MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  df-xpc Structured version   Visualization version   GIF version

Definition df-xpc 18133
Description: Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.)
Assertion
Ref Expression
df-xpc ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Distinct variable group:   𝑓,𝑏,𝑔,,𝑟,𝑠,𝑢,𝑣,𝑥,𝑦

Detailed syntax breakdown of Definition df-xpc
StepHypRef Expression
1 cxpc 18129 . 2 class ×c
2 vr . . 3 setvar 𝑟
3 vs . . 3 setvar 𝑠
4 cvv 3447 . . 3 class V
5 vb . . . 4 setvar 𝑏
62cv 1539 . . . . . 6 class 𝑟
7 cbs 17179 . . . . . 6 class Base
86, 7cfv 6511 . . . . 5 class (Base‘𝑟)
93cv 1539 . . . . . 6 class 𝑠
109, 7cfv 6511 . . . . 5 class (Base‘𝑠)
118, 10cxp 5636 . . . 4 class ((Base‘𝑟) × (Base‘𝑠))
12 vh . . . . 5 setvar
13 vu . . . . . 6 setvar 𝑢
14 vv . . . . . 6 setvar 𝑣
155cv 1539 . . . . . 6 class 𝑏
1613cv 1539 . . . . . . . . 9 class 𝑢
17 c1st 7966 . . . . . . . . 9 class 1st
1816, 17cfv 6511 . . . . . . . 8 class (1st𝑢)
1914cv 1539 . . . . . . . . 9 class 𝑣
2019, 17cfv 6511 . . . . . . . 8 class (1st𝑣)
21 chom 17231 . . . . . . . . 9 class Hom
226, 21cfv 6511 . . . . . . . 8 class (Hom ‘𝑟)
2318, 20, 22co 7387 . . . . . . 7 class ((1st𝑢)(Hom ‘𝑟)(1st𝑣))
24 c2nd 7967 . . . . . . . . 9 class 2nd
2516, 24cfv 6511 . . . . . . . 8 class (2nd𝑢)
2619, 24cfv 6511 . . . . . . . 8 class (2nd𝑣)
279, 21cfv 6511 . . . . . . . 8 class (Hom ‘𝑠)
2825, 26, 27co 7387 . . . . . . 7 class ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))
2923, 28cxp 5636 . . . . . 6 class (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))
3013, 14, 15, 15, 29cmpo 7389 . . . . 5 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣))))
31 cnx 17163 . . . . . . . 8 class ndx
3231, 7cfv 6511 . . . . . . 7 class (Base‘ndx)
3332, 15cop 4595 . . . . . 6 class ⟨(Base‘ndx), 𝑏
3431, 21cfv 6511 . . . . . . 7 class (Hom ‘ndx)
3512cv 1539 . . . . . . 7 class
3634, 35cop 4595 . . . . . 6 class ⟨(Hom ‘ndx),
37 cco 17232 . . . . . . . 8 class comp
3831, 37cfv 6511 . . . . . . 7 class (comp‘ndx)
39 vx . . . . . . . 8 setvar 𝑥
40 vy . . . . . . . 8 setvar 𝑦
4115, 15cxp 5636 . . . . . . . 8 class (𝑏 × 𝑏)
42 vg . . . . . . . . 9 setvar 𝑔
43 vf . . . . . . . . 9 setvar 𝑓
4439cv 1539 . . . . . . . . . . 11 class 𝑥
4544, 24cfv 6511 . . . . . . . . . 10 class (2nd𝑥)
4640cv 1539 . . . . . . . . . 10 class 𝑦
4745, 46, 35co 7387 . . . . . . . . 9 class ((2nd𝑥)𝑦)
4844, 35cfv 6511 . . . . . . . . 9 class (𝑥)
4942cv 1539 . . . . . . . . . . . 12 class 𝑔
5049, 17cfv 6511 . . . . . . . . . . 11 class (1st𝑔)
5143cv 1539 . . . . . . . . . . . 12 class 𝑓
5251, 17cfv 6511 . . . . . . . . . . 11 class (1st𝑓)
5344, 17cfv 6511 . . . . . . . . . . . . . 14 class (1st𝑥)
5453, 17cfv 6511 . . . . . . . . . . . . 13 class (1st ‘(1st𝑥))
5545, 17cfv 6511 . . . . . . . . . . . . 13 class (1st ‘(2nd𝑥))
5654, 55cop 4595 . . . . . . . . . . . 12 class ⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩
5746, 17cfv 6511 . . . . . . . . . . . 12 class (1st𝑦)
586, 37cfv 6511 . . . . . . . . . . . 12 class (comp‘𝑟)
5956, 57, 58co 7387 . . . . . . . . . . 11 class (⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))
6050, 52, 59co 7387 . . . . . . . . . 10 class ((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓))
6149, 24cfv 6511 . . . . . . . . . . 11 class (2nd𝑔)
6251, 24cfv 6511 . . . . . . . . . . 11 class (2nd𝑓)
6353, 24cfv 6511 . . . . . . . . . . . . 13 class (2nd ‘(1st𝑥))
6445, 24cfv 6511 . . . . . . . . . . . . 13 class (2nd ‘(2nd𝑥))
6563, 64cop 4595 . . . . . . . . . . . 12 class ⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩
6646, 24cfv 6511 . . . . . . . . . . . 12 class (2nd𝑦)
679, 37cfv 6511 . . . . . . . . . . . 12 class (comp‘𝑠)
6865, 66, 67co 7387 . . . . . . . . . . 11 class (⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))
6961, 62, 68co 7387 . . . . . . . . . 10 class ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))
7060, 69cop 4595 . . . . . . . . 9 class ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩
7142, 43, 47, 48, 70cmpo 7389 . . . . . . . 8 class (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩)
7239, 40, 41, 15, 71cmpo 7389 . . . . . . 7 class (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))
7338, 72cop 4595 . . . . . 6 class ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩
7433, 36, 73ctp 4593 . . . . 5 class {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
7512, 30, 74csb 3862 . . . 4 class (𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
765, 11, 75csb 3862 . . 3 class ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩}
772, 3, 4, 4, 76cmpo 7389 . 2 class (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
781, 77wceq 1540 1 wff ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ((Base‘𝑟) × (Base‘𝑠)) / 𝑏(𝑢𝑏, 𝑣𝑏 ↦ (((1st𝑢)(Hom ‘𝑟)(1st𝑣)) × ((2nd𝑢)(Hom ‘𝑠)(2nd𝑣)))) / {⟨(Base‘ndx), 𝑏⟩, ⟨(Hom ‘ndx), ⟩, ⟨(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦𝑏 ↦ (𝑔 ∈ ((2nd𝑥)𝑦), 𝑓 ∈ (𝑥) ↦ ⟨((1st𝑔)(⟨(1st ‘(1st𝑥)), (1st ‘(2nd𝑥))⟩(comp‘𝑟)(1st𝑦))(1st𝑓)), ((2nd𝑔)(⟨(2nd ‘(1st𝑥)), (2nd ‘(2nd𝑥))⟩(comp‘𝑠)(2nd𝑦))(2nd𝑓))⟩))⟩})
Colors of variables: wff setvar class
This definition is referenced by:  fnxpc  18137  xpcval  18138  reldmxpcALT  49236
  Copyright terms: Public domain W3C validator