| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivval | Structured version Visualization version GIF version | ||
| Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
| Ref | Expression |
|---|---|
| xdivval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsn 4738 | . . 3 ⊢ (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
| 2 | simpl 482 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → 𝑦 = 𝐴) | |
| 3 | 2 | eqeq2d 2742 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴)) |
| 4 | 3 | riotabidva 7322 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴)) |
| 5 | simpl 482 | . . . . . . 7 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → 𝑧 = 𝐵) | |
| 6 | 5 | oveq1d 7361 | . . . . . 6 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥)) |
| 7 | 6 | eqeq1d 2733 | . . . . 5 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴)) |
| 8 | 7 | riotabidva 7322 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
| 9 | df-xdiv 32896 | . . . 4 ⊢ /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦)) | |
| 10 | riotaex 7307 | . . . 4 ⊢ (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V | |
| 11 | 4, 8, 9, 10 | ovmpo 7506 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
| 12 | 1, 11 | sylan2br 595 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
| 13 | 12 | 3impb 1114 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 ℩crio 7302 (class class class)co 7346 ℝcr 11005 0cc0 11006 ℝ*cxr 11145 ·e cxmu 13010 /𝑒 cxdiv 32895 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-xdiv 32896 |
| This theorem is referenced by: xdivcld 32901 xdivmul 32903 rexdiv 32904 xdivpnfrp 32911 |
| Copyright terms: Public domain | W3C validator |