Detailed syntax breakdown of Definition df-xdiv
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cxdiv 32899 | . 2
class 
/𝑒 | 
| 2 |  | vx | . . 3
setvar 𝑥 | 
| 3 |  | vy | . . 3
setvar 𝑦 | 
| 4 |  | cxr 11294 | . . 3
class
ℝ* | 
| 5 |  | cr 11154 | . . . 4
class
ℝ | 
| 6 |  | cc0 11155 | . . . . 5
class
0 | 
| 7 | 6 | csn 4626 | . . . 4
class
{0} | 
| 8 | 5, 7 | cdif 3948 | . . 3
class (ℝ
∖ {0}) | 
| 9 | 3 | cv 1539 | . . . . . 6
class 𝑦 | 
| 10 |  | vz | . . . . . . 7
setvar 𝑧 | 
| 11 | 10 | cv 1539 | . . . . . 6
class 𝑧 | 
| 12 |  | cxmu 13153 | . . . . . 6
class 
·e | 
| 13 | 9, 11, 12 | co 7431 | . . . . 5
class (𝑦 ·e 𝑧) | 
| 14 | 2 | cv 1539 | . . . . 5
class 𝑥 | 
| 15 | 13, 14 | wceq 1540 | . . . 4
wff (𝑦 ·e 𝑧) = 𝑥 | 
| 16 | 15, 10, 4 | crio 7387 | . . 3
class
(℩𝑧
∈ ℝ* (𝑦 ·e 𝑧) = 𝑥) | 
| 17 | 2, 3, 4, 8, 16 | cmpo 7433 | . 2
class (𝑥 ∈ ℝ*,
𝑦 ∈ (ℝ ∖
{0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) | 
| 18 | 1, 17 | wceq 1540 | 1
wff 
/𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦
(℩𝑧 ∈
ℝ* (𝑦
·e 𝑧) =
𝑥)) |