MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfbi1ALT Structured version   Visualization version   GIF version

Theorem dfbi1ALT 215
Description: Alternate proof of dfbi1 214. This proof, discovered by Gregory Bush on 8-Mar-2004, has several curious properties. First, it has only 17 steps directly from the axioms and df-bi 208, compared to over 800 steps were the proof of dfbi1 214 expanded into axioms. Second, step 2 demands only the property of "true"; any axiom (or theorem) could be used. It might be thought, therefore, that it is in some sense redundant, but in fact no proof is shorter than this (measured by number of steps). Third, it illustrates how intermediate steps can "blow up" in size even in short proofs. Fourth, the compressed proof is only 182 bytes (or 17 bytes in D-proof notation), but the generated web page is over 200kB with intermediate steps that are essentially incomprehensible to humans (other than Gregory Bush). If there were an obfuscated code contest for proofs, this would be a contender. This "blowing up" and incomprehensibility of the intermediate steps vividly demonstrate the advantages of using many layered intermediate theorems, since each theorem is easier to understand. (Contributed by Gregory Bush, 10-Mar-2004.) (New usage is discouraged.) (Proof modification is discouraged.)
Assertion
Ref Expression
dfbi1ALT ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))

Proof of Theorem dfbi1ALT
StepHypRef Expression
1 df-bi 208 . 2 ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))
2 ax-1 6 . . 3 (𝜒 → (𝜃𝜒))
3 ax-1 6 . . . . 5 (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))))
4 df-bi 208 . . . . . . . . 9 ¬ ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))
5 ax-1 6 . . . . . . . . 9 (¬ ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → (¬ ¬ (𝜒 → (𝜃𝜒)) → ¬ ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))))
64, 5ax-mp 5 . . . . . . . 8 (¬ ¬ (𝜒 → (𝜃𝜒)) → ¬ ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))))
7 ax-3 8 . . . . . . . 8 ((¬ ¬ (𝜒 → (𝜃𝜒)) → ¬ ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))) → (((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒))))
86, 7ax-mp 5 . . . . . . 7 (((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒)))
9 ax-1 6 . . . . . . 7 ((((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒))) → (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → (((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒)))))
108, 9ax-mp 5 . . . . . 6 (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → (((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒))))
11 ax-2 7 . . . . . 6 ((¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → (((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))) → ¬ (𝜒 → (𝜃𝜒)))) → ((¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))) → (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ¬ (𝜒 → (𝜃𝜒)))))
1210, 11ax-mp 5 . . . . 5 ((¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ((((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓)))) → ¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))) → (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ¬ (𝜒 → (𝜃𝜒))))
133, 12ax-mp 5 . . . 4 (¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ¬ (𝜒 → (𝜃𝜒)))
14 ax-3 8 . . . 4 ((¬ (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))) → ¬ (𝜒 → (𝜃𝜒))) → ((𝜒 → (𝜃𝜒)) → (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))))
1513, 14ax-mp 5 . . 3 ((𝜒 → (𝜃𝜒)) → (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))))
162, 15ax-mp 5 . 2 (¬ (((𝜑𝜓) → ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))) → ¬ (¬ ((𝜑𝜓) → ¬ (𝜓𝜑)) → (𝜑𝜓))) → ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑))))
171, 16ax-mp 5 1 ((𝜑𝜓) ↔ ¬ ((𝜑𝜓) → ¬ (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 208
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator