HomeHome Metamath Proof Explorer
Theorem List (p. 322 of 464)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-29181)
  Hilbert Space Explorer  Hilbert Space Explorer
(29182-30704)
  Users' Mathboxes  Users' Mathboxes
(30705-46395)
 

Theorem List for Metamath Proof Explorer - 32101-32200   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Definitiondf-dde 32101 Define the Dirac delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
δ = (𝑎 ∈ 𝒫 ℝ ↦ if(0 ∈ 𝑎, 1, 0))
 
Theoremddeval1 32102 Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
((𝐴 ⊆ ℝ ∧ 0 ∈ 𝐴) → (δ‘𝐴) = 1)
 
Theoremddeval0 32103 Value of the delta measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
((𝐴 ⊆ ℝ ∧ ¬ 0 ∈ 𝐴) → (δ‘𝐴) = 0)
 
Theoremddemeas 32104 The Dirac delta measure is a measure. (Contributed by Thierry Arnoux, 14-Sep-2018.)
δ ∈ (measures‘𝒫 ℝ)
 
20.3.17.10  The 'almost everywhere' relation
 
Syntaxcae 32105 Extend class notation to include the 'almost everywhere' relation.
class a.e.
 
Syntaxcfae 32106 Extend class notation to include the 'almost everywhere' builder.
class ~ a.e.
 
Definitiondf-ae 32107* Define 'almost everywhere' with regard to a measure 𝑀. A property holds almost everywhere if the measure of the set where it does not hold has measure zero. (Contributed by Thierry Arnoux, 20-Oct-2017.)
a.e. = {⟨𝑎, 𝑚⟩ ∣ (𝑚‘( dom 𝑚𝑎)) = 0}
 
Theoremrelae 32108 'almost everywhere' is a relation. (Contributed by Thierry Arnoux, 20-Oct-2017.)
Rel a.e.
 
Theorembrae 32109 'almost everywhere' relation for a measure and a measurable set 𝐴. (Contributed by Thierry Arnoux, 20-Oct-2017.)
((𝑀 ran measures ∧ 𝐴 ∈ dom 𝑀) → (𝐴a.e.𝑀 ↔ (𝑀‘( dom 𝑀𝐴)) = 0))
 
Theorembraew 32110* 'almost everywhere' relation for a measure 𝑀 and a property 𝜑 (Contributed by Thierry Arnoux, 20-Oct-2017.)
dom 𝑀 = 𝑂       (𝑀 ran measures → ({𝑥𝑂𝜑}a.e.𝑀 ↔ (𝑀‘{𝑥𝑂 ∣ ¬ 𝜑}) = 0))
 
Theoremtruae 32111* A truth holds almost everywhere. (Contributed by Thierry Arnoux, 20-Oct-2017.)
dom 𝑀 = 𝑂    &   (𝜑𝑀 ran measures)    &   (𝜑𝜓)       (𝜑 → {𝑥𝑂𝜓}a.e.𝑀)
 
Theoremaean 32112* A conjunction holds almost everywhere if and only if both its terms do. (Contributed by Thierry Arnoux, 20-Oct-2017.)
dom 𝑀 = 𝑂       ((𝑀 ran measures ∧ {𝑥𝑂 ∣ ¬ 𝜑} ∈ dom 𝑀 ∧ {𝑥𝑂 ∣ ¬ 𝜓} ∈ dom 𝑀) → ({𝑥𝑂 ∣ (𝜑𝜓)}a.e.𝑀 ↔ ({𝑥𝑂𝜑}a.e.𝑀 ∧ {𝑥𝑂𝜓}a.e.𝑀)))
 
Definitiondf-fae 32113* Define a builder for an 'almost everywhere' relation between functions, from relations between function values. In this definition, the range of 𝑓 and 𝑔 is enforced in order to ensure the resulting relation is a set. (Contributed by Thierry Arnoux, 22-Oct-2017.)
~ a.e. = (𝑟 ∈ V, 𝑚 ran measures ↦ {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑟m dom 𝑚) ∧ 𝑔 ∈ (dom 𝑟m dom 𝑚)) ∧ {𝑥 dom 𝑚 ∣ (𝑓𝑥)𝑟(𝑔𝑥)}a.e.𝑚)})
 
Theoremfaeval 32114* Value of the 'almost everywhere' relation for a given relation and measure. (Contributed by Thierry Arnoux, 22-Oct-2017.)
((𝑅 ∈ V ∧ 𝑀 ran measures) → (𝑅~ a.e.𝑀) = {⟨𝑓, 𝑔⟩ ∣ ((𝑓 ∈ (dom 𝑅m dom 𝑀) ∧ 𝑔 ∈ (dom 𝑅m dom 𝑀)) ∧ {𝑥 dom 𝑀 ∣ (𝑓𝑥)𝑅(𝑔𝑥)}a.e.𝑀)})
 
Theoremrelfae 32115 The 'almost everywhere' builder for functions produces relations. (Contributed by Thierry Arnoux, 22-Oct-2017.)
((𝑅 ∈ V ∧ 𝑀 ran measures) → Rel (𝑅~ a.e.𝑀))
 
Theorembrfae 32116* 'almost everywhere' relation for two functions 𝐹 and 𝐺 with regard to the measure 𝑀. (Contributed by Thierry Arnoux, 22-Oct-2017.)
dom 𝑅 = 𝐷    &   (𝜑𝑅 ∈ V)    &   (𝜑𝑀 ran measures)    &   (𝜑𝐹 ∈ (𝐷m dom 𝑀))    &   (𝜑𝐺 ∈ (𝐷m dom 𝑀))       (𝜑 → (𝐹(𝑅~ a.e.𝑀)𝐺 ↔ {𝑥 dom 𝑀 ∣ (𝐹𝑥)𝑅(𝐺𝑥)}a.e.𝑀))
 
20.3.17.11  Measurable functions
 
Syntaxcmbfm 32117 Extend class notation with the measurable functions builder.
class MblFnM
 
Definitiondf-mbfm 32118* Define the measurable function builder, which generates the set of measurable functions from a measurable space to another one. Here, the measurable spaces are given using their sigma-algebras 𝑠 and 𝑡, and the spaces themselves are recovered by 𝑠 and 𝑡.

Note the similarities between the definition of measurable functions in measure theory, and of continuous functions in topology.

This is the definition for the generic measure theory. For the specific case of functions from to , see df-mbf 24688. (Contributed by Thierry Arnoux, 23-Jan-2017.)

MblFnM = (𝑠 ran sigAlgebra, 𝑡 ran sigAlgebra ↦ {𝑓 ∈ ( 𝑡m 𝑠) ∣ ∀𝑥𝑡 (𝑓𝑥) ∈ 𝑠})
 
Theoremismbfm 32119* The predicate "𝐹 is a measurable function from the measurable space 𝑆 to the measurable space 𝑇". Cf. ismbf 24697. (Contributed by Thierry Arnoux, 23-Jan-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)       (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹 ∈ ( 𝑇m 𝑆) ∧ ∀𝑥𝑇 (𝐹𝑥) ∈ 𝑆)))
 
Theoremelunirnmbfm 32120* The property of being a measurable function. (Contributed by Thierry Arnoux, 23-Jan-2017.)
(𝐹 ran MblFnM ↔ ∃𝑠 ran sigAlgebra∃𝑡 ran sigAlgebra(𝐹 ∈ ( 𝑡m 𝑠) ∧ ∀𝑥𝑡 (𝐹𝑥) ∈ 𝑠))
 
Theoremmbfmfun 32121 A measurable function is a function. (Contributed by Thierry Arnoux, 24-Jan-2017.)
(𝜑𝐹 ran MblFnM)       (𝜑 → Fun 𝐹)
 
Theoremmbfmf 32122 A measurable function as a function with domain and codomain. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 ∈ (𝑆MblFnM𝑇))       (𝜑𝐹: 𝑆 𝑇)
 
Theoremisanmbfm 32123 The predicate to be a measurable function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 ∈ (𝑆MblFnM𝑇))       (𝜑𝐹 ran MblFnM)
 
Theoremmbfmcnvima 32124 The preimage by a measurable function is a measurable set. (Contributed by Thierry Arnoux, 23-Jan-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 ∈ (𝑆MblFnM𝑇))    &   (𝜑𝐴𝑇)       (𝜑 → (𝐹𝐴) ∈ 𝑆)
 
Theoremmbfmbfm 32125 A measurable function to a Borel Set is measurable. (Contributed by Thierry Arnoux, 24-Jan-2017.)
(𝜑𝑀 ran measures)    &   (𝜑𝐽 ∈ Top)    &   (𝜑𝐹 ∈ (dom 𝑀MblFnM(sigaGen‘𝐽)))       (𝜑𝐹 ran MblFnM)
 
Theoremmbfmcst 32126* A constant function is measurable. Cf. mbfconst 24702. (Contributed by Thierry Arnoux, 26-Jan-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 = (𝑥 𝑆𝐴))    &   (𝜑𝐴 𝑇)       (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
 
Theorem1stmbfm 32127 The first projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)       (𝜑 → (1st ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑆))
 
Theorem2ndmbfm 32128 The second projection map is measurable with regard to the product sigma-algebra. (Contributed by Thierry Arnoux, 3-Jun-2017.)
(𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)       (𝜑 → (2nd ↾ ( 𝑆 × 𝑇)) ∈ ((𝑆 ×s 𝑇)MblFnM𝑇))
 
Theoremimambfm 32129* If the sigma-algebra in the range of a given function is generated by a collection of basic sets 𝐾, then to check the measurability of that function, we need only consider inverse images of basic sets 𝑎. (Contributed by Thierry Arnoux, 4-Jun-2017.)
(𝜑𝐾 ∈ V)    &   (𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 = (sigaGen‘𝐾))       (𝜑 → (𝐹 ∈ (𝑆MblFnM𝑇) ↔ (𝐹: 𝑆 𝑇 ∧ ∀𝑎𝐾 (𝐹𝑎) ∈ 𝑆)))
 
Theoremcnmbfm 32130 A continuous function is measurable with respect to the Borel Algebra of its domain and range. (Contributed by Thierry Arnoux, 3-Jun-2017.)
(𝜑𝐹 ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑆 = (sigaGen‘𝐽))    &   (𝜑𝑇 = (sigaGen‘𝐾))       (𝜑𝐹 ∈ (𝑆MblFnM𝑇))
 
Theoremmbfmco 32131 The composition of two measurable functions is measurable. See cnmpt11 22722. (Contributed by Thierry Arnoux, 4-Jun-2017.)
(𝜑𝑅 ran sigAlgebra)    &   (𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 ∈ (𝑅MblFnM𝑆))    &   (𝜑𝐺 ∈ (𝑆MblFnM𝑇))       (𝜑 → (𝐺𝐹) ∈ (𝑅MblFnM𝑇))
 
Theoremmbfmco2 32132* The pair building of two measurable functions is measurable. ( cf. cnmpt1t 22724). (Contributed by Thierry Arnoux, 6-Jun-2017.)
(𝜑𝑅 ran sigAlgebra)    &   (𝜑𝑆 ran sigAlgebra)    &   (𝜑𝑇 ran sigAlgebra)    &   (𝜑𝐹 ∈ (𝑅MblFnM𝑆))    &   (𝜑𝐺 ∈ (𝑅MblFnM𝑇))    &   𝐻 = (𝑥 𝑅 ↦ ⟨(𝐹𝑥), (𝐺𝑥)⟩)       (𝜑𝐻 ∈ (𝑅MblFnM(𝑆 ×s 𝑇)))
 
Theoremmbfmvolf 32133 Measurable functions with respect to the Lebesgue measure are real-valued functions on the real numbers. (Contributed by Thierry Arnoux, 27-Mar-2017.)
(𝐹 ∈ (dom volMblFnM𝔅) → 𝐹:ℝ⟶ℝ)
 
Theoremelmbfmvol2 32134 Measurable functions with respect to the Lebesgue measure. We only have the inclusion, since MblFn includes complex-valued functions. (Contributed by Thierry Arnoux, 26-Jan-2017.)
(𝐹 ∈ (dom volMblFnM𝔅) → 𝐹 ∈ MblFn)
 
Theoremmbfmcnt 32135 All functions are measurable with respect to the counting measure. (Contributed by Thierry Arnoux, 24-Jan-2017.)
(𝑂𝑉 → (𝒫 𝑂MblFnM𝔅) = (ℝ ↑m 𝑂))
 
20.3.17.12  Borel Algebra on ` ( RR X. RR ) `
 
Theorembr2base 32136* The base set for the generator of the Borel sigma-algebra on (ℝ × ℝ) is indeed (ℝ × ℝ). (Contributed by Thierry Arnoux, 22-Sep-2017.)
ran (𝑥 ∈ 𝔅, 𝑦 ∈ 𝔅 ↦ (𝑥 × 𝑦)) = (ℝ × ℝ)
 
Theoremdya2ub 32137 An upper bound for a dyadic number. (Contributed by Thierry Arnoux, 19-Sep-2017.)
(𝑅 ∈ ℝ+ → (1 / (2↑(⌊‘(1 − (2 logb 𝑅))))) < 𝑅)
 
Theoremsxbrsigalem0 32138* The closed half-spaces of (ℝ × ℝ) cover (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))) = (ℝ × ℝ)
 
Theoremsxbrsigalem3 32139* The sigma-algebra generated by the closed half-spaces of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed sets of (ℝ × ℝ). (Contributed by Thierry Arnoux, 11-Oct-2017.)
𝐽 = (topGen‘ran (,))       (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞))))) ⊆ (sigaGen‘(Clsd‘(𝐽 ×t 𝐽)))
 
Theoremdya2iocival 32140* The function 𝐼 returns closed-below open-above dyadic rational intervals covering the real line. This is the same construction as in dyadmbl 24669. (Contributed by Thierry Arnoux, 24-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))       ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) = ((𝑋 / (2↑𝑁))[,)((𝑋 + 1) / (2↑𝑁))))
 
Theoremdya2iocress 32141* Dyadic intervals are subsets of . (Contributed by Thierry Arnoux, 18-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))       ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ⊆ ℝ)
 
Theoremdya2iocbrsiga 32142* Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))       ((𝑁 ∈ ℤ ∧ 𝑋 ∈ ℤ) → (𝑋𝐼𝑁) ∈ 𝔅)
 
Theoremdya2icobrsiga 32143* Dyadic intervals are Borel sets of . (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 13-Oct-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))       ran 𝐼 ⊆ 𝔅
 
Theoremdya2icoseg 32144* For any point and any closed-below, open-above interval of centered on that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 19-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑁 = (⌊‘(1 − (2 logb 𝐷)))       ((𝑋 ∈ ℝ ∧ 𝐷 ∈ ℝ+) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏 ⊆ ((𝑋𝐷)(,)(𝑋 + 𝐷))))
 
Theoremdya2icoseg2 32145* For any point and any open interval of containing that point, there is a closed-below open-above dyadic rational interval which contains that point and is included in the original interval. (Contributed by Thierry Arnoux, 12-Oct-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))       ((𝑋 ∈ ℝ ∧ 𝐸 ∈ ran (,) ∧ 𝑋𝐸) → ∃𝑏 ∈ ran 𝐼(𝑋𝑏𝑏𝐸))
 
Theoremdya2iocrfn 32146* The function returning dyadic square covering for a given size has domain (ran 𝐼 × ran 𝐼). (Contributed by Thierry Arnoux, 19-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       𝑅 Fn (ran 𝐼 × ran 𝐼)
 
Theoremdya2iocct 32147* The dyadic rectangle set is countable. (Contributed by Thierry Arnoux, 18-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       ran 𝑅 ≼ ω
 
Theoremdya2iocnrect 32148* For any point of an open rectangle in (ℝ × ℝ), there is a closed-below open-above dyadic rational square which contains that point and is included in the rectangle. (Contributed by Thierry Arnoux, 12-Oct-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))    &   𝐵 = ran (𝑒 ∈ ran (,), 𝑓 ∈ ran (,) ↦ (𝑒 × 𝑓))       ((𝑋 ∈ (ℝ × ℝ) ∧ 𝐴𝐵𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
 
Theoremdya2iocnei 32149* For any point of an open set of the usual topology on (ℝ × ℝ) there is a closed-below open-above dyadic rational square which contains that point and is entirely in the open set. (Contributed by Thierry Arnoux, 21-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       ((𝐴 ∈ (𝐽 ×t 𝐽) ∧ 𝑋𝐴) → ∃𝑏 ∈ ran 𝑅(𝑋𝑏𝑏𝐴))
 
Theoremdya2iocuni 32150* Every open set of (ℝ × ℝ) is a union of closed-below open-above dyadic rational rectangular subsets of (ℝ × ℝ). This union must be a countable union by dya2iocct 32147. (Contributed by Thierry Arnoux, 18-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       (𝐴 ∈ (𝐽 ×t 𝐽) → ∃𝑐 ∈ 𝒫 ran 𝑅 𝑐 = 𝐴)
 
Theoremdya2iocucvr 32151* The dyadic rectangular set collection covers (ℝ × ℝ). (Contributed by Thierry Arnoux, 18-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))        ran 𝑅 = (ℝ × ℝ)
 
Theoremsxbrsigalem1 32152* The Borel algebra on (ℝ × ℝ) is a subset of the sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). This is a step of the proof of Proposition 1.1.5 of [Cohn] p. 4. (Contributed by Thierry Arnoux, 17-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (sigaGen‘ran 𝑅)
 
Theoremsxbrsigalem2 32153* The sigma-algebra generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ) is a subset of the sigma-algebra generated by the closed half-spaces of (ℝ × ℝ). The proof goes by noting the fact that the dyadic rectangles are intersections of a 'vertical band' and an 'horizontal band', which themselves are differences of closed half-spaces. (Contributed by Thierry Arnoux, 17-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       (sigaGen‘ran 𝑅) ⊆ (sigaGen‘(ran (𝑒 ∈ ℝ ↦ ((𝑒[,)+∞) × ℝ)) ∪ ran (𝑓 ∈ ℝ ↦ (ℝ × (𝑓[,)+∞)))))
 
Theoremsxbrsigalem4 32154* The Borel algebra on (ℝ × ℝ) is generated by the dyadic closed-below, open-above rectangular subsets of (ℝ × ℝ). Proposition 1.1.5 of [Cohn] p. 4 . Note that the interval used in this formalization are closed-below, open-above instead of open-below, closed-above in the proof as they are ultimately generated by the floor function. (Contributed by Thierry Arnoux, 21-Sep-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       (sigaGen‘(𝐽 ×t 𝐽)) = (sigaGen‘ran 𝑅)
 
Theoremsxbrsigalem5 32155* First direction for sxbrsiga 32157. (Contributed by Thierry Arnoux, 22-Sep-2017.) (Revised by Thierry Arnoux, 11-Oct-2017.)
𝐽 = (topGen‘ran (,))    &   𝐼 = (𝑥 ∈ ℤ, 𝑛 ∈ ℤ ↦ ((𝑥 / (2↑𝑛))[,)((𝑥 + 1) / (2↑𝑛))))    &   𝑅 = (𝑢 ∈ ran 𝐼, 𝑣 ∈ ran 𝐼 ↦ (𝑢 × 𝑣))       (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
 
Theoremsxbrsigalem6 32156 First direction for sxbrsiga 32157, same as sxbrsigalem6, dealing with the antecedents. (Contributed by Thierry Arnoux, 10-Oct-2017.)
𝐽 = (topGen‘ran (,))       (sigaGen‘(𝐽 ×t 𝐽)) ⊆ (𝔅 ×s 𝔅)
 
Theoremsxbrsiga 32157 The product sigma-algebra (𝔅 ×s 𝔅) is the Borel algebra on (ℝ × ℝ) See example 5.1.1 of [Cohn] p. 143 . (Contributed by Thierry Arnoux, 10-Oct-2017.)
𝐽 = (topGen‘ran (,))       (𝔅 ×s 𝔅) = (sigaGen‘(𝐽 ×t 𝐽))
 
20.3.17.13  Caratheodory's extension theorem

In this section, we define a function toOMeas which constructs an outer measure, from a pre-measure 𝑅. An explicit generic definition of an outer measure is not given. It consists of the three following statements: - the outer measure of an empty set is zero (oms0 32164) - it is monotone (omsmon 32165) - it is countably sub-additive (omssubadd 32167) See Definition 1.11.1 of [Bogachev] p. 41.

 
Syntaxcoms 32158 Class declaration for the outer measure construction function.
class toOMeas
 
Definitiondf-oms 32159* Define a function constructing an outer measure. See omsval 32160 for its value. Definition 1.5 of [Bogachev] p. 16. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
toOMeas = (𝑟 ∈ V ↦ (𝑎 ∈ 𝒫 dom 𝑟 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑟 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑟𝑦)), (0[,]+∞), < )))
 
Theoremomsval 32160* Value of the function mapping a content function to the corresponding outer measure. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
(𝑅 ∈ V → (toOMeas‘𝑅) = (𝑎 ∈ 𝒫 dom 𝑅 ↦ inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝑎 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < )))
 
Theoremomsfval 32161* Value of the outer measure evaluated for a given set 𝐴. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 𝑄) → ((toOMeas‘𝑅)‘𝐴) = inf(ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)), (0[,]+∞), < ))
 
Theoremomscl 32162* A closure lemma for the constructed outer measure. (Contributed by Thierry Arnoux, 17-Sep-2019.)
((𝑄𝑉𝑅:𝑄⟶(0[,]+∞) ∧ 𝐴 ∈ 𝒫 dom 𝑅) → ran (𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)} ↦ Σ*𝑦𝑥(𝑅𝑦)) ⊆ (0[,]+∞))
 
Theoremomsf 32163 A constructed outer measure is a function. (Contributed by Thierry Arnoux, 17-Sep-2019.) (Revised by AV, 4-Oct-2020.)
((𝑄𝑉𝑅:𝑄⟶(0[,]+∞)) → (toOMeas‘𝑅):𝒫 dom 𝑅⟶(0[,]+∞))
 
Theoremoms0 32164 A constructed outer measure evaluates to zero for the empty set. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
𝑀 = (toOMeas‘𝑅)    &   (𝜑𝑄𝑉)    &   (𝜑𝑅:𝑄⟶(0[,]+∞))    &   (𝜑 → ∅ ∈ dom 𝑅)    &   (𝜑 → (𝑅‘∅) = 0)       (𝜑 → (𝑀‘∅) = 0)
 
Theoremomsmon 32165 A constructed outer measure is monotone. Note in Example 1.5.2 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 15-Sep-2019.) (Revised by AV, 4-Oct-2020.)
𝑀 = (toOMeas‘𝑅)    &   (𝜑𝑄𝑉)    &   (𝜑𝑅:𝑄⟶(0[,]+∞))    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 𝑄)       (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
 
Theoremomssubaddlem 32166* For any small margin 𝐸, we can find a covering approaching the outer measure of a set 𝐴 by that margin. (Contributed by Thierry Arnoux, 18-Sep-2019.) (Revised by AV, 4-Oct-2020.)
𝑀 = (toOMeas‘𝑅)    &   (𝜑𝑄𝑉)    &   (𝜑𝑅:𝑄⟶(0[,]+∞))    &   (𝜑𝐴 𝑄)    &   (𝜑 → (𝑀𝐴) ∈ ℝ)    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑥 ∈ {𝑧 ∈ 𝒫 dom 𝑅 ∣ (𝐴 𝑧𝑧 ≼ ω)}Σ*𝑤𝑥(𝑅𝑤) < ((𝑀𝐴) + 𝐸))
 
Theoremomssubadd 32167* A constructed outer measure is countably sub-additive. Lemma 1.5.4 of [Bogachev] p. 17. (Contributed by Thierry Arnoux, 21-Sep-2019.) (Revised by AV, 4-Oct-2020.)
𝑀 = (toOMeas‘𝑅)    &   (𝜑𝑄𝑉)    &   (𝜑𝑅:𝑄⟶(0[,]+∞))    &   ((𝜑𝑦𝑋) → 𝐴 𝑄)    &   (𝜑𝑋 ≼ ω)       (𝜑 → (𝑀 𝑦𝑋 𝐴) ≤ Σ*𝑦𝑋(𝑀𝐴))
 
Syntaxccarsg 32168 Class declaration for the Caratheodory sigma-Algebra construction.
class toCaraSiga
 
Definitiondf-carsg 32169* Define a function constructing Caratheodory measurable sets for a given outer measure. See carsgval 32170 for its value. Definition 1.11.2 of [Bogachev] p. 41. (Contributed by Thierry Arnoux, 17-May-2020.)
toCaraSiga = (𝑚 ∈ V ↦ {𝑎 ∈ 𝒫 dom 𝑚 ∣ ∀𝑒 ∈ 𝒫 dom 𝑚((𝑚‘(𝑒𝑎)) +𝑒 (𝑚‘(𝑒𝑎))) = (𝑚𝑒)})
 
Theoremcarsgval 32170* Value of the Caratheodory sigma-Algebra construction function. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))       (𝜑 → (toCaraSiga‘𝑀) = {𝑎 ∈ 𝒫 𝑂 ∣ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝑎)) +𝑒 (𝑀‘(𝑒𝑎))) = (𝑀𝑒)})
 
Theoremcarsgcl 32171 Closure of the Caratheodory measurable sets. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))       (𝜑 → (toCaraSiga‘𝑀) ⊆ 𝒫 𝑂)
 
Theoremelcarsg 32172* Property of being a Caratheodory measurable set. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))       (𝜑 → (𝐴 ∈ (toCaraSiga‘𝑀) ↔ (𝐴𝑂 ∧ ∀𝑒 ∈ 𝒫 𝑂((𝑀‘(𝑒𝐴)) +𝑒 (𝑀‘(𝑒𝐴))) = (𝑀𝑒))))
 
Theorembaselcarsg 32173 The universe set, 𝑂, is Caratheodory measurable. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)       (𝜑𝑂 ∈ (toCaraSiga‘𝑀))
 
Theorem0elcarsg 32174 The empty set is Caratheodory measurable. (Contributed by Thierry Arnoux, 30-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)       (𝜑 → ∅ ∈ (toCaraSiga‘𝑀))
 
Theoremcarsguni 32175 The union of all Caratheodory measurable sets is the universe. (Contributed by Thierry Arnoux, 22-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)       (𝜑 (toCaraSiga‘𝑀) = 𝑂)
 
Theoremelcarsgss 32176 Caratheodory measurable sets are subsets of the universe. (Contributed by Thierry Arnoux, 21-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴 ∈ (toCaraSiga‘𝑀))       (𝜑𝐴𝑂)
 
Theoremdifelcarsg 32177 The Caratheodory measurable sets are closed under complement. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴 ∈ (toCaraSiga‘𝑀))       (𝜑 → (𝑂𝐴) ∈ (toCaraSiga‘𝑀))
 
Theoreminelcarsg 32178* The Caratheodory measurable sets are closed under intersection. (Contributed by Thierry Arnoux, 18-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴 ∈ (toCaraSiga‘𝑀))    &   ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))    &   (𝜑𝐵 ∈ (toCaraSiga‘𝑀))       (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 
Theoremunelcarsg 32179* The Caratheodory-measurable sets are closed under pairwise unions. (Contributed by Thierry Arnoux, 21-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴 ∈ (toCaraSiga‘𝑀))    &   ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))    &   (𝜑𝐵 ∈ (toCaraSiga‘𝑀))       (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 
Theoremdifelcarsg2 32180* The Caratheodory-measurable sets are closed under class difference. (Contributed by Thierry Arnoux, 30-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴 ∈ (toCaraSiga‘𝑀))    &   ((𝜑𝑎 ∈ 𝒫 𝑂𝑏 ∈ 𝒫 𝑂) → (𝑀‘(𝑎𝑏)) ≤ ((𝑀𝑎) +𝑒 (𝑀𝑏)))    &   (𝜑𝐵 ∈ (toCaraSiga‘𝑀))       (𝜑 → (𝐴𝐵) ∈ (toCaraSiga‘𝑀))
 
Theoremcarsgmon 32181* Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑𝐴𝐵)    &   (𝜑𝐵 ∈ 𝒫 𝑂)    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))       (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
 
Theoremcarsgsigalem 32182* Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))       ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
 
Theoremfiunelcarsg 32183* The Caratheodory measurable sets are closed under finite union. (Contributed by Thierry Arnoux, 23-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))       (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
 
Theoremcarsgclctunlem1 32184* Lemma for carsgclctun 32188. (Contributed by Thierry Arnoux, 23-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))    &   (𝜑Disj 𝑦𝐴 𝑦)    &   (𝜑𝐸 ∈ 𝒫 𝑂)       (𝜑 → (𝑀‘(𝐸 𝐴)) = Σ*𝑦𝐴(𝑀‘(𝐸𝑦)))
 
Theoremcarsggect 32185* The outer measure is countably superadditive on Caratheodory measurable sets. (Contributed by Thierry Arnoux, 31-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   (𝜑 → ¬ ∅ ∈ 𝐴)    &   (𝜑𝐴 ≼ ω)    &   (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))    &   (𝜑Disj 𝑦𝐴 𝑦)    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))       (𝜑 → Σ*𝑧𝐴(𝑀𝑧) ≤ (𝑀 𝐴))
 
Theoremcarsgclctunlem2 32186* Lemma for carsgclctun 32188. (Contributed by Thierry Arnoux, 25-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))    &   (𝜑Disj 𝑘 ∈ ℕ 𝐴)    &   ((𝜑𝑘 ∈ ℕ) → 𝐴 ∈ (toCaraSiga‘𝑀))    &   (𝜑𝐸 ∈ 𝒫 𝑂)    &   (𝜑 → (𝑀𝐸) ≠ +∞)       (𝜑 → ((𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴)) +𝑒 (𝑀‘(𝐸 𝑘 ∈ ℕ 𝐴))) ≤ (𝑀𝐸))
 
Theoremcarsgclctunlem3 32187* Lemma for carsgclctun 32188. (Contributed by Thierry Arnoux, 24-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))    &   (𝜑𝐴 ≼ ω)    &   (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))    &   (𝜑𝐸 ∈ 𝒫 𝑂)       (𝜑 → ((𝑀‘(𝐸 𝐴)) +𝑒 (𝑀‘(𝐸 𝐴))) ≤ (𝑀𝐸))
 
Theoremcarsgclctun 32188* The Caratheodory measurable sets are closed under countable union. (Contributed by Thierry Arnoux, 21-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))    &   (𝜑𝐴 ≼ ω)    &   (𝜑𝐴 ⊆ (toCaraSiga‘𝑀))       (𝜑 𝐴 ∈ (toCaraSiga‘𝑀))
 
Theoremcarsgsiga 32189* The Caratheodory measurable sets constructed from outer measures form a Sigma-algebra. Statement (iii) of Theorem 1.11.4 of [Bogachev] p. 42. (Contributed by Thierry Arnoux, 17-May-2020.)
(𝜑𝑂𝑉)    &   (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))    &   (𝜑 → (𝑀‘∅) = 0)    &   ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))    &   ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))       (𝜑 → (toCaraSiga‘𝑀) ∈ (sigAlgebra‘𝑂))
 
Theoremomsmeas 32190 The restriction of a constructed outer measure to Caratheodory measurable sets is a measure. This theorem allows to construct measures from pre-measures with the required characteristics, as for the Lebesgue measure. (Contributed by Thierry Arnoux, 17-May-2020.)
𝑀 = (toOMeas‘𝑅)    &   𝑆 = (toCaraSiga‘𝑀)    &   (𝜑𝑄𝑉)    &   (𝜑𝑅:𝑄⟶(0[,]+∞))    &   (𝜑 → ∅ ∈ dom 𝑅)    &   (𝜑 → (𝑅‘∅) = 0)       (𝜑 → (𝑀𝑆) ∈ (measures‘𝑆))
 
Theorempmeasmono 32191* This theorem's hypotheses define a pre-measure. A pre-measure is monotone. (Contributed by Thierry Arnoux, 19-Jul-2020.)
(𝜑𝑃:𝑅⟶(0[,]+∞))    &   (𝜑 → (𝑃‘∅) = 0)    &   ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))    &   (𝜑𝐴𝑅)    &   (𝜑𝐵𝑅)    &   (𝜑 → (𝐵𝐴) ∈ 𝑅)    &   (𝜑𝐴𝐵)       (𝜑 → (𝑃𝐴) ≤ (𝑃𝐵))
 
Theorempmeasadd 32192* A premeasure on a ring of sets is additive on disjoint countable collections. This is called sigma-additivity. (Contributed by Thierry Arnoux, 19-Jul-2020.)
(𝜑𝑃:𝑅⟶(0[,]+∞))    &   (𝜑 → (𝑃‘∅) = 0)    &   ((𝜑 ∧ (𝑥 ≼ ω ∧ 𝑥𝑅Disj 𝑦𝑥 𝑦)) → (𝑃 𝑥) = Σ*𝑦𝑥(𝑃𝑦))    &   𝑄 = {𝑠 ∈ 𝒫 𝒫 𝑂 ∣ (∅ ∈ 𝑠 ∧ ∀𝑥𝑠𝑦𝑠 ((𝑥𝑦) ∈ 𝑠 ∧ (𝑥𝑦) ∈ 𝑠))}    &   (𝜑𝑅𝑄)    &   (𝜑𝐴 ≼ ω)    &   ((𝜑𝑘𝐴) → 𝐵𝑅)    &   (𝜑Disj 𝑘𝐴 𝐵)       (𝜑 → (𝑃 𝑘𝐴 𝐵) = Σ*𝑘𝐴(𝑃𝐵))
 
20.3.18  Integration
 
20.3.18.1  Lebesgue integral - misc additions
 
Theoremitgeq12dv 32193* Equality theorem for an integral. (Contributed by Thierry Arnoux, 14-Feb-2017.)
(𝜑𝐴 = 𝐵)    &   ((𝜑𝑥𝐴) → 𝐶 = 𝐷)       (𝜑 → ∫𝐴𝐶 d𝑥 = ∫𝐵𝐷 d𝑥)
 
20.3.18.2  Bochner integral
 
Syntaxcitgm 32194 Extend class notation with the (measure) Bochner integral.
class itgm
 
Syntaxcsitm 32195 Extend class notation with the integral metric for simple functions.
class sitm
 
Syntaxcsitg 32196 Extend class notation with the integral of simple functions.
class sitg
 
Definitiondf-sitg 32197* Define the integral of simple functions from a measurable space dom 𝑚 to a generic space 𝑤 equipped with the right scalar product. 𝑤 will later be required to be a Banach space.

These simple functions are required to take finitely many different values: this is expressed by ran 𝑔 ∈ Fin in the definition.

Moreover, for each 𝑥, the pre-image (𝑔 “ {𝑥}) is requested to be measurable, of finite measure.

In this definition, (sigaGen‘(TopOpen‘𝑤)) is the Borel sigma-algebra on 𝑤, and the functions 𝑔 range over the measurable functions over that Borel algebra.

Definition 2.4.1 of [Bogachev] p. 118. (Contributed by Thierry Arnoux, 21-Oct-2017.)

sitg = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ {𝑔 ∈ (dom 𝑚MblFnM(sigaGen‘(TopOpen‘𝑤))) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ {(0g𝑤)})(𝑚‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑤 Σg (𝑥 ∈ (ran 𝑓 ∖ {(0g𝑤)}) ↦ (((ℝHom‘(Scalar‘𝑤))‘(𝑚‘(𝑓 “ {𝑥})))( ·𝑠𝑤)𝑥)))))
 
Definitiondf-sitm 32198* Define the integral metric for simple functions, as the integral of the distances between the function values. Since distances take nonnegative values in *, the range structure for this integral is (ℝ*𝑠s (0[,]+∞)). See definition 2.3.1 of [Bogachev] p. 116. (Contributed by Thierry Arnoux, 22-Oct-2017.)
sitm = (𝑤 ∈ V, 𝑚 ran measures ↦ (𝑓 ∈ dom (𝑤sitg𝑚), 𝑔 ∈ dom (𝑤sitg𝑚) ↦ (((ℝ*𝑠s (0[,]+∞))sitg𝑚)‘(𝑓f (dist‘𝑤)𝑔))))
 
Theoremsitgval 32199* Value of the simple function integral builder for a given space 𝑊 and measure 𝑀. (Contributed by Thierry Arnoux, 30-Jan-2018.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝑆 = (sigaGen‘𝐽)    &    0 = (0g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐻 = (ℝHom‘(Scalar‘𝑊))    &   (𝜑𝑊𝑉)    &   (𝜑𝑀 ran measures)       (𝜑 → (𝑊sitg𝑀) = (𝑓 ∈ {𝑔 ∈ (dom 𝑀MblFnM𝑆) ∣ (ran 𝑔 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝑔 ∖ { 0 })(𝑀‘(𝑔 “ {𝑥})) ∈ (0[,)+∞))} ↦ (𝑊 Σg (𝑥 ∈ (ran 𝑓 ∖ { 0 }) ↦ ((𝐻‘(𝑀‘(𝑓 “ {𝑥}))) · 𝑥)))))
 
Theoremissibf 32200* The predicate "𝐹 is a simple function" relative to the Bochner integral. (Contributed by Thierry Arnoux, 19-Feb-2018.)
𝐵 = (Base‘𝑊)    &   𝐽 = (TopOpen‘𝑊)    &   𝑆 = (sigaGen‘𝐽)    &    0 = (0g𝑊)    &    · = ( ·𝑠𝑊)    &   𝐻 = (ℝHom‘(Scalar‘𝑊))    &   (𝜑𝑊𝑉)    &   (𝜑𝑀 ran measures)       (𝜑 → (𝐹 ∈ dom (𝑊sitg𝑀) ↔ (𝐹 ∈ (dom 𝑀MblFnM𝑆) ∧ ran 𝐹 ∈ Fin ∧ ∀𝑥 ∈ (ran 𝐹 ∖ { 0 })(𝑀‘(𝐹 “ {𝑥})) ∈ (0[,)+∞))))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-45000 451 45001-45100 452 45101-45200 453 45201-45300 454 45301-45400 455 45401-45500 456 45501-45600 457 45601-45700 458 45701-45800 459 45801-45900 460 45901-46000 461 46001-46100 462 46101-46200 463 46201-46300 464 46301-46395
  Copyright terms: Public domain < Previous  Next >