Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivval Structured version   Visualization version   GIF version

Theorem xdivval 30781
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xdivval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xdivval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4685 . . 3 (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 simpl 486 . . . . . 6 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → 𝑦 = 𝐴)
32eqeq2d 2750 . . . . 5 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴))
43riotabidva 7160 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴))
5 simpl 486 . . . . . . 7 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → 𝑧 = 𝐵)
65oveq1d 7198 . . . . . 6 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥))
76eqeq1d 2741 . . . . 5 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴))
87riotabidva 7160 . . . 4 (𝑧 = 𝐵 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
9 df-xdiv 30780 . . . 4 /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦))
10 riotaex 7144 . . . 4 (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V
114, 8, 9, 10ovmpo 7338 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
121, 11sylan2br 598 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
13123impb 1116 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  wne 2935  cdif 3850  {csn 4526  crio 7139  (class class class)co 7183  cr 10627  0cc0 10628  *cxr 10765   ·e cxmu 12602   /𝑒 cxdiv 30779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-v 3402  df-sbc 3686  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-br 5041  df-opab 5103  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-iota 6308  df-fun 6352  df-fv 6358  df-riota 7140  df-ov 7186  df-oprab 7187  df-mpo 7188  df-xdiv 30780
This theorem is referenced by:  xdivcld  30785  xdivmul  30787  rexdiv  30788  xdivpnfrp  30795
  Copyright terms: Public domain W3C validator