ β†’ 𝑀 ∈ β„€)    &   π‘ = ((β™―β€˜π») + (𝑀 βˆ’ 1))    β‡’   (πœ‘ β†’ βˆƒ!𝑓 𝑓 Isom < , < ((𝑀...𝑁), 𝐻))
 
Theoremlt3addmuld 44011 If three real numbers are less than a fourth real number, the sum of the three real numbers is less than three times the third real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐷)    &   (πœ‘ β†’ 𝐡 < 𝐷)    &   (πœ‘ β†’ 𝐢 < 𝐷)    β‡’   (πœ‘ β†’ ((𝐴 + 𝐡) + 𝐢) < (3 Β· 𝐷))
 
Theoremabsnpncan2d 44012 Triangular inequality, combined with cancellation law for subtraction (applied twice). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐷 ∈ β„‚)    β‡’   (πœ‘ β†’ (absβ€˜(𝐴 βˆ’ 𝐷)) ≀ (((absβ€˜(𝐴 βˆ’ 𝐡)) + (absβ€˜(𝐡 βˆ’ 𝐢))) + (absβ€˜(𝐢 βˆ’ 𝐷))))
 
Theoremfperiodmullem 44013* A function with period 𝑇 is also periodic with period nonnegative multiple of 𝑇. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐹:β„βŸΆβ„‚)    &   (πœ‘ β†’ 𝑇 ∈ ℝ)    &   (πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝑋 ∈ ℝ)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))    β‡’   (πœ‘ β†’ (πΉβ€˜(𝑋 + (𝑁 Β· 𝑇))) = (πΉβ€˜π‘‹))
 
Theoremfperiodmul 44014* A function with period T is also periodic with period multiple of T. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐹:β„βŸΆβ„‚)    &   (πœ‘ β†’ 𝑇 ∈ ℝ)    &   (πœ‘ β†’ 𝑁 ∈ β„€)    &   (πœ‘ β†’ 𝑋 ∈ ℝ)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ) β†’ (πΉβ€˜(π‘₯ + 𝑇)) = (πΉβ€˜π‘₯))    β‡’   (πœ‘ β†’ (πΉβ€˜(𝑋 + (𝑁 Β· 𝑇))) = (πΉβ€˜π‘‹))
 
Theoremupbdrech 44015* Choice of an upper bound for a nonempty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 β‰  βˆ…)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ 𝐴 𝐡 ≀ 𝑦)    &   πΆ = sup({𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = 𝐡}, ℝ, < )    β‡’   (πœ‘ β†’ (𝐢 ∈ ℝ ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ≀ 𝐢))
 
Theoremlt4addmuld 44016 If four real numbers are less than a fifth real number, the sum of the four real numbers is less than four times the fifth real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐸 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐸)    &   (πœ‘ β†’ 𝐡 < 𝐸)    &   (πœ‘ β†’ 𝐢 < 𝐸)    &   (πœ‘ β†’ 𝐷 < 𝐸)    β‡’   (πœ‘ β†’ (((𝐴 + 𝐡) + 𝐢) + 𝐷) < (4 Β· 𝐸))
 
Theoremabsnpncan3d 44017 Triangular inequality, combined with cancellation law for subtraction (applied three times). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐷 ∈ β„‚)    &   (πœ‘ β†’ 𝐸 ∈ β„‚)    β‡’   (πœ‘ β†’ (absβ€˜(𝐴 βˆ’ 𝐸)) ≀ ((((absβ€˜(𝐴 βˆ’ 𝐡)) + (absβ€˜(𝐡 βˆ’ 𝐢))) + (absβ€˜(𝐢 βˆ’ 𝐷))) + (absβ€˜(𝐷 βˆ’ 𝐸))))
 
Theoremupbdrech2 44018* Choice of an upper bound for a possibly empty bunded set (image set version). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘₯ ∈ 𝐴 𝐡 ≀ 𝑦)    &   πΆ = if(𝐴 = βˆ…, 0, sup({𝑧 ∣ βˆƒπ‘₯ ∈ 𝐴 𝑧 = 𝐡}, ℝ, < ))    β‡’   (πœ‘ β†’ (𝐢 ∈ ℝ ∧ βˆ€π‘₯ ∈ 𝐴 𝐡 ≀ 𝐢))
 
Theoremssfiunibd 44019* A finite union of bounded sets is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(πœ‘ β†’ 𝐴 ∈ Fin)    &   ((πœ‘ ∧ 𝑧 ∈ βˆͺ 𝐴) β†’ 𝐡 ∈ ℝ)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ βˆƒπ‘¦ ∈ ℝ βˆ€π‘§ ∈ π‘₯ 𝐡 ≀ 𝑦)    &   (πœ‘ β†’ 𝐢 βŠ† βˆͺ 𝐴)    β‡’   (πœ‘ β†’ βˆƒπ‘€ ∈ ℝ βˆ€π‘§ ∈ 𝐢 𝐡 ≀ 𝑀)
 
Theoremfzdifsuc2 44020 Remove a successor from the end of a finite set of sequential integers. Similar to fzdifsuc 13561, but with a weaker condition. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑁 ∈ (β„€β‰₯β€˜(𝑀 βˆ’ 1)) β†’ (𝑀...𝑁) = ((𝑀...(𝑁 + 1)) βˆ– {(𝑁 + 1)}))
 
Theoremfzsscn 44021 A finite sequence of integers is a set of complex numbers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑀...𝑁) βŠ† β„‚
 
Theoremdivcan8d 44022 A cancellation law for division. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐴 β‰  0)    &   (πœ‘ β†’ 𝐡 β‰  0)    β‡’   (πœ‘ β†’ (𝐡 / (𝐴 Β· 𝐡)) = (1 / 𝐴))
 
Theoremdmmcand 44023 Cancellation law for division and multiplication. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 β‰  0)    β‡’   (πœ‘ β†’ ((𝐴 / 𝐡) Β· (𝐡 Β· 𝐢)) = (𝐴 Β· 𝐢))
 
Theoremfzssre 44024 A finite sequence of integers is a set of real numbers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑀...𝑁) βŠ† ℝ
 
Theorembccld 44025 A binomial coefficient, in its extended domain, is a nonnegative integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝑁 ∈ β„•0)    &   (πœ‘ β†’ 𝐾 ∈ β„€)    β‡’   (πœ‘ β†’ (𝑁C𝐾) ∈ β„•0)
 
Theoremleadd12dd 44026 Addition to both sides of 'less than or equal to'. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ 𝐢)    &   (πœ‘ β†’ 𝐡 ≀ 𝐷)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) ≀ (𝐢 + 𝐷))
 
Theoremfzssnn0 44027 A finite set of sequential integers that is a subset of β„•0. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(0...𝑁) βŠ† β„•0
 
Theoremxreqle 44028 Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝐴 ∈ ℝ* ∧ 𝐴 = 𝐡) β†’ 𝐴 ≀ 𝐡)
 
Theoremxaddlidd 44029 0 is a left identity for extended real addition. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    β‡’   (πœ‘ β†’ (0 +𝑒 𝐴) = 𝐴)
 
Theoremxadd0ge 44030 A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ 𝐴 ≀ (𝐴 +𝑒 𝐡))
 
Theoremelfzolem1 44031 A member in a half-open integer interval is less than or equal to the upper bound minus 1 . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐾 ∈ (𝑀..^𝑁) β†’ 𝐾 ≀ (𝑁 βˆ’ 1))
 
Theoremxrgtned 44032 'Greater than' implies not equal. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ 𝐡 β‰  𝐴)
 
Theoremxrleneltd 44033 'Less than or equal to' and 'not equals' implies 'less than', for extended reals. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ 𝐴 β‰  𝐡)    β‡’   (πœ‘ β†’ 𝐴 < 𝐡)
 
Theoremxaddcomd 44034 The extended real addition operation is commutative. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐡) = (𝐡 +𝑒 𝐴))
 
Theoremsupxrre3 44035* The supremum of a nonempty set of reals, is real if and only if it is bounded-above . (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝐴 βŠ† ℝ ∧ 𝐴 β‰  βˆ…) β†’ (sup(𝐴, ℝ*, < ) ∈ ℝ ↔ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 ≀ π‘₯))
 
Theoremuzfissfz 44036* For any finite subset of the upper integers, there is a finite set of sequential integers that includes it. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝑀 ∈ β„€)    &   π‘ = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑍)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    β‡’   (πœ‘ β†’ βˆƒπ‘˜ ∈ 𝑍 𝐴 βŠ† (𝑀...π‘˜))
 
Theoremxleadd2d 44037 Addition of extended reals preserves the "less than or equal to" relation, in the right slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    β‡’   (πœ‘ β†’ (𝐢 +𝑒 𝐴) ≀ (𝐢 +𝑒 𝐡))
 
Theoremsuprltrp 44038* The supremum of a nonempty bounded set of reals can be approximated from below by elements of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   (πœ‘ β†’ 𝐴 β‰  βˆ…)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 ≀ π‘₯)    &   (πœ‘ β†’ 𝑋 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝐴 (sup(𝐴, ℝ, < ) βˆ’ 𝑋) < 𝑧)
 
Theoremxleadd1d 44039 Addition of extended reals preserves the "less than or equal to" relation, in the left slot. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐢) ≀ (𝐡 +𝑒 𝐢))
 
Theoremxreqled 44040 Equality implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 = 𝐡)    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremxrgepnfd 44041 An extended real greater than or equal to +∞ is +∞ (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ +∞ ≀ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 = +∞)
 
Theoremxrge0nemnfd 44042 A nonnegative extended real is not minus infinity. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ 𝐴 β‰  -∞)
 
Theoremsupxrgere 44043* If a real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ 𝐴 (𝐡 βˆ’ π‘₯) < 𝑦)    β‡’   (πœ‘ β†’ 𝐡 ≀ sup(𝐴, ℝ*, < ))
 
Theoremiuneqfzuzlem 44044* Lemma for iuneqfzuz 44045: here, inclusion is proven; aiuneqfzuz uses this lemma twice, to prove equality. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑍 = (β„€β‰₯β€˜π‘)    β‡’   (βˆ€π‘š ∈ 𝑍 βˆͺ 𝑛 ∈ (𝑁...π‘š)𝐴 = βˆͺ 𝑛 ∈ (𝑁...π‘š)𝐡 β†’ βˆͺ 𝑛 ∈ 𝑍 𝐴 βŠ† βˆͺ 𝑛 ∈ 𝑍 𝐡)
 
Theoremiuneqfzuz 44045* If two unions indexed by upper integers are equal if they agree on any partial indexed union. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑍 = (β„€β‰₯β€˜π‘)    β‡’   (βˆ€π‘š ∈ 𝑍 βˆͺ 𝑛 ∈ (𝑁...π‘š)𝐴 = βˆͺ 𝑛 ∈ (𝑁...π‘š)𝐡 β†’ βˆͺ 𝑛 ∈ 𝑍 𝐴 = βˆͺ 𝑛 ∈ 𝑍 𝐡)
 
Theoremxle2addd 44046 Adding both side of two inequalities. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐢 ∈ ℝ*)    &   (πœ‘ β†’ 𝐷 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 ≀ 𝐢)    &   (πœ‘ β†’ 𝐡 ≀ 𝐷)    β‡’   (πœ‘ β†’ (𝐴 +𝑒 𝐡) ≀ (𝐢 +𝑒 𝐷))
 
Theoremsupxrgelem 44047* If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ 𝐴 𝐡 < (𝑦 +𝑒 π‘₯))    β‡’   (πœ‘ β†’ 𝐡 ≀ sup(𝐴, ℝ*, < ))
 
Theoremsupxrge 44048* If an extended real number can be approximated from below by members of a set, then it is less than or equal to the supremum of the set. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ βˆƒπ‘¦ ∈ 𝐴 𝐡 ≀ (𝑦 +𝑒 π‘₯))    β‡’   (πœ‘ β†’ 𝐡 ≀ sup(𝐴, ℝ*, < ))
 
Theoremsuplesup 44049* If any element of 𝐴 can be approximated from below by members of 𝐡, then the supremum of 𝐴 is less than or equal to the supremum of 𝐡. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ*)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 βˆ€π‘¦ ∈ ℝ+ βˆƒπ‘§ ∈ 𝐡 (π‘₯ βˆ’ 𝑦) < 𝑧)    β‡’   (πœ‘ β†’ sup(𝐴, ℝ*, < ) ≀ sup(𝐡, ℝ*, < ))
 
Theoreminfxrglb 44050* The infimum of a set of extended reals is less than an extended real if and only if the set contains a smaller number. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
((𝐴 βŠ† ℝ* ∧ 𝐡 ∈ ℝ*) β†’ (inf(𝐴, ℝ*, < ) < 𝐡 ↔ βˆƒπ‘₯ ∈ 𝐴 π‘₯ < 𝐡))
 
Theoremxadd0ge2 44051 A number is less than or equal to itself plus a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ (0[,]+∞))    β‡’   (πœ‘ β†’ 𝐴 ≀ (𝐡 +𝑒 𝐴))
 
Theoremnepnfltpnf 44052 An extended real that is not +∞ is less than +∞. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐴 β‰  +∞)    &   (πœ‘ β†’ 𝐴 ∈ ℝ*)    β‡’   (πœ‘ β†’ 𝐴 < +∞)
 
Theoremltadd12dd 44053 Addition to both sides of 'less than'. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 𝐷 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 𝐢)    &   (πœ‘ β†’ 𝐡 < 𝐷)    β‡’   (πœ‘ β†’ (𝐴 + 𝐡) < (𝐢 + 𝐷))
 
Theoremnemnftgtmnft 44054 An extended real that is not minus infinity, is larger than minus infinity. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
((𝐴 ∈ ℝ* ∧ 𝐴 β‰  -∞) β†’ -∞ < 𝐴)
 
Theoremxrgtso 44055 'Greater than' is a strict ordering on the extended reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
β—‘ < Or ℝ*
 
Theoremrpex 44056 The positive reals form a set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
ℝ+ ∈ V
 
Theoremxrge0ge0 44057 A nonnegative extended real is nonnegative. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝐴 ∈ (0[,]+∞) β†’ 0 ≀ 𝐴)
 
Theoremxrssre 44058 A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ Β¬ +∞ ∈ 𝐴)    &   (πœ‘ β†’ Β¬ -∞ ∈ 𝐴)    β‡’   (πœ‘ β†’ 𝐴 βŠ† ℝ)
 
Theoremssuzfz 44059 A finite subset of the upper integers is a subset of a finite set of sequential integers. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
𝑍 = (β„€β‰₯β€˜π‘€)    &   (πœ‘ β†’ 𝐴 βŠ† 𝑍)    &   (πœ‘ β†’ 𝐴 ∈ Fin)    β‡’   (πœ‘ β†’ 𝐴 βŠ† (𝑀...sup(𝐴, ℝ, < )))
 
Theoremabsfun 44060 The absolute value is a function. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Fun abs
 
Theoreminfrpge 44061* The infimum of a nonempty, bounded subset of extended reals can be approximated from above by an element of the set. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐴 β‰  βˆ…)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 π‘₯ ≀ 𝑦)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    β‡’   (πœ‘ β†’ βˆƒπ‘§ ∈ 𝐴 𝑧 ≀ (inf(𝐴, ℝ*, < ) +𝑒 𝐡))
 
Theoremxrlexaddrp 44062* If an extended real number 𝐴 can be approximated from above, adding positive reals to 𝐡, then 𝐴 is less than or equal to 𝐡. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   ((πœ‘ ∧ π‘₯ ∈ ℝ+) β†’ 𝐴 ≀ (𝐡 +𝑒 π‘₯))    β‡’   (πœ‘ β†’ 𝐴 ≀ 𝐡)
 
Theoremsupsubc 44063* The supremum function distributes over subtraction in a sense similar to that in supaddc 12181. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 βŠ† ℝ)    &   (πœ‘ β†’ 𝐴 β‰  βˆ…)    &   (πœ‘ β†’ βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 𝑦 ≀ π‘₯)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   πΆ = {𝑧 ∣ βˆƒπ‘£ ∈ 𝐴 𝑧 = (𝑣 βˆ’ 𝐡)}    β‡’   (πœ‘ β†’ (sup(𝐴, ℝ, < ) βˆ’ 𝐡) = sup(𝐢, ℝ, < ))
 
Theoremxralrple2 44064* Show that 𝐴 is less than 𝐡 by showing that there is no positive bound on the difference. A variant on xralrple 13184. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
β„²π‘₯πœ‘    &   (πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ (0[,)+∞))    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ βˆ€π‘₯ ∈ ℝ+ 𝐴 ≀ ((1 + π‘₯) Β· 𝐡)))
 
Theoremnnuzdisj 44065 The first 𝑁 elements of the set of nonnegative integers are distinct from any later members. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
((1...𝑁) ∩ (β„€β‰₯β€˜(𝑁 + 1))) = βˆ…
 
Theoremltdivgt1 44066 Divsion by a number greater than 1. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ+)    &   (πœ‘ β†’ 𝐡 ∈ ℝ+)    β‡’   (πœ‘ β†’ (1 < 𝐡 ↔ (𝐴 / 𝐡) < 𝐴))
 
Theoremxrltned 44067 'Less than' implies not equal. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ 𝐴 β‰  𝐡)
 
Theoremnnsplit 44068 Express the set of positive integers as the disjoint (see nnuzdisj 44065) union of the first 𝑁 values and the rest. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
(𝑁 ∈ β„• β†’ β„• = ((1...𝑁) βˆͺ (β„€β‰₯β€˜(𝑁 + 1))))
 
Theoremdivdiv3d 44069 Division into a fraction. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 ∈ β„‚)    &   (πœ‘ β†’ 𝐢 ∈ β„‚)    &   (πœ‘ β†’ 𝐡 β‰  0)    &   (πœ‘ β†’ 𝐢 β‰  0)    β‡’   (πœ‘ β†’ ((𝐴 / 𝐡) / 𝐢) = (𝐴 / (𝐢 Β· 𝐡)))
 
Theoremabslt2sqd 44070 Comparison of the square of two numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ (absβ€˜π΄) < (absβ€˜π΅))    β‡’   (πœ‘ β†’ (𝐴↑2) < (𝐡↑2))
 
Theoremqenom 44071 The set of rational numbers is equinumerous to omega (the set of finite ordinal numbers). (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„š β‰ˆ Ο‰
 
Theoremqct 44072 The set of rational numbers is countable. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
β„š β‰Ό Ο‰
 
Theoremxrltnled 44073 'Less than' in terms of 'less than or equal to'. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ (𝐴 < 𝐡 ↔ Β¬ 𝐡 ≀ 𝐴))
 
Theoremlenlteq 44074 'less than or equal to' but not 'less than' implies 'equal' . (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 ≀ 𝐡)    &   (πœ‘ β†’ Β¬ 𝐴 < 𝐡)    β‡’   (πœ‘ β†’ 𝐴 = 𝐡)
 
Theoremxrred 44075 An extended real that is neither minus infinity, nor plus infinity, is real. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐴 β‰  -∞)    &   (πœ‘ β†’ 𝐴 β‰  +∞)    β‡’   (πœ‘ β†’ 𝐴 ∈ ℝ)
 
Theoremrr2sscn2 44076 The cartesian square of ℝ is a subset of the cartesian square of β„‚. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(ℝ Γ— ℝ) βŠ† (β„‚ Γ— β„‚)
 
Theoreminfxr 44077* The infimum of a set of extended reals. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
β„²π‘₯πœ‘    &   β„²π‘¦πœ‘    &   (πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ 𝐴 Β¬ π‘₯ < 𝐡)    &   (πœ‘ β†’ βˆ€π‘₯ ∈ ℝ (𝐡 < π‘₯ β†’ βˆƒπ‘¦ ∈ 𝐴 𝑦 < π‘₯))    β‡’   (πœ‘ β†’ inf(𝐴, ℝ*, < ) = 𝐡)
 
Theoreminfxrunb2 44078* The infimum of an unbounded-below set of extended reals is minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝐴 βŠ† ℝ* β†’ (βˆ€π‘₯ ∈ ℝ βˆƒπ‘¦ ∈ 𝐴 𝑦 < π‘₯ ↔ inf(𝐴, ℝ*, < ) = -∞))
 
Theoreminfxrbnd2 44079* The infimum of a bounded-below set of extended reals is greater than minus infinity. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝐴 βŠ† ℝ* β†’ (βˆƒπ‘₯ ∈ ℝ βˆ€π‘¦ ∈ 𝐴 π‘₯ ≀ 𝑦 ↔ -∞ < inf(𝐴, ℝ*, < )))
 
Theoreminfleinflem1 44080 Lemma for infleinf 44082, case 𝐡 β‰  βˆ… ∧ -∞ < inf(𝐡, ℝ*, < ). (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ*)    &   (πœ‘ β†’ π‘Š ∈ ℝ+)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 ≀ (inf(𝐡, ℝ*, < ) +𝑒 (π‘Š / 2)))    &   (πœ‘ β†’ 𝑍 ∈ 𝐴)    &   (πœ‘ β†’ 𝑍 ≀ (𝑋 +𝑒 (π‘Š / 2)))    β‡’   (πœ‘ β†’ inf(𝐴, ℝ*, < ) ≀ (inf(𝐡, ℝ*, < ) +𝑒 π‘Š))
 
Theoreminfleinflem2 44081 Lemma for infleinf 44082, when inf(𝐡, ℝ*, < ) = -∞. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ*)    &   (πœ‘ β†’ 𝑅 ∈ ℝ)    &   (πœ‘ β†’ 𝑋 ∈ 𝐡)    &   (πœ‘ β†’ 𝑋 < (𝑅 βˆ’ 2))    &   (πœ‘ β†’ 𝑍 ∈ 𝐴)    &   (πœ‘ β†’ 𝑍 ≀ (𝑋 +𝑒 1))    β‡’   (πœ‘ β†’ 𝑍 < 𝑅)
 
Theoreminfleinf 44082* If any element of 𝐡 can be approximated from above by members of 𝐴, then the infimum of 𝐴 is less than or equal to the infimum of 𝐡. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ*)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐡 ∧ 𝑦 ∈ ℝ+) β†’ βˆƒπ‘§ ∈ 𝐴 𝑧 ≀ (π‘₯ +𝑒 𝑦))    β‡’   (πœ‘ β†’ inf(𝐴, ℝ*, < ) ≀ inf(𝐡, ℝ*, < ))
 
Theoremxralrple4 44083* Show that 𝐴 is less than 𝐡 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝑁 ∈ β„•)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ βˆ€π‘₯ ∈ ℝ+ 𝐴 ≀ (𝐡 + (π‘₯↑𝑁))))
 
Theoremxralrple3 44084* Show that 𝐴 is less than 𝐡 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    &   (πœ‘ β†’ 𝐢 ∈ ℝ)    &   (πœ‘ β†’ 0 ≀ 𝐢)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ βˆ€π‘₯ ∈ ℝ+ 𝐴 ≀ (𝐡 + (𝐢 Β· π‘₯))))
 
Theoremeluzelzd 44085 A member of an upper set of integers is an integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝑁 ∈ (β„€β‰₯β€˜π‘€))    β‡’   (πœ‘ β†’ 𝑁 ∈ β„€)
 
Theoremsuplesup2 44086* If any element of 𝐴 is less than or equal to an element in 𝐡, then the supremum of 𝐴 is less than or equal to the supremum of 𝐡. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    &   (πœ‘ β†’ 𝐡 βŠ† ℝ*)    &   ((πœ‘ ∧ π‘₯ ∈ 𝐴) β†’ βˆƒπ‘¦ ∈ 𝐡 π‘₯ ≀ 𝑦)    β‡’   (πœ‘ β†’ sup(𝐴, ℝ*, < ) ≀ sup(𝐡, ℝ*, < ))
 
Theoremrecnnltrp 44087 𝑁 is a natural number large enough that its reciprocal is smaller than the given positive 𝐸. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑁 = ((βŒŠβ€˜(1 / 𝐸)) + 1)    β‡’   (𝐸 ∈ ℝ+ β†’ (𝑁 ∈ β„• ∧ (1 / 𝑁) < 𝐸))
 
Theoremnnn0 44088 The set of positive integers is nonempty. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„• β‰  βˆ…
 
Theoremfzct 44089 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑁...𝑀) β‰Ό Ο‰
 
Theoremrpgtrecnn 44090* Any positive real number is greater than the reciprocal of a positive integer. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝐴 ∈ ℝ+ β†’ βˆƒπ‘› ∈ β„• (1 / 𝑛) < 𝐴)
 
Theoremfzossuz 44091 A half-open integer interval is a subset of an upper set of integers. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑀..^𝑁) βŠ† (β„€β‰₯β€˜π‘€)
 
Theoreminfxrrefi 44092 The real and extended real infima match when the set is finite. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
((𝐴 βŠ† ℝ ∧ 𝐴 ∈ Fin ∧ 𝐴 β‰  βˆ…) β†’ inf(𝐴, ℝ*, < ) = inf(𝐴, ℝ, < ))
 
Theoremxrralrecnnle 44093* Show that 𝐴 is less than 𝐡 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
β„²π‘›πœ‘    &   (πœ‘ β†’ 𝐴 ∈ ℝ*)    &   (πœ‘ β†’ 𝐡 ∈ ℝ)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ βˆ€π‘› ∈ β„• 𝐴 ≀ (𝐡 + (1 / 𝑛))))
 
Theoremfzoct 44094 A finite set of sequential integer is countable. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝑁..^𝑀) β‰Ό Ο‰
 
Theoremfrexr 44095 A function taking real values, is a function taking extended real values. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐹:π΄βŸΆβ„)    β‡’   (πœ‘ β†’ 𝐹:π΄βŸΆβ„*)
 
Theoremnnrecrp 44096 The reciprocal of a positive natural number is a positive real number. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝑁 ∈ β„• β†’ (1 / 𝑁) ∈ ℝ+)
 
Theoremreclt0d 44097 The reciprocal of a negative number is negative. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 0)    β‡’   (πœ‘ β†’ (1 / 𝐴) < 0)
 
Theoremlt0neg1dd 44098 If a number is negative, its negative is positive. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐴 < 0)    β‡’   (πœ‘ β†’ 0 < -𝐴)
 
Theoreminfxrcld 44099 The infimum of an arbitrary set of extended reals is an extended real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(πœ‘ β†’ 𝐴 βŠ† ℝ*)    β‡’   (πœ‘ β†’ inf(𝐴, ℝ*, < ) ∈ ℝ*)
 
Theoremxrralrecnnge 44100* Show that 𝐴 is less than 𝐡 by showing that there is no positive bound on the difference. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
β„²π‘›πœ‘    &   (πœ‘ β†’ 𝐴 ∈ ℝ)    &   (πœ‘ β†’ 𝐡 ∈ ℝ*)    β‡’   (πœ‘ β†’ (𝐴 ≀ 𝐡 ↔ βˆ€π‘› ∈ β„• (𝐴 βˆ’ (1 / 𝑛)) ≀ 𝐡))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46400 465 46401-46500 466 46501-46600 467 46601-46700 468 46701-46800 469 46801-46900 470 46901-47000 471 47001-47100 472 47101-47200 473 47201-47300 474 47301-47400 475 47401-47500 476 47501-47600 477 47601-47700 478 47701-47800 479 47801-47852
  Copyright terms: Public domain < Previous  Next >