| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2402 cbv2h 2405 dfmoeu 2530 2eu6 2651 ax9ALT 2725 ralbi 3086 rexbi 3087 ceqsalt 3484 spcgft 3518 vtoclgft 3521 elabgtOLD 3642 elabgtOLDOLD 3643 reu6 3700 reu3 3701 sbciegftOLD 3794 axpr 5385 axprlem4OLD 5387 fv3 6879 expeq0 14064 t1t0 23242 kqfvima 23624 ufileu 23813 axsepg2ALT 35080 cvmlift2lem1 35296 btwndiff 36022 nn0prpw 36318 bj-animbi 36554 bj-dfbi6 36570 bj-bi3ant 36584 bj-cbv2hv 36792 bj-moeub 36844 bj-ceqsalt0 36879 bj-ceqsalt1 36880 eqab2 38244 sticksstones3 42143 eu6w 42671 or3or 44019 bi33imp12 44488 bi23imp1 44492 bi123imp0 44493 eqsbc2VD 44836 imbi12VD 44869 2uasbanhVD 44907 ssclaxsep 44979 nimnbi 45164 thincciso 49446 |
| Copyright terms: Public domain | W3C validator |