![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biimpi 215 bicom1 220 biimpd 228 ibd 268 pm5.74 269 pm5.501 365 bija 379 albi 1818 spsbbi 2074 cbv2w 2331 cbv2 2400 cbv2h 2403 dfmoeu 2528 2eu6 2650 ax9ALT 2725 ralbi 3101 rexbi 3102 raleleq 3335 ceqsalt 3504 vtoclgft 3539 spcgft 3579 pm13.183 3657 elabgt 3663 reu6 3723 reu3 3724 sbciegft 3816 axprlem4 5425 fv3 6910 expeq0 14064 t1t0 23074 kqfvima 23456 ufileu 23645 cvmlift2lem1 34589 btwndiff 35301 nn0prpw 35513 bj-animbi 35740 bj-dfbi6 35757 bj-bi3ant 35772 bj-cbv2hv 35980 bj-moeub 36033 bj-ceqsalt0 36069 bj-ceqsalt1 36070 sticksstones3 41272 or3or 43078 bi33imp12 43555 bi23imp1 43560 bi123imp0 43561 eqsbc2VD 43905 imbi12VD 43938 2uasbanhVD 43976 nimnbi 44161 thincciso 47758 |
Copyright terms: Public domain | W3C validator |