Detailed syntax breakdown of Definition df-xdiv
| Step | Hyp | Ref
| Expression |
| 1 | | cxdiv 32891 |
. 2
class
/𝑒 |
| 2 | | vx |
. . 3
setvar 𝑥 |
| 3 | | vy |
. . 3
setvar 𝑦 |
| 4 | | cxr 11268 |
. . 3
class
ℝ* |
| 5 | | cr 11128 |
. . . 4
class
ℝ |
| 6 | | cc0 11129 |
. . . . 5
class
0 |
| 7 | 6 | csn 4601 |
. . . 4
class
{0} |
| 8 | 5, 7 | cdif 3923 |
. . 3
class (ℝ
∖ {0}) |
| 9 | 3 | cv 1539 |
. . . . . 6
class 𝑦 |
| 10 | | vz |
. . . . . . 7
setvar 𝑧 |
| 11 | 10 | cv 1539 |
. . . . . 6
class 𝑧 |
| 12 | | cxmu 13127 |
. . . . . 6
class
·e |
| 13 | 9, 11, 12 | co 7405 |
. . . . 5
class (𝑦 ·e 𝑧) |
| 14 | 2 | cv 1539 |
. . . . 5
class 𝑥 |
| 15 | 13, 14 | wceq 1540 |
. . . 4
wff (𝑦 ·e 𝑧) = 𝑥 |
| 16 | 15, 10, 4 | crio 7361 |
. . 3
class
(℩𝑧
∈ ℝ* (𝑦 ·e 𝑧) = 𝑥) |
| 17 | 2, 3, 4, 8, 16 | cmpo 7407 |
. 2
class (𝑥 ∈ ℝ*,
𝑦 ∈ (ℝ ∖
{0}) ↦ (℩𝑧 ∈ ℝ* (𝑦 ·e 𝑧) = 𝑥)) |
| 18 | 1, 17 | wceq 1540 |
1
wff
/𝑒 = (𝑥
∈ ℝ*, 𝑦 ∈ (ℝ ∖ {0}) ↦
(℩𝑧 ∈
ℝ* (𝑦
·e 𝑧) =
𝑥)) |