MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xpc Structured version   Visualization version   GIF version

Definition df-xpc 18241
Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.)
Assertion
Ref Expression
df-xpc ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Distinct variable group:   𝑓,𝑏,𝑔,,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-xpc
StepHypRef Expression
1 cxpc 18237 . 2 class ×c
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3488 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1536 . . . . . 6 class 𝑟
7 cbs 17258 . . . . . 6 class Base
86, 7cfv 6573 . . . . 5 class (Base‘𝑟)
93cv 1536 . . . . . 6 class 𝑠
109, 7cfv 6573 . . . . 5 class (Base‘𝑠)
118, 10cxp 5698 . . . 4 class ((Base‘𝑟) × (Base‘𝑠))
12 vh . . . . 5 setvar
13 vu . . . . . 6 setvar 𝑢
14 vv . . . . . 6 setvar 𝑣
155cv 1536 . . . . . 6 class 𝑏
1613cv 1536 . . . . . . . . 9 class 𝑢
17 c1st 8028 . . . . . . . . 9 class 1st
1816, 17cfv 6573 . . . . . . . 8 class (1st𝑢)
1914cv 1536 . . . . . . . . 9 class 𝑣
2019, 17cfv 6573 . . . . . . . 8 class (1st𝑣)
21 chom 17322 . . . . . . . . 9 class Hom
226, 21cfv 6573 . . . . . . . 8 class (Hom ‘𝑟)
2318, 20, 22co 7448 . . . . . . 7 class ((1st𝑢)(Hom ‘𝑟)(1st𝑣))
24 c2nd 8029 . . . . . . . . 9 class 2nd
2516, 24cfv 6573 . . . . . . . 8 class (2nd𝑢)
2619, 24cfv 6573 . . . . . . . 8 class (2nd𝑣)
279, 21cfv 6573 . . . . . . . 8 class (Hom ‘𝑠)
2825, 26, 27co 7448 . . . . . . 7 class ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))
2923, 28cxp 5698 . . . . . 6 class (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))
3013, 14, 15, 15, 29cmpo 7450 . . . . 5 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))))
31 cnx 17240 . . . . . . . 8 class ndx
3231, 7cfv 6573 . . . . . . 7 class (Base‘ndx)
3332, 15cop 4654 . . . . . 6 class ⟨(Base‘ndx), 𝑏
3431, 21cfv 6573 . . . . . . 7 class (Hom ‘ndx)
3512cv 1536 . . . . . . 7 class
3634, 35cop 4654 . . . . . 6 class ⟨(Hom ‘ndx),
37 cco 17323 . . . . . . . 8 class comp
3831, 37cfv 6573 . . . . . . 7 class (comp‘ndx)
39 vx . . . . . . . 8 setvar 𝑥
40 vy . . . . . . . 8 setvar 𝑦
4115, 15cxp 5698 . . . . . . . 8 class (𝑏 × 𝑏)
42 vg . . . . . . . . 9 setvar 𝑔
43 vf . . . . . . . . 9 setvar 𝑓
4439cv 1536 . . . . . . . . . . 11 class 𝑥
4544, 24cfv 6573 . . . . . . . . . 10 class (2nd𝑥)
4640cv 1536 . . . . . . . . . 10 class 𝑦
4745, 46, 35co 7448 . . . . . . . . 9 class ((2nd𝑥)𝑦)
4844, 35cfv 6573 . . . . . . . . 9 class (𝑥)
4942cv 1536 . . . . . . . . . . . 12 class 𝑔
5049, 17cfv 6573 . . . . . . . . . . 11 class (1st𝑔)
5143cv 1536 . . . . . . . . . . . 12 class 𝑓
5251, 17cfv 6573 . . . . . . . . . . 11 class (1st𝑓)
5344, 17cfv 6573 . . . . . . . . . . . . . 14 class (1st𝑥)
5453, 17cfv 6573 . . . . . . . . . . . . 13 class (1st ‘(1st𝑥))
5545, 17cfv 6573 . . . . . . . . . . . . 13 class (1st ‘(2nd𝑥))
5654, 55cop 4654 . . . . . . . . . . . 12 class ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩
5746, 17cfv 6573 . . . . . . . . . . . 12 class (1st𝑦)
586, 37cfv 6573 . . . . . . . . . . . 12 class (comp‘𝑟)
5956, 57, 58co 7448 . . . . . . . . . . 11 class (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))
6050, 52, 59co 7448 . . . . . . . . . 10 class ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓))
6149, 24cfv 6573 . . . . . . . . . . 11 class (2nd𝑔)
6251, 24cfv 6573 . . . . . . . . . . 11 class (2nd𝑓)
6353, 24cfv 6573 . . . . . . . . . . . . 13 class (2nd ‘(1st𝑥))
6445, 24cfv 6573 . . . . . . . . . . . . 13 class (2nd ‘(2nd𝑥))
6563, 64cop 4654 . . . . . . . . . . . 12 class ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩
6646, 24cfv 6573 . . . . . . . . . . . 12 class (2nd𝑦)
679, 37cfv 6573 . . . . . . . . . . . 12 class (comp‘𝑠)
6865, 66, 67co 7448 . . . . . . . . . . 11 class (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))
6961, 62, 68co 7448 . . . . . . . . . 10 class ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))
7060, 69cop 4654 . . . . . . . . 9 class ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩
7142, 43, 47, 48, 70cmpo 7450 . . . . . . . 8 class (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩)
7239, 40, 41, 15, 71cmpo 7450 . . . . . . 7 class (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))
7338, 72cop 4654 . . . . . 6 class ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩
7433, 36, 73ctp 4652 . . . . 5 class {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
7512, 30, 74csb 3921 . . . 4 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
765, 11, 75csb 3921 . . 3 class ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
772, 3, 4, 4, 76cmpo 7450 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
781, 77wceq 1537 1 wff ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  fnxpc  18245  xpcval  18246
  Copyright terms: Public domain W3C validator