Detailed syntax breakdown of Definition df-xdiv
Step | Hyp | Ref
| Expression |
1 | | cxdiv 31191 |
. 2
class
/𝑒 |
2 | | vx |
. . 3
setvar 𝑥 |
3 | | vy |
. . 3
setvar 𝑦 |
4 | | cxr 11008 |
. . 3
class
ℝ* |
5 | | cr 10870 |
. . . 4
class
ℝ |
6 | | cc0 10871 |
. . . . 5
class
0 |
7 | 6 | csn 4561 |
. . . 4
class
{0} |
8 | 5, 7 | cdif 3884 |
. . 3
class (ℝ
∖ {0}) |
9 | 3 | cv 1538 |
. . . . . 6
class 𝑦 |
10 | | vz |
. . . . . . 7
setvar 𝑧 |
11 | 10 | cv 1538 |
. . . . . 6
class 𝑧 |
12 | | cxmu 12847 |
. . . . . 6
class
·e |
13 | 9, 11, 12 | co 7275 |
. . . . 5
class (𝑦 ·e 𝑧) |
14 | 2 | cv 1538 |
. . . . 5
class 𝑥 |
15 | 13, 14 | wceq 1539 |
. . . 4
wff (𝑦 ·e 𝑧) = 𝑥 |
16 | 15, 10, 4 | crio 7231 |
. . 3
class
(℩𝑧
∈ ℝ* (𝑦 ·e 𝑧) = 𝑥) |
17 | 2, 3, 4, 8, 16 | cmpo 7277 |
. 2
class (𝑥 ∈ ℝ*,
𝑦 ∈ (ℝ ∖
{0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) |
18 | 1, 17 | wceq 1539 |
1
wff
/𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦
(℩𝑧 ∈
ℝ* (𝑦
·e 𝑧) =
𝑥)) |