![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivval | Structured version Visualization version GIF version |
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
Ref | Expression |
---|---|
xdivval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4507 | . . 3 ⊢ (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
2 | simpl 475 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → 𝑦 = 𝐴) | |
3 | 2 | eqeq2d 2810 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴)) |
4 | 3 | riotabidva 6856 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴)) |
5 | simpl 475 | . . . . . . 7 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → 𝑧 = 𝐵) | |
6 | 5 | oveq1d 6894 | . . . . . 6 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥)) |
7 | 6 | eqeq1d 2802 | . . . . 5 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴)) |
8 | 7 | riotabidva 6856 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
9 | df-xdiv 30141 | . . . 4 ⊢ /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦)) | |
10 | riotaex 6844 | . . . 4 ⊢ (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V | |
11 | 4, 8, 9, 10 | ovmpt2 7031 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
12 | 1, 11 | sylan2br 589 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
13 | 12 | 3impb 1144 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 ∖ cdif 3767 {csn 4369 ℩crio 6839 (class class class)co 6879 ℝcr 10224 0cc0 10225 ℝ*cxr 10363 ·e cxmu 12191 /𝑒 cxdiv 30140 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-rab 3099 df-v 3388 df-sbc 3635 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-br 4845 df-opab 4907 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-iota 6065 df-fun 6104 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-xdiv 30141 |
This theorem is referenced by: xdivcld 30146 xdivmul 30148 rexdiv 30149 xdivpnfrp 30156 |
Copyright terms: Public domain | W3C validator |