Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biimpi 215 bicom1 220 biimpd 228 ibd 268 pm5.74 269 pm5.501 366 bija 381 albi 1822 spsbbi 2077 cbv2w 2336 cbv2 2403 cbv2h 2406 dfmoeu 2536 2eu6 2658 ax9ALT 2733 ralbi 3092 rexbi 3169 ceqsalt 3452 vtoclgft 3482 spcgft 3517 pm13.183 3590 elabgt 3596 reu6 3656 reu3 3657 sbciegft 3749 axprlem4 5344 fv3 6774 expeq0 13741 t1t0 22407 kqfvima 22789 ufileu 22978 cvmlift2lem1 33164 btwndiff 34256 nn0prpw 34439 bj-animbi 34666 bj-dfbi6 34683 bj-bi3ant 34698 bj-cbv2hv 34906 bj-moeub 34960 bj-ceqsalt0 34996 bj-ceqsalt1 34997 sticksstones3 40032 or3or 41520 bi33imp12 41999 bi23imp1 42004 bi123imp0 42005 eqsbc2VD 42349 imbi12VD 42382 2uasbanhVD 42420 thincciso 46218 |
Copyright terms: Public domain | W3C validator |