![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biimpi 215 bicom1 220 biimpd 228 ibd 268 pm5.74 269 pm5.501 366 bija 381 albi 1820 spsbbi 2076 cbv2w 2333 cbv2 2402 cbv2h 2405 dfmoeu 2530 2eu6 2652 ax9ALT 2727 ralbi 3103 rexbi 3104 raleleq 3337 ceqsalt 3505 vtoclgft 3540 spcgft 3578 pm13.183 3655 elabgt 3661 reu6 3721 reu3 3722 sbciegft 3814 axprlem4 5423 fv3 6906 expeq0 14054 t1t0 22843 kqfvima 23225 ufileu 23414 cvmlift2lem1 34281 btwndiff 34987 nn0prpw 35196 bj-animbi 35423 bj-dfbi6 35440 bj-bi3ant 35455 bj-cbv2hv 35663 bj-moeub 35716 bj-ceqsalt0 35752 bj-ceqsalt1 35753 sticksstones3 40952 or3or 42759 bi33imp12 43236 bi23imp1 43241 bi123imp0 43242 eqsbc2VD 43586 imbi12VD 43619 2uasbanhVD 43657 nimnbi 43843 thincciso 47622 |
Copyright terms: Public domain | W3C validator |