| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2401 cbv2h 2404 dfmoeu 2529 2eu6 2650 ax9ALT 2724 ralbi 3084 rexbi 3085 ceqsalt 3472 spcgft 3506 vtoclgft 3509 elabgtOLD 3630 elabgtOLDOLD 3631 reu6 3688 reu3 3689 sbciegftOLD 3782 axpr 5369 axprlem4OLD 5371 fv3 6844 elirrv 9508 expeq0 14017 t1t0 23251 kqfvima 23633 ufileu 23822 axsepg2ALT 35052 cvmlift2lem1 35277 btwndiff 36003 nn0prpw 36299 bj-animbi 36535 bj-dfbi6 36551 bj-bi3ant 36565 bj-cbv2hv 36773 bj-moeub 36825 bj-ceqsalt0 36860 bj-ceqsalt1 36861 eqab2 38225 sticksstones3 42124 eu6w 42652 or3or 43999 bi33imp12 44468 bi23imp1 44472 bi123imp0 44473 eqsbc2VD 44816 imbi12VD 44849 2uasbanhVD 44887 ssclaxsep 44959 nimnbi 45144 thincciso 49442 |
| Copyright terms: Public domain | W3C validator |