Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 210 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 170 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 170 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 209 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 |
This theorem is referenced by: biimpi 219 bicom1 224 biimpd 232 ibd 272 pm5.74 273 pm5.501 370 bija 385 albi 1826 spsbbi 2079 cbv2w 2337 cbv2 2402 cbv2h 2405 dfmoeu 2535 2eu6 2657 ax9ALT 2732 ralbi 3090 ceqsalt 3438 vtoclgft 3468 spcgft 3503 pm13.183 3575 elabgt 3581 reu6 3639 reu3 3640 sbciegft 3732 axprlem4 5319 fv3 6735 expeq0 13665 t1t0 22245 kqfvima 22627 ufileu 22816 cvmlift2lem1 32977 btwndiff 34066 nn0prpw 34249 bj-animbi 34476 bj-dfbi6 34493 bj-bi3ant 34508 bj-cbv2hv 34716 bj-moeub 34770 bj-ceqsalt0 34806 bj-ceqsalt1 34807 sticksstones3 39826 or3or 41308 bi33imp12 41783 bi23imp1 41788 bi123imp0 41789 eqsbc3rVD 42133 imbi12VD 42166 2uasbanhVD 42204 thincciso 46003 |
Copyright terms: Public domain | W3C validator |