![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 |
This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1816 spsbbi 2073 cbv2w 2343 cbv2 2411 cbv2h 2414 dfmoeu 2539 2eu6 2660 ax9ALT 2735 ralbi 3109 rexbi 3110 ceqsalt 3523 spcgft 3561 vtoclgft 3564 elabgt 3685 elabgtOLD 3686 reu6 3748 reu3 3749 sbciegftOLD 3843 axprlem4 5444 fv3 6938 expeq0 14143 t1t0 23377 kqfvima 23759 ufileu 23948 axsepg2ALT 35059 cvmlift2lem1 35270 btwndiff 35991 nn0prpw 36289 bj-animbi 36525 bj-dfbi6 36541 bj-bi3ant 36555 bj-cbv2hv 36763 bj-moeub 36815 bj-ceqsalt0 36850 bj-ceqsalt1 36851 sticksstones3 42105 eu6w 42631 or3or 43985 bi33imp12 44461 bi23imp1 44466 bi123imp0 44467 eqsbc2VD 44811 imbi12VD 44844 2uasbanhVD 44882 nimnbi 45069 thincciso 48716 |
Copyright terms: Public domain | W3C validator |