Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivval Structured version   Visualization version   GIF version

Theorem xdivval 30193
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xdivval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xdivval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4550 . . 3 (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 simpl 476 . . . . . 6 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → 𝑦 = 𝐴)
32eqeq2d 2788 . . . . 5 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴))
43riotabidva 6901 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴))
5 simpl 476 . . . . . . 7 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → 𝑧 = 𝐵)
65oveq1d 6939 . . . . . 6 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥))
76eqeq1d 2780 . . . . 5 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴))
87riotabidva 6901 . . . 4 (𝑧 = 𝐵 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
9 df-xdiv 30192 . . . 4 /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦))
10 riotaex 6889 . . . 4 (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V
114, 8, 9, 10ovmpt2 7075 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
121, 11sylan2br 588 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
13123impb 1104 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386  w3a 1071   = wceq 1601  wcel 2107  wne 2969  cdif 3789  {csn 4398  crio 6884  (class class class)co 6924  cr 10273  0cc0 10274  *cxr 10412   ·e cxmu 12260   /𝑒 cxdiv 30191
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pr 5140
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4674  df-br 4889  df-opab 4951  df-id 5263  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-iota 6101  df-fun 6139  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-xdiv 30192
This theorem is referenced by:  xdivcld  30197  xdivmul  30199  rexdiv  30200  xdivpnfrp  30207
  Copyright terms: Public domain W3C validator