| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fnxpc | Structured version Visualization version GIF version | ||
| Description: The binary product of categories is a two-argument function. (Contributed by Mario Carneiro, 10-Jan-2017.) |
| Ref | Expression |
|---|---|
| fnxpc | ⊢ ×c Fn (V × V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-xpc 18184 | . 2 ⊢ ×c = (𝑟 ∈ V, 𝑠 ∈ V ↦ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉}) | |
| 2 | tpex 7740 | . . . 4 ⊢ {〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} ∈ V | |
| 3 | 2 | csbex 5281 | . . 3 ⊢ ⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} ∈ V |
| 4 | 3 | csbex 5281 | . 2 ⊢ ⦋((Base‘𝑟) × (Base‘𝑠)) / 𝑏⦌⦋(𝑢 ∈ 𝑏, 𝑣 ∈ 𝑏 ↦ (((1st ‘𝑢)(Hom ‘𝑟)(1st ‘𝑣)) × ((2nd ‘𝑢)(Hom ‘𝑠)(2nd ‘𝑣)))) / ℎ⦌{〈(Base‘ndx), 𝑏〉, 〈(Hom ‘ndx), ℎ〉, 〈(comp‘ndx), (𝑥 ∈ (𝑏 × 𝑏), 𝑦 ∈ 𝑏 ↦ (𝑔 ∈ ((2nd ‘𝑥)ℎ𝑦), 𝑓 ∈ (ℎ‘𝑥) ↦ 〈((1st ‘𝑔)(〈(1st ‘(1st ‘𝑥)), (1st ‘(2nd ‘𝑥))〉(comp‘𝑟)(1st ‘𝑦))(1st ‘𝑓)), ((2nd ‘𝑔)(〈(2nd ‘(1st ‘𝑥)), (2nd ‘(2nd ‘𝑥))〉(comp‘𝑠)(2nd ‘𝑦))(2nd ‘𝑓))〉))〉} ∈ V |
| 5 | 1, 4 | fnmpoi 8069 | 1 ⊢ ×c Fn (V × V) |
| Colors of variables: wff setvar class |
| Syntax hints: Vcvv 3459 ⦋csb 3874 {ctp 4605 〈cop 4607 × cxp 5652 Fn wfn 6526 ‘cfv 6531 (class class class)co 7405 ∈ cmpo 7407 1st c1st 7986 2nd c2nd 7987 ndxcnx 17212 Basecbs 17228 Hom chom 17282 compcco 17283 ×c cxpc 18180 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-oprab 7409 df-mpo 7410 df-1st 7988 df-2nd 7989 df-xpc 18184 |
| This theorem is referenced by: xpcbas 18190 xpchomfval 18191 xpccofval 18194 reldmxpc 49163 |
| Copyright terms: Public domain | W3C validator |