| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1819 spsbbi 2076 cbv2w 2337 cbv2 2403 cbv2h 2406 dfmoeu 2531 2eu6 2652 ax9ALT 2726 ralbi 3087 rexbi 3088 ceqsalt 3470 spcgft 3504 vtoclgft 3507 elabgtOLD 3628 elabgtOLDOLD 3629 reu6 3685 reu3 3686 sbciegftOLD 3779 axpr 5365 axprlem4OLD 5367 fv3 6840 elirrv 9483 expeq0 13999 t1t0 23264 kqfvima 23646 ufileu 23835 axsepg2ALT 35093 r1omhfb 35121 r1omhfbregs 35131 cvmlift2lem1 35344 btwndiff 36067 nn0prpw 36363 bj-animbi 36599 bj-dfbi6 36615 bj-bi3ant 36629 bj-cbv2hv 36837 bj-moeub 36889 bj-ceqsalt0 36924 bj-ceqsalt1 36925 eqab2 38289 sticksstones3 42187 eu6w 42715 or3or 44062 bi33imp12 44530 bi23imp1 44534 bi123imp0 44535 eqsbc2VD 44878 imbi12VD 44911 2uasbanhVD 44949 ssclaxsep 45021 nimnbi 45206 thincciso 49491 |
| Copyright terms: Public domain | W3C validator |