| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1819 spsbbi 2078 cbv2w 2339 cbv2 2405 cbv2h 2408 dfmoeu 2533 2eu6 2654 ax9ALT 2728 ralbi 3088 rexbi 3089 ceqsalt 3471 spcgft 3503 vtoclgft 3506 elabgtOLD 3624 elabgtOLDOLD 3625 reu6 3681 reu3 3682 sbciegftOLD 3775 axpr 5369 axprlem4OLD 5371 fv3 6848 elirrv 9492 expeq0 14003 t1t0 23266 kqfvima 23648 ufileu 23837 axsepg2ALT 35118 r1omhfb 35146 r1omhfbregs 35156 cvmlift2lem1 35369 btwndiff 36094 nn0prpw 36390 bj-animbi 36626 bj-dfbi6 36642 bj-bi3ant 36656 bj-cbv2hv 36864 bj-moeub 36916 bj-ceqsalt0 36951 bj-ceqsalt1 36952 eqab2 38308 sticksstones3 42264 eu6w 42797 or3or 44143 bi33imp12 44611 bi23imp1 44615 bi123imp0 44616 eqsbc2VD 44959 imbi12VD 44992 2uasbanhVD 45030 ssclaxsep 45102 nimnbi 45287 thincciso 49581 |
| Copyright terms: Public domain | W3C validator |