Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > xdivval | Structured version Visualization version GIF version |
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.) |
Ref | Expression |
---|---|
xdivval | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsn 4685 | . . 3 ⊢ (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) | |
2 | simpl 486 | . . . . . 6 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → 𝑦 = 𝐴) | |
3 | 2 | eqeq2d 2750 | . . . . 5 ⊢ ((𝑦 = 𝐴 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴)) |
4 | 3 | riotabidva 7160 | . . . 4 ⊢ (𝑦 = 𝐴 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴)) |
5 | simpl 486 | . . . . . . 7 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → 𝑧 = 𝐵) | |
6 | 5 | oveq1d 7198 | . . . . . 6 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥)) |
7 | 6 | eqeq1d 2741 | . . . . 5 ⊢ ((𝑧 = 𝐵 ∧ 𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴)) |
8 | 7 | riotabidva 7160 | . . . 4 ⊢ (𝑧 = 𝐵 → (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
9 | df-xdiv 30780 | . . . 4 ⊢ /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (℩𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦)) | |
10 | riotaex 7144 | . . . 4 ⊢ (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V | |
11 | 4, 8, 9, 10 | ovmpo 7338 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
12 | 1, 11 | sylan2br 598 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
13 | 12 | 3impb 1116 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (℩𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ≠ wne 2935 ∖ cdif 3850 {csn 4526 ℩crio 7139 (class class class)co 7183 ℝcr 10627 0cc0 10628 ℝ*cxr 10765 ·e cxmu 12602 /𝑒 cxdiv 30779 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2711 ax-sep 5177 ax-nul 5184 ax-pr 5306 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2541 df-eu 2571 df-clab 2718 df-cleq 2731 df-clel 2812 df-nfc 2882 df-ne 2936 df-ral 3059 df-rex 3060 df-v 3402 df-sbc 3686 df-dif 3856 df-un 3858 df-in 3860 df-ss 3870 df-nul 4222 df-if 4425 df-sn 4527 df-pr 4529 df-op 4533 df-uni 4807 df-br 5041 df-opab 5103 df-id 5439 df-xp 5541 df-rel 5542 df-cnv 5543 df-co 5544 df-dm 5545 df-iota 6308 df-fun 6352 df-fv 6358 df-riota 7140 df-ov 7186 df-oprab 7187 df-mpo 7188 df-xdiv 30780 |
This theorem is referenced by: xdivcld 30785 xdivmul 30787 rexdiv 30788 xdivpnfrp 30795 |
Copyright terms: Public domain | W3C validator |