![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1815 spsbbi 2071 cbv2w 2338 cbv2 2406 cbv2h 2409 dfmoeu 2534 2eu6 2655 ax9ALT 2730 ralbi 3101 rexbi 3102 ceqsalt 3513 spcgft 3549 vtoclgft 3552 elabgt 3672 elabgtOLD 3673 reu6 3735 reu3 3736 sbciegftOLD 3830 axpr 5433 axprlem4OLD 5435 fv3 6925 expeq0 14130 t1t0 23372 kqfvima 23754 ufileu 23943 axsepg2ALT 35076 cvmlift2lem1 35287 btwndiff 36009 nn0prpw 36306 bj-animbi 36542 bj-dfbi6 36558 bj-bi3ant 36572 bj-cbv2hv 36780 bj-moeub 36832 bj-ceqsalt0 36867 bj-ceqsalt1 36868 sticksstones3 42130 eu6w 42663 or3or 44013 bi33imp12 44488 bi23imp1 44493 bi123imp0 44494 eqsbc2VD 44838 imbi12VD 44871 2uasbanhVD 44909 ssclaxsep 44947 nimnbi 45106 thincciso 48849 |
Copyright terms: Public domain | W3C validator |