Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biimpi 215 bicom1 220 biimpd 228 ibd 268 pm5.74 269 pm5.501 366 bija 381 albi 1819 spsbbi 2075 cbv2w 2333 cbv2 2401 cbv2h 2404 dfmoeu 2534 2eu6 2656 ax9ALT 2731 ralbi 3102 rexbi 3103 ceqsalt 3471 vtoclgft 3501 spcgft 3536 pm13.183 3607 elabgt 3613 reu6 3671 reu3 3672 sbciegft 3764 axprlem4 5366 fv3 6837 expeq0 13906 t1t0 22597 kqfvima 22979 ufileu 23168 cvmlift2lem1 33504 btwndiff 34420 nn0prpw 34603 bj-animbi 34830 bj-dfbi6 34847 bj-bi3ant 34862 bj-cbv2hv 35070 bj-moeub 35123 bj-ceqsalt0 35159 bj-ceqsalt1 35160 sticksstones3 40354 or3or 41941 bi33imp12 42420 bi23imp1 42425 bi123imp0 42426 eqsbc2VD 42770 imbi12VD 42803 2uasbanhVD 42841 thincciso 46670 |
Copyright terms: Public domain | W3C validator |