MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xpc Structured version   Visualization version   GIF version

Definition df-xpc 18140
Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.)
Assertion
Ref Expression
df-xpc ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Distinct variable group:   𝑓,𝑏,𝑔,,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-xpc
StepHypRef Expression
1 cxpc 18136 . 2 class ×c
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3450 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1539 . . . . . 6 class 𝑟
7 cbs 17186 . . . . . 6 class Base
86, 7cfv 6514 . . . . 5 class (Base‘𝑟)
93cv 1539 . . . . . 6 class 𝑠
109, 7cfv 6514 . . . . 5 class (Base‘𝑠)
118, 10cxp 5639 . . . 4 class ((Base‘𝑟) × (Base‘𝑠))
12 vh . . . . 5 setvar
13 vu . . . . . 6 setvar 𝑢
14 vv . . . . . 6 setvar 𝑣
155cv 1539 . . . . . 6 class 𝑏
1613cv 1539 . . . . . . . . 9 class 𝑢
17 c1st 7969 . . . . . . . . 9 class 1st
1816, 17cfv 6514 . . . . . . . 8 class (1st𝑢)
1914cv 1539 . . . . . . . . 9 class 𝑣
2019, 17cfv 6514 . . . . . . . 8 class (1st𝑣)
21 chom 17238 . . . . . . . . 9 class Hom
226, 21cfv 6514 . . . . . . . 8 class (Hom ‘𝑟)
2318, 20, 22co 7390 . . . . . . 7 class ((1st𝑢)(Hom ‘𝑟)(1st𝑣))
24 c2nd 7970 . . . . . . . . 9 class 2nd
2516, 24cfv 6514 . . . . . . . 8 class (2nd𝑢)
2619, 24cfv 6514 . . . . . . . 8 class (2nd𝑣)
279, 21cfv 6514 . . . . . . . 8 class (Hom ‘𝑠)
2825, 26, 27co 7390 . . . . . . 7 class ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))
2923, 28cxp 5639 . . . . . 6 class (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))
3013, 14, 15, 15, 29cmpo 7392 . . . . 5 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))))
31 cnx 17170 . . . . . . . 8 class ndx
3231, 7cfv 6514 . . . . . . 7 class (Base‘ndx)
3332, 15cop 4598 . . . . . 6 class ⟨(Base‘ndx), 𝑏
3431, 21cfv 6514 . . . . . . 7 class (Hom ‘ndx)
3512cv 1539 . . . . . . 7 class
3634, 35cop 4598 . . . . . 6 class ⟨(Hom ‘ndx),
37 cco 17239 . . . . . . . 8 class comp
3831, 37cfv 6514 . . . . . . 7 class (comp‘ndx)
39 vx . . . . . . . 8 setvar 𝑥
40 vy . . . . . . . 8 setvar 𝑦
4115, 15cxp 5639 . . . . . . . 8 class (𝑏 × 𝑏)
42 vg . . . . . . . . 9 setvar 𝑔
43 vf . . . . . . . . 9 setvar 𝑓
4439cv 1539 . . . . . . . . . . 11 class 𝑥
4544, 24cfv 6514 . . . . . . . . . 10 class (2nd𝑥)
4640cv 1539 . . . . . . . . . 10 class 𝑦
4745, 46, 35co 7390 . . . . . . . . 9 class ((2nd𝑥)𝑦)
4844, 35cfv 6514 . . . . . . . . 9 class (𝑥)
4942cv 1539 . . . . . . . . . . . 12 class 𝑔
5049, 17cfv 6514 . . . . . . . . . . 11 class (1st𝑔)
5143cv 1539 . . . . . . . . . . . 12 class 𝑓
5251, 17cfv 6514 . . . . . . . . . . 11 class (1st𝑓)
5344, 17cfv 6514 . . . . . . . . . . . . . 14 class (1st𝑥)
5453, 17cfv 6514 . . . . . . . . . . . . 13 class (1st ‘(1st𝑥))
5545, 17cfv 6514 . . . . . . . . . . . . 13 class (1st ‘(2nd𝑥))
5654, 55cop 4598 . . . . . . . . . . . 12 class ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩
5746, 17cfv 6514 . . . . . . . . . . . 12 class (1st𝑦)
586, 37cfv 6514 . . . . . . . . . . . 12 class (comp‘𝑟)
5956, 57, 58co 7390 . . . . . . . . . . 11 class (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))
6050, 52, 59co 7390 . . . . . . . . . 10 class ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓))
6149, 24cfv 6514 . . . . . . . . . . 11 class (2nd𝑔)
6251, 24cfv 6514 . . . . . . . . . . 11 class (2nd𝑓)
6353, 24cfv 6514 . . . . . . . . . . . . 13 class (2nd ‘(1st𝑥))
6445, 24cfv 6514 . . . . . . . . . . . . 13 class (2nd ‘(2nd𝑥))
6563, 64cop 4598 . . . . . . . . . . . 12 class ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩
6646, 24cfv 6514 . . . . . . . . . . . 12 class (2nd𝑦)
679, 37cfv 6514 . . . . . . . . . . . 12 class (comp‘𝑠)
6865, 66, 67co 7390 . . . . . . . . . . 11 class (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))
6961, 62, 68co 7390 . . . . . . . . . 10 class ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))
7060, 69cop 4598 . . . . . . . . 9 class ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩
7142, 43, 47, 48, 70cmpo 7392 . . . . . . . 8 class (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩)
7239, 40, 41, 15, 71cmpo 7392 . . . . . . 7 class (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))
7338, 72cop 4598 . . . . . 6 class ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩
7433, 36, 73ctp 4596 . . . . 5 class {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
7512, 30, 74csb 3865 . . . 4 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
765, 11, 75csb 3865 . . 3 class ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
772, 3, 4, 4, 76cmpo 7392 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
781, 77wceq 1540 1 wff ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  fnxpc  18144  xpcval  18145  reldmxpcALT  49240
  Copyright terms: Public domain W3C validator