MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xpc Structured version   Visualization version   GIF version

Definition df-xpc 18184
Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.)
Assertion
Ref Expression
df-xpc ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Distinct variable group:   𝑓,𝑏,𝑔,,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-xpc
StepHypRef Expression
1 cxpc 18180 . 2 class ×c
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3459 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1539 . . . . . 6 class 𝑟
7 cbs 17228 . . . . . 6 class Base
86, 7cfv 6531 . . . . 5 class (Base‘𝑟)
93cv 1539 . . . . . 6 class 𝑠
109, 7cfv 6531 . . . . 5 class (Base‘𝑠)
118, 10cxp 5652 . . . 4 class ((Base‘𝑟) × (Base‘𝑠))
12 vh . . . . 5 setvar
13 vu . . . . . 6 setvar 𝑢
14 vv . . . . . 6 setvar 𝑣
155cv 1539 . . . . . 6 class 𝑏
1613cv 1539 . . . . . . . . 9 class 𝑢
17 c1st 7986 . . . . . . . . 9 class 1st
1816, 17cfv 6531 . . . . . . . 8 class (1st𝑢)
1914cv 1539 . . . . . . . . 9 class 𝑣
2019, 17cfv 6531 . . . . . . . 8 class (1st𝑣)
21 chom 17282 . . . . . . . . 9 class Hom
226, 21cfv 6531 . . . . . . . 8 class (Hom ‘𝑟)
2318, 20, 22co 7405 . . . . . . 7 class ((1st𝑢)(Hom ‘𝑟)(1st𝑣))
24 c2nd 7987 . . . . . . . . 9 class 2nd
2516, 24cfv 6531 . . . . . . . 8 class (2nd𝑢)
2619, 24cfv 6531 . . . . . . . 8 class (2nd𝑣)
279, 21cfv 6531 . . . . . . . 8 class (Hom ‘𝑠)
2825, 26, 27co 7405 . . . . . . 7 class ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))
2923, 28cxp 5652 . . . . . 6 class (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))
3013, 14, 15, 15, 29cmpo 7407 . . . . 5 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))))
31 cnx 17212 . . . . . . . 8 class ndx
3231, 7cfv 6531 . . . . . . 7 class (Base‘ndx)
3332, 15cop 4607 . . . . . 6 class ⟨(Base‘ndx), 𝑏
3431, 21cfv 6531 . . . . . . 7 class (Hom ‘ndx)
3512cv 1539 . . . . . . 7 class
3634, 35cop 4607 . . . . . 6 class ⟨(Hom ‘ndx),
37 cco 17283 . . . . . . . 8 class comp
3831, 37cfv 6531 . . . . . . 7 class (comp‘ndx)
39 vx . . . . . . . 8 setvar 𝑥
40 vy . . . . . . . 8 setvar 𝑦
4115, 15cxp 5652 . . . . . . . 8 class (𝑏 × 𝑏)
42 vg . . . . . . . . 9 setvar 𝑔
43 vf . . . . . . . . 9 setvar 𝑓
4439cv 1539 . . . . . . . . . . 11 class 𝑥
4544, 24cfv 6531 . . . . . . . . . 10 class (2nd𝑥)
4640cv 1539 . . . . . . . . . 10 class 𝑦
4745, 46, 35co 7405 . . . . . . . . 9 class ((2nd𝑥)𝑦)
4844, 35cfv 6531 . . . . . . . . 9 class (𝑥)
4942cv 1539 . . . . . . . . . . . 12 class 𝑔
5049, 17cfv 6531 . . . . . . . . . . 11 class (1st𝑔)
5143cv 1539 . . . . . . . . . . . 12 class 𝑓
5251, 17cfv 6531 . . . . . . . . . . 11 class (1st𝑓)
5344, 17cfv 6531 . . . . . . . . . . . . . 14 class (1st𝑥)
5453, 17cfv 6531 . . . . . . . . . . . . 13 class (1st ‘(1st𝑥))
5545, 17cfv 6531 . . . . . . . . . . . . 13 class (1st ‘(2nd𝑥))
5654, 55cop 4607 . . . . . . . . . . . 12 class ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩
5746, 17cfv 6531 . . . . . . . . . . . 12 class (1st𝑦)
586, 37cfv 6531 . . . . . . . . . . . 12 class (comp‘𝑟)
5956, 57, 58co 7405 . . . . . . . . . . 11 class (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))
6050, 52, 59co 7405 . . . . . . . . . 10 class ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓))
6149, 24cfv 6531 . . . . . . . . . . 11 class (2nd𝑔)
6251, 24cfv 6531 . . . . . . . . . . 11 class (2nd𝑓)
6353, 24cfv 6531 . . . . . . . . . . . . 13 class (2nd ‘(1st𝑥))
6445, 24cfv 6531 . . . . . . . . . . . . 13 class (2nd ‘(2nd𝑥))
6563, 64cop 4607 . . . . . . . . . . . 12 class ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩
6646, 24cfv 6531 . . . . . . . . . . . 12 class (2nd𝑦)
679, 37cfv 6531 . . . . . . . . . . . 12 class (comp‘𝑠)
6865, 66, 67co 7405 . . . . . . . . . . 11 class (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))
6961, 62, 68co 7405 . . . . . . . . . 10 class ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))
7060, 69cop 4607 . . . . . . . . 9 class ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩
7142, 43, 47, 48, 70cmpo 7407 . . . . . . . 8 class (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩)
7239, 40, 41, 15, 71cmpo 7407 . . . . . . 7 class (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))
7338, 72cop 4607 . . . . . 6 class ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩
7433, 36, 73ctp 4605 . . . . 5 class {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
7512, 30, 74csb 3874 . . . 4 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
765, 11, 75csb 3874 . . 3 class ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
772, 3, 4, 4, 76cmpo 7407 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
781, 77wceq 1540 1 wff ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  fnxpc  18188  xpcval  18189  reldmxpcALT  49164
  Copyright terms: Public domain W3C validator