| Metamath
Proof Explorer Theorem List (p. 182 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | estrccat 18101 | The category of extensible structures is a category. (Contributed by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝑈 ∈ 𝑉 → 𝐶 ∈ Cat) | ||
| Theorem | estrcid 18102 | The identity arrow in the category of extensible structures is the identity function of base sets. (Contributed by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ (𝜑 → 𝑋 ∈ 𝑈) ⇒ ⊢ (𝜑 → ( 1 ‘𝑋) = ( I ↾ (Base‘𝑋))) | ||
| Theorem | estrchomfn 18103 | The Hom-set operation in the category of extensible structures (in a universe) is a function. (Contributed by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → 𝐻 Fn (𝑈 × 𝑈)) | ||
| Theorem | estrchomfeqhom 18104 | The functionalized Hom-set operation equals the Hom-set operation in the category of extensible structures (in a universe). (Contributed by AV, 8-Mar-2020.) |
| ⊢ 𝐶 = (ExtStrCat‘𝑈) & ⊢ (𝜑 → 𝑈 ∈ 𝑉) & ⊢ 𝐻 = (Hom ‘𝐶) ⇒ ⊢ (𝜑 → (Homf ‘𝐶) = 𝐻) | ||
| Theorem | estrreslem1 18105 | Lemma 1 for estrres 18107. (Contributed by AV, 14-Mar-2020.) (Proof shortened by AV, 28-Oct-2024.) |
| ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝐵 = (Base‘𝐶)) | ||
| Theorem | estrreslem2 18106 | Lemma 2 for estrres 18107. (Contributed by AV, 14-Mar-2020.) |
| ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) ⇒ ⊢ (𝜑 → (Base‘ndx) ∈ dom 𝐶) | ||
| Theorem | estrres 18107 | Any restriction of a category (as an extensible structure which is an unordered triple of ordered pairs) is an unordered triple of ordered pairs. (Contributed by AV, 15-Mar-2020.) (Revised by AV, 3-Jul-2022.) |
| ⊢ (𝜑 → 𝐶 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐻〉, 〈(comp‘ndx), · 〉}) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐻 ∈ 𝑋) & ⊢ (𝜑 → · ∈ 𝑌) & ⊢ (𝜑 → 𝐺 ∈ 𝑊) & ⊢ (𝜑 → 𝐴 ⊆ 𝐵) ⇒ ⊢ (𝜑 → ((𝐶 ↾s 𝐴) sSet 〈(Hom ‘ndx), 𝐺〉) = {〈(Base‘ndx), 𝐴〉, 〈(Hom ‘ndx), 𝐺〉, 〈(comp‘ndx), · 〉}) | ||
| Theorem | funcestrcsetclem1 18108* | Lemma 1 for funcestrcsetc 18117. (Contributed by AV, 22-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) = (Base‘𝑋)) | ||
| Theorem | funcestrcsetclem2 18109* | Lemma 2 for funcestrcsetc 18117. (Contributed by AV, 22-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → (𝐹‘𝑋) ∈ 𝑈) | ||
| Theorem | funcestrcsetclem3 18110* | Lemma 3 for funcestrcsetc 18117. (Contributed by AV, 22-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) ⇒ ⊢ (𝜑 → 𝐹:𝐵⟶𝐶) | ||
| Theorem | funcestrcsetclem4 18111* | Lemma 4 for funcestrcsetc 18117. (Contributed by AV, 22-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐵 × 𝐵)) | ||
| Theorem | funcestrcsetclem5 18112* | Lemma 5 for funcestrcsetc 18117. (Contributed by AV, 23-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌) = ( I ↾ (𝑁 ↑m 𝑀))) | ||
| Theorem | funcestrcsetclem6 18113* | Lemma 6 for funcestrcsetc 18117. (Contributed by AV, 23-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ 𝑀 = (Base‘𝑋) & ⊢ 𝑁 = (Base‘𝑌) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝐻 ∈ (𝑁 ↑m 𝑀)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
| Theorem | funcestrcsetclem7 18114* | Lemma 7 for funcestrcsetc 18117. (Contributed by AV, 23-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐵) → ((𝑋𝐺𝑋)‘((Id‘𝐸)‘𝑋)) = ((Id‘𝑆)‘(𝐹‘𝑋))) | ||
| Theorem | funcestrcsetclem8 18115* | Lemma 8 for funcestrcsetc 18117. (Contributed by AV, 15-Feb-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝐸)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝑆)(𝐹‘𝑌))) | ||
| Theorem | funcestrcsetclem9 18116* | Lemma 9 for funcestrcsetc 18117. (Contributed by AV, 23-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑍 ∈ 𝐵) ∧ (𝐻 ∈ (𝑋(Hom ‘𝐸)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝐸)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝐸)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝑆)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
| Theorem | funcestrcsetc 18117* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 23-Mar-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Func 𝑆)𝐺) | ||
| Theorem | fthestrcsetc 18118* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is faithful. (Contributed by AV, 2-Apr-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Faith 𝑆)𝐺) | ||
| Theorem | fullestrcsetc 18119* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is full. (Contributed by AV, 2-Apr-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) ⇒ ⊢ (𝜑 → 𝐹(𝐸 Full 𝑆)𝐺) | ||
| Theorem | equivestrcsetc 18120* | The "natural forgetful functor" from the category of extensible structures into the category of sets which sends each extensible structure to its base set is an equivalence. According to definition 3.33 (1) of [Adamek] p. 36, "A functor F : A -> B is called an equivalence provided that it is full, faithful, and isomorphism-dense in the sense that for any B-object B' there exists some A-object A' such that F(A') is isomorphic to B'.". Therefore, the category of sets and the category of extensible structures are equivalent, according to definition 3.33 (2) of [Adamek] p. 36, "Categories A and B are called equivalent provided that there is an equivalence from A to B.". (Contributed by AV, 2-Apr-2020.) |
| ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐵 ↦ (Base‘𝑥))) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ ( I ↾ ((Base‘𝑦) ↑m (Base‘𝑥))))) & ⊢ (𝜑 → (Base‘ndx) ∈ 𝑈) ⇒ ⊢ (𝜑 → (𝐹(𝐸 Faith 𝑆)𝐺 ∧ 𝐹(𝐸 Full 𝑆)𝐺 ∧ ∀𝑏 ∈ 𝐶 ∃𝑎 ∈ 𝐵 ∃𝑖 𝑖:𝑏–1-1-onto→(𝐹‘𝑎))) | ||
| Theorem | setc1strwun 18121 | A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → {〈(Base‘ndx), 𝑋〉} ∈ 𝑈) | ||
| Theorem | funcsetcestrclem1 18122* | Lemma 1 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) = {〈(Base‘ndx), 𝑋〉}) | ||
| Theorem | funcsetcestrclem2 18123* | Lemma 2 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → (𝐹‘𝑋) ∈ 𝑈) | ||
| Theorem | funcsetcestrclem3 18124* | Lemma 3 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶⟶𝐵) | ||
| Theorem | embedsetcestrclem 18125* | Lemma for embedsetcestrc 18135. (Contributed by AV, 31-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → 𝐹:𝐶–1-1→𝐵) | ||
| Theorem | funcsetcestrclem4 18126* | Lemma 4 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ (𝜑 → 𝐺 Fn (𝐶 × 𝐶)) | ||
| Theorem | funcsetcestrclem5 18127* | Lemma 5 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌) = ( I ↾ (𝑌 ↑m 𝑋))) | ||
| Theorem | funcsetcestrclem6 18128* | Lemma 6 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶) ∧ 𝐻 ∈ (𝑌 ↑m 𝑋)) → ((𝑋𝐺𝑌)‘𝐻) = 𝐻) | ||
| Theorem | funcsetcestrclem7 18129* | Lemma 7 for funcsetcestrc 18132. (Contributed by AV, 27-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ 𝑋 ∈ 𝐶) → ((𝑋𝐺𝑋)‘((Id‘𝑆)‘𝑋)) = ((Id‘𝐸)‘(𝐹‘𝑋))) | ||
| Theorem | funcsetcestrclem8 18130* | Lemma 8 for funcsetcestrc 18132. (Contributed by AV, 28-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶)) → (𝑋𝐺𝑌):(𝑋(Hom ‘𝑆)𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐸)(𝐹‘𝑌))) | ||
| Theorem | funcsetcestrclem9 18131* | Lemma 9 for funcsetcestrc 18132. (Contributed by AV, 28-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ ((𝜑 ∧ (𝑋 ∈ 𝐶 ∧ 𝑌 ∈ 𝐶 ∧ 𝑍 ∈ 𝐶) ∧ (𝐻 ∈ (𝑋(Hom ‘𝑆)𝑌) ∧ 𝐾 ∈ (𝑌(Hom ‘𝑆)𝑍))) → ((𝑋𝐺𝑍)‘(𝐾(〈𝑋, 𝑌〉(comp‘𝑆)𝑍)𝐻)) = (((𝑌𝐺𝑍)‘𝐾)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐸)(𝐹‘𝑍))((𝑋𝐺𝑌)‘𝐻))) | ||
| Theorem | funcsetcestrc 18132* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only, preserving the morphisms as mappings between the corresponding base sets. (Contributed by AV, 28-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Func 𝐸)𝐺) | ||
| Theorem | fthsetcestrc 18133* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is faithful. (Contributed by AV, 31-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Faith 𝐸)𝐺) | ||
| Theorem | fullsetcestrc 18134* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is full. (Contributed by AV, 1-Apr-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) ⇒ ⊢ (𝜑 → 𝐹(𝑆 Full 𝐸)𝐺) | ||
| Theorem | embedsetcestrc 18135* | The "embedding functor" from the category of sets into the category of extensible structures which sends each set to an extensible structure consisting of the base set slot only is an embedding. According to definition 3.27 (1) of [Adamek] p. 34, a functor "F is called an embedding provided that F is injective on morphisms", or according to remark 3.28 (1) in [Adamek] p. 34, "a functor is an embedding if and only if it is faithful and injective on objects". (Contributed by AV, 31-Mar-2020.) |
| ⊢ 𝑆 = (SetCat‘𝑈) & ⊢ 𝐶 = (Base‘𝑆) & ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶 ↦ {〈(Base‘ndx), 𝑥〉})) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝐺 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐶 ↦ ( I ↾ (𝑦 ↑m 𝑥)))) & ⊢ 𝐸 = (ExtStrCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐸) ⇒ ⊢ (𝜑 → (𝐹(𝑆 Faith 𝐸)𝐺 ∧ 𝐹:𝐶–1-1→𝐵)) | ||
| Syntax | cxpc 18136 | Extend class notation with the product of two categories. |
| class ×c | ||
| Syntax | c1stf 18137 | Extend class notation with the first projection functor. |
| class 1stF | ||
| Syntax | c2ndf 18138 | Extend class notation with the second projection functor. |
| class 2ndF | ||
| Syntax | cprf 18139 | Extend class notation with the functor pairing operation. |
| class 〈,〉F | ||
| Definition | df-xpc 18140* | Define the binary product of categories, which has objects for each pair of objects of the factors, and morphisms for each pair of morphisms of the factors. Composition is componentwise. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) | ||
| Definition | df-1stf 18141* | Define the first projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 1stF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(1st ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (1st ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
| Definition | df-2ndf 18142* | Define the second projection functor out of the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 2ndF = (𝑟 ∈ Cat, 𝑠 ∈ Cat ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌〈(2nd ↾ 𝑏), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (2nd ↾ (𝑥(Hom ‘(𝑟 ×c 𝑠))𝑦)))〉) | ||
| Definition | df-prf 18143* | Define the pairing operation for functors (which takes two functors 𝐹:𝐶⟶𝐷 and 𝐺:𝐶⟶𝐸 and produces (𝐹 〈,〉F 𝐺):𝐶⟶(𝐷 ×c 𝐸)). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 〈,〉F = (𝑓 ∈ V, 𝑔 ∈ V ↦ ⦋dom (1st ‘𝑓) / 𝑏⦌〈(𝑥 ∈ 𝑏 ↦ 〈((1st ‘𝑓)‘𝑥), ((1st ‘𝑔)‘𝑥)〉), (𝑥 ∈ 𝑏, 𝑦 ∈ 𝑏 ↦ (ℎ ∈ dom (𝑥(2nd ‘𝑓)𝑦) ↦ 〈((𝑥(2nd ‘𝑓)𝑦)‘ℎ), ((𝑥(2nd ‘𝑔)𝑦)‘ℎ)〉))〉) | ||
| Theorem | fnxpc 18144 | The binary product of categories is a two-argument function. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ ×c Fn (V × V) | ||
| Theorem | xpcval 18145* | Value of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑊) & ⊢ (𝜑 → 𝐵 = (𝑋 × 𝑌)) & ⊢ (𝜑 → 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣))))) & ⊢ (𝜑 → 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉))) ⇒ ⊢ (𝜑 → 𝑇 = {〈(Base‘ndx), 𝐵〉, 〈(Hom ‘ndx), 𝐾〉, 〈(comp‘ndx), 𝑂〉}) | ||
| Theorem | xpcbas 18146 | Set of objects of the binary product of categories. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) ⇒ ⊢ (𝑋 × 𝑌) = (Base‘𝑇) | ||
| Theorem | xpchomfval 18147* | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 1-Mar-2024.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ 𝐾 = (𝑢 ∈ 𝐵, 𝑣 ∈ 𝐵 ↦ (((1st ‘𝑢)𝐻(1st ‘𝑣)) × ((2nd ‘𝑢)𝐽(2nd ‘𝑣)))) | ||
| Theorem | xpchom 18148 | Set of morphisms of the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋𝐾𝑌) = (((1st ‘𝑋)𝐻(1st ‘𝑌)) × ((2nd ‘𝑋)𝐽(2nd ‘𝑌)))) | ||
| Theorem | relxpchom 18149 | A hom-set in the binary product of categories is a relation. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ Rel (𝑋𝐾𝑌) | ||
| Theorem | xpccofval 18150* | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) (Proof shortened by AV, 2-Mar-2024.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) ⇒ ⊢ 𝑂 = (𝑥 ∈ (𝐵 × 𝐵), 𝑦 ∈ 𝐵 ↦ (𝑔 ∈ ((2nd ‘𝑥)𝐾𝑦), 𝑓 ∈ (𝐾‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉 · (1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉 ∙ (2nd ‘𝑦))(2nd ‘𝑓))〉)) | ||
| Theorem | xpcco 18151 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) ⇒ ⊢ (𝜑 → (𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹) = 〈((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹)), ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 ∙ (2nd ‘𝑍))(2nd ‘𝐹))〉) | ||
| Theorem | xpcco1st 18152 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((1st ‘𝐺)(〈(1st ‘𝑋), (1st ‘𝑌)〉 · (1st ‘𝑍))(1st ‘𝐹))) | ||
| Theorem | xpcco2nd 18153 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐾 = (Hom ‘𝑇) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐹 ∈ (𝑋𝐾𝑌)) & ⊢ (𝜑 → 𝐺 ∈ (𝑌𝐾𝑍)) & ⊢ · = (comp‘𝐷) ⇒ ⊢ (𝜑 → (2nd ‘(𝐺(〈𝑋, 𝑌〉𝑂𝑍)𝐹)) = ((2nd ‘𝐺)(〈(2nd ‘𝑋), (2nd ‘𝑌)〉 · (2nd ‘𝑍))(2nd ‘𝐹))) | ||
| Theorem | xpchom2 18154 | Value of the set of morphisms in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ 𝐾 = (Hom ‘𝑇) ⇒ ⊢ (𝜑 → (〈𝑀, 𝑁〉𝐾〈𝑃, 𝑄〉) = ((𝑀𝐻𝑃) × (𝑁𝐽𝑄))) | ||
| Theorem | xpcco2 18155 | Value of composition in the binary product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ (𝜑 → 𝑀 ∈ 𝑋) & ⊢ (𝜑 → 𝑁 ∈ 𝑌) & ⊢ (𝜑 → 𝑃 ∈ 𝑋) & ⊢ (𝜑 → 𝑄 ∈ 𝑌) & ⊢ · = (comp‘𝐶) & ⊢ ∙ = (comp‘𝐷) & ⊢ 𝑂 = (comp‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) & ⊢ (𝜑 → 𝐹 ∈ (𝑀𝐻𝑃)) & ⊢ (𝜑 → 𝐺 ∈ (𝑁𝐽𝑄)) & ⊢ (𝜑 → 𝐾 ∈ (𝑃𝐻𝑅)) & ⊢ (𝜑 → 𝐿 ∈ (𝑄𝐽𝑆)) ⇒ ⊢ (𝜑 → (〈𝐾, 𝐿〉(〈〈𝑀, 𝑁〉, 〈𝑃, 𝑄〉〉𝑂〈𝑅, 𝑆〉)〈𝐹, 𝐺〉) = 〈(𝐾(〈𝑀, 𝑃〉 · 𝑅)𝐹), (𝐿(〈𝑁, 𝑄〉 ∙ 𝑆)𝐺)〉) | ||
| Theorem | xpccatid 18156* | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) ⇒ ⊢ (𝜑 → (𝑇 ∈ Cat ∧ (Id‘𝑇) = (𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 ↦ 〈(𝐼‘𝑥), (𝐽‘𝑦)〉))) | ||
| Theorem | xpcid 18157 | The identity morphism in the product of categories. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑋 = (Base‘𝐶) & ⊢ 𝑌 = (Base‘𝐷) & ⊢ 𝐼 = (Id‘𝐶) & ⊢ 𝐽 = (Id‘𝐷) & ⊢ 1 = (Id‘𝑇) & ⊢ (𝜑 → 𝑅 ∈ 𝑋) & ⊢ (𝜑 → 𝑆 ∈ 𝑌) ⇒ ⊢ (𝜑 → ( 1 ‘〈𝑅, 𝑆〉) = 〈(𝐼‘𝑅), (𝐽‘𝑆)〉) | ||
| Theorem | xpccat 18158 | The product of two categories is a category. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝑇 ∈ Cat) | ||
| Theorem | 1stfval 18159* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 = 〈(1st ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (1st ↾ (𝑥𝐻𝑦)))〉) | ||
| Theorem | 1stf1 18160 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑃)‘𝑅) = (1st ‘𝑅)) | ||
| Theorem | 1stf2 18161 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑃)𝑆) = (1st ↾ (𝑅𝐻𝑆))) | ||
| Theorem | 2ndfval 18162* | Value of the first projection functor. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 = 〈(2nd ↾ 𝐵), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (2nd ↾ (𝑥𝐻𝑦)))〉) | ||
| Theorem | 2ndf1 18163 | Value of the first projection on an object. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑄)‘𝑅) = (2nd ‘𝑅)) | ||
| Theorem | 2ndf2 18164 | Value of the first projection on a morphism. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ 𝐵 = (Base‘𝑇) & ⊢ 𝐻 = (Hom ‘𝑇) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) & ⊢ (𝜑 → 𝑅 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑅(2nd ‘𝑄)𝑆) = (2nd ↾ (𝑅𝐻𝑆))) | ||
| Theorem | 1stfcl 18165 | The first projection functor is a functor onto the left argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑃 = (𝐶 1stF 𝐷) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝑇 Func 𝐶)) | ||
| Theorem | 2ndfcl 18166 | The second projection functor is a functor onto the right argument. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ 𝑇 = (𝐶 ×c 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑄 = (𝐶 2ndF 𝐷) ⇒ ⊢ (𝜑 → 𝑄 ∈ (𝑇 Func 𝐷)) | ||
| Theorem | prfval 18167* | Value of the pairing functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → 𝑃 = 〈(𝑥 ∈ 𝐵 ↦ 〈((1st ‘𝐹)‘𝑥), ((1st ‘𝐺)‘𝑥)〉), (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐵 ↦ (ℎ ∈ (𝑥𝐻𝑦) ↦ 〈((𝑥(2nd ‘𝐹)𝑦)‘ℎ), ((𝑥(2nd ‘𝐺)𝑦)‘ℎ)〉))〉) | ||
| Theorem | prf1 18168 | Value of the pairing functor on objects. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝑃)‘𝑋) = 〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐺)‘𝑋)〉) | ||
| Theorem | prf2fval 18169* | Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝑋(2nd ‘𝑃)𝑌) = (ℎ ∈ (𝑋𝐻𝑌) ↦ 〈((𝑋(2nd ‘𝐹)𝑌)‘ℎ), ((𝑋(2nd ‘𝐺)𝑌)‘ℎ)〉)) | ||
| Theorem | prf2 18170 | Value of the pairing functor on morphisms. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → ((𝑋(2nd ‘𝑃)𝑌)‘𝐾) = 〈((𝑋(2nd ‘𝐹)𝑌)‘𝐾), ((𝑋(2nd ‘𝐺)𝑌)‘𝐾)〉) | ||
| Theorem | prfcl 18171 | The pairing of functors 𝐹:𝐶⟶𝐷 and 𝐺:𝐶⟶𝐷 is a functor 〈𝐹, 𝐺〉:𝐶⟶(𝐷 × 𝐸). (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ 𝑇 = (𝐷 ×c 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → 𝑃 ∈ (𝐶 Func 𝑇)) | ||
| Theorem | prf1st 18172 | Cancellation of pairing with first projection. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐷 1stF 𝐸) ∘func 𝑃) = 𝐹) | ||
| Theorem | prf2nd 18173 | Cancellation of pairing with second projection. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑃 = (𝐹 〈,〉F 𝐺) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐸)) ⇒ ⊢ (𝜑 → ((𝐷 2ndF 𝐸) ∘func 𝑃) = 𝐺) | ||
| Theorem | 1st2ndprf 18174 | Break a functor into a product category into first and second projections. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝑇 = (𝐷 ×c 𝐸) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝑇)) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐸 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐹 = (((𝐷 1stF 𝐸) ∘func 𝐹) 〈,〉F ((𝐷 2ndF 𝐸) ∘func 𝐹))) | ||
| Theorem | catcxpccl 18175 | The category of categories for a weak universe is closed under the product category operation. (Contributed by Mario Carneiro, 12-Jan-2017.) (Proof shortened by AV, 14-Oct-2024.) |
| ⊢ 𝐶 = (CatCat‘𝑈) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝑇 = (𝑋 ×c 𝑌) & ⊢ (𝜑 → 𝑈 ∈ WUni) & ⊢ (𝜑 → ω ∈ 𝑈) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → 𝑇 ∈ 𝐵) | ||
| Theorem | xpcpropd 18176 | If two categories have the same set of objects, morphisms, and compositions, then they have the same product category. (Contributed by Mario Carneiro, 17-Jan-2017.) |
| ⊢ (𝜑 → (Homf ‘𝐴) = (Homf ‘𝐵)) & ⊢ (𝜑 → (compf‘𝐴) = (compf‘𝐵)) & ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘𝐷)) & ⊢ (𝜑 → (compf‘𝐶) = (compf‘𝐷)) & ⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑉) & ⊢ (𝜑 → 𝐶 ∈ 𝑉) & ⊢ (𝜑 → 𝐷 ∈ 𝑉) ⇒ ⊢ (𝜑 → (𝐴 ×c 𝐶) = (𝐵 ×c 𝐷)) | ||
| Syntax | cevlf 18177 | Extend class notation with the evaluation functor. |
| class evalF | ||
| Syntax | ccurf 18178 | Extend class notation with the currying of a functor. |
| class curryF | ||
| Syntax | cuncf 18179 | Extend class notation with the uncurrying of a functor. |
| class uncurryF | ||
| Syntax | cdiag 18180 | Extend class notation to include the diagonal functor. |
| class Δfunc | ||
| Definition | df-evlf 18181* | Define the evaluation functor, which is the extension of the evaluation map 𝑓, 𝑥 ↦ (𝑓‘𝑥) of functors, to a functor (𝐶⟶𝐷) × 𝐶⟶𝐷. (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ evalF = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ 〈(𝑓 ∈ (𝑐 Func 𝑑), 𝑥 ∈ (Base‘𝑐) ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)), 𝑦 ∈ ((𝑐 Func 𝑑) × (Base‘𝑐)) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚(𝑐 Nat 𝑑)𝑛), 𝑔 ∈ ((2nd ‘𝑥)(Hom ‘𝑐)(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉(comp‘𝑑)((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) | ||
| Definition | df-curf 18182* | Define the curry functor, which maps a functor 𝐹:𝐶 × 𝐷⟶𝐸 to curryF (𝐹):𝐶⟶(𝐷⟶𝐸). (Contributed by Mario Carneiro, 11-Jan-2017.) |
| ⊢ curryF = (𝑒 ∈ V, 𝑓 ∈ V ↦ ⦋(1st ‘𝑒) / 𝑐⦌⦋(2nd ‘𝑒) / 𝑑⦌〈(𝑥 ∈ (Base‘𝑐) ↦ 〈(𝑦 ∈ (Base‘𝑑) ↦ (𝑥(1st ‘𝑓)𝑦)), (𝑦 ∈ (Base‘𝑑), 𝑧 ∈ (Base‘𝑑) ↦ (𝑔 ∈ (𝑦(Hom ‘𝑑)𝑧) ↦ (((Id‘𝑐)‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝑓)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ (Base‘𝑐), 𝑦 ∈ (Base‘𝑐) ↦ (𝑔 ∈ (𝑥(Hom ‘𝑐)𝑦) ↦ (𝑧 ∈ (Base‘𝑑) ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝑓)〈𝑦, 𝑧〉)((Id‘𝑑)‘𝑧)))))〉) | ||
| Definition | df-uncf 18183* | Define the uncurry functor, which can be defined equationally using evalF. Strictly speaking, the third category argument is not needed, since the resulting functor is extensionally equal regardless, but it is used in the equational definition and is too much work to remove. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ uncurryF = (𝑐 ∈ V, 𝑓 ∈ V ↦ (((𝑐‘1) evalF (𝑐‘2)) ∘func ((𝑓 ∘func ((𝑐‘0) 1stF (𝑐‘1))) 〈,〉F ((𝑐‘0) 2ndF (𝑐‘1))))) | ||
| Definition | df-diag 18184* | Define the diagonal functor, which is the functor 𝐶⟶(𝐷 Func 𝐶) whose object part is 𝑥 ∈ 𝐶 ↦ (𝑦 ∈ 𝐷 ↦ 𝑥). The value of the functor at an object 𝑥 is the constant functor which maps all objects in 𝐷 to 𝑥 and all morphisms to 1(𝑥). The morphism part is a natural transformation between these functors, which takes 𝑓:𝑥⟶𝑦 to the natural transformation with every component equal to 𝑓. (Contributed by Mario Carneiro, 6-Jan-2017.) |
| ⊢ Δfunc = (𝑐 ∈ Cat, 𝑑 ∈ Cat ↦ (〈𝑐, 𝑑〉 curryF (𝑐 1stF 𝑑))) | ||
| Theorem | evlfval 18185* | Value of the evaluation functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) ⇒ ⊢ (𝜑 → 𝐸 = 〈(𝑓 ∈ (𝐶 Func 𝐷), 𝑥 ∈ 𝐵 ↦ ((1st ‘𝑓)‘𝑥)), (𝑥 ∈ ((𝐶 Func 𝐷) × 𝐵), 𝑦 ∈ ((𝐶 Func 𝐷) × 𝐵) ↦ ⦋(1st ‘𝑥) / 𝑚⦌⦋(1st ‘𝑦) / 𝑛⦌(𝑎 ∈ (𝑚𝑁𝑛), 𝑔 ∈ ((2nd ‘𝑥)𝐻(2nd ‘𝑦)) ↦ ((𝑎‘(2nd ‘𝑦))(〈((1st ‘𝑚)‘(2nd ‘𝑥)), ((1st ‘𝑚)‘(2nd ‘𝑦))〉 · ((1st ‘𝑛)‘(2nd ‘𝑦)))(((2nd ‘𝑥)(2nd ‘𝑚)(2nd ‘𝑦))‘𝑔))))〉) | ||
| Theorem | evlf2 18186* | Value of the evaluation functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) ⇒ ⊢ (𝜑 → 𝐿 = (𝑎 ∈ (𝐹𝑁𝐺), 𝑔 ∈ (𝑋𝐻𝑌) ↦ ((𝑎‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝑔)))) | ||
| Theorem | evlf2val 18187 | Value of the evaluation natural transformation at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ · = (comp‘𝐷) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐿 = (〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉) & ⊢ (𝜑 → 𝐴 ∈ (𝐹𝑁𝐺)) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) ⇒ ⊢ (𝜑 → (𝐴𝐿𝐾) = ((𝐴‘𝑌)(〈((1st ‘𝐹)‘𝑋), ((1st ‘𝐹)‘𝑌)〉 · ((1st ‘𝐺)‘𝑌))((𝑋(2nd ‘𝐹)𝑌)‘𝐾))) | ||
| Theorem | evlf1 18188 | Value of the evaluation functor at an object. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝐵 = (Base‘𝐶) & ⊢ (𝜑 → 𝐹 ∈ (𝐶 Func 𝐷)) & ⊢ (𝜑 → 𝑋 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐹(1st ‘𝐸)𝑋) = ((1st ‘𝐹)‘𝑋)) | ||
| Theorem | evlfcllem 18189 | Lemma for evlfcl 18190. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ 𝑁 = (𝐶 Nat 𝐷) & ⊢ (𝜑 → (𝐹 ∈ (𝐶 Func 𝐷) ∧ 𝑋 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐺 ∈ (𝐶 Func 𝐷) ∧ 𝑌 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐻 ∈ (𝐶 Func 𝐷) ∧ 𝑍 ∈ (Base‘𝐶))) & ⊢ (𝜑 → (𝐴 ∈ (𝐹𝑁𝐺) ∧ 𝐾 ∈ (𝑋(Hom ‘𝐶)𝑌))) & ⊢ (𝜑 → (𝐵 ∈ (𝐺𝑁𝐻) ∧ 𝐿 ∈ (𝑌(Hom ‘𝐶)𝑍))) ⇒ ⊢ (𝜑 → ((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘(〈𝐵, 𝐿〉(〈〈𝐹, 𝑋〉, 〈𝐺, 𝑌〉〉(comp‘(𝑄 ×c 𝐶))〈𝐻, 𝑍〉)〈𝐴, 𝐾〉)) = (((〈𝐺, 𝑌〉(2nd ‘𝐸)〈𝐻, 𝑍〉)‘〈𝐵, 𝐿〉)(〈((1st ‘𝐸)‘〈𝐹, 𝑋〉), ((1st ‘𝐸)‘〈𝐺, 𝑌〉)〉(comp‘𝐷)((1st ‘𝐸)‘〈𝐻, 𝑍〉))((〈𝐹, 𝑋〉(2nd ‘𝐸)〈𝐺, 𝑌〉)‘〈𝐴, 𝐾〉))) | ||
| Theorem | evlfcl 18190 | The evaluation functor is a bifunctor (a two-argument functor) with the first parameter taking values in the set of functors 𝐶⟶𝐷, and the second parameter in 𝐷. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐸 = (𝐶 evalF 𝐷) & ⊢ 𝑄 = (𝐶 FuncCat 𝐷) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) ⇒ ⊢ (𝜑 → 𝐸 ∈ ((𝑄 ×c 𝐶) Func 𝐷)) | ||
| Theorem | curfval 18191* | Value of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) ⇒ ⊢ (𝜑 → 𝐺 = 〈(𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉), (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐴 ↦ (𝑔 ∈ (𝑥𝐻𝑦) ↦ (𝑧 ∈ 𝐵 ↦ (𝑔(〈𝑥, 𝑧〉(2nd ‘𝐹)〈𝑦, 𝑧〉)(𝐼‘𝑧)))))〉) | ||
| Theorem | curf1fval 18192* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → (1st ‘𝐺) = (𝑥 ∈ 𝐴 ↦ 〈(𝑦 ∈ 𝐵 ↦ (𝑥(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑥)(〈𝑥, 𝑦〉(2nd ‘𝐹)〈𝑥, 𝑧〉)𝑔)))〉)) | ||
| Theorem | curf1 18193* | Value of the object part of the curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) ⇒ ⊢ (𝜑 → 𝐾 = 〈(𝑦 ∈ 𝐵 ↦ (𝑋(1st ‘𝐹)𝑦)), (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐵 ↦ (𝑔 ∈ (𝑦𝐽𝑧) ↦ (( 1 ‘𝑋)(〈𝑋, 𝑦〉(2nd ‘𝐹)〈𝑋, 𝑧〉)𝑔)))〉) | ||
| Theorem | curf11 18194 | Value of the double evaluated curry functor. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) ⇒ ⊢ (𝜑 → ((1st ‘𝐾)‘𝑌) = (𝑋(1st ‘𝐹)𝑌)) | ||
| Theorem | curf12 18195 | The partially evaluated curry functor at a morphism. (Contributed by Mario Carneiro, 12-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) & ⊢ (𝜑 → 𝑌 ∈ 𝐵) & ⊢ 𝐽 = (Hom ‘𝐷) & ⊢ 1 = (Id‘𝐶) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) & ⊢ (𝜑 → 𝐻 ∈ (𝑌𝐽𝑍)) ⇒ ⊢ (𝜑 → ((𝑌(2nd ‘𝐾)𝑍)‘𝐻) = (( 1 ‘𝑋)(〈𝑋, 𝑌〉(2nd ‘𝐹)〈𝑋, 𝑍〉)𝐻)) | ||
| Theorem | curf1cl 18196 | The partially evaluated curry functor is a functor. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ 𝐾 = ((1st ‘𝐺)‘𝑋) ⇒ ⊢ (𝜑 → 𝐾 ∈ (𝐷 Func 𝐸)) | ||
| Theorem | curf2 18197* | Value of the curry functor at a morphism. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) ⇒ ⊢ (𝜑 → 𝐿 = (𝑧 ∈ 𝐵 ↦ (𝐾(〈𝑋, 𝑧〉(2nd ‘𝐹)〈𝑌, 𝑧〉)(𝐼‘𝑧)))) | ||
| Theorem | curf2val 18198 | Value of a component of the curry functor natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) & ⊢ (𝜑 → 𝑍 ∈ 𝐵) ⇒ ⊢ (𝜑 → (𝐿‘𝑍) = (𝐾(〈𝑋, 𝑍〉(2nd ‘𝐹)〈𝑌, 𝑍〉)(𝐼‘𝑍))) | ||
| Theorem | curf2cl 18199 | The curry functor at a morphism is a natural transformation. (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝐴 = (Base‘𝐶) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) & ⊢ 𝐵 = (Base‘𝐷) & ⊢ 𝐻 = (Hom ‘𝐶) & ⊢ 𝐼 = (Id‘𝐷) & ⊢ (𝜑 → 𝑋 ∈ 𝐴) & ⊢ (𝜑 → 𝑌 ∈ 𝐴) & ⊢ (𝜑 → 𝐾 ∈ (𝑋𝐻𝑌)) & ⊢ 𝐿 = ((𝑋(2nd ‘𝐺)𝑌)‘𝐾) & ⊢ 𝑁 = (𝐷 Nat 𝐸) ⇒ ⊢ (𝜑 → 𝐿 ∈ (((1st ‘𝐺)‘𝑋)𝑁((1st ‘𝐺)‘𝑌))) | ||
| Theorem | curfcl 18200 | The curry functor of a functor 𝐹:𝐶 × 𝐷⟶𝐸 is a functor curryF (𝐹):𝐶⟶(𝐷⟶𝐸). (Contributed by Mario Carneiro, 13-Jan-2017.) |
| ⊢ 𝐺 = (〈𝐶, 𝐷〉 curryF 𝐹) & ⊢ 𝑄 = (𝐷 FuncCat 𝐸) & ⊢ (𝜑 → 𝐶 ∈ Cat) & ⊢ (𝜑 → 𝐷 ∈ Cat) & ⊢ (𝜑 → 𝐹 ∈ ((𝐶 ×c 𝐷) Func 𝐸)) ⇒ ⊢ (𝜑 → 𝐺 ∈ (𝐶 Func 𝑄)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |