| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1818 spsbbi 2074 cbv2w 2335 cbv2 2401 cbv2h 2404 dfmoeu 2529 2eu6 2650 ax9ALT 2724 ralbi 3085 rexbi 3086 ceqsalt 3481 spcgft 3515 vtoclgft 3518 elabgtOLD 3639 elabgtOLDOLD 3640 reu6 3697 reu3 3698 sbciegftOLD 3791 axpr 5382 axprlem4OLD 5384 fv3 6876 expeq0 14057 t1t0 23235 kqfvima 23617 ufileu 23806 axsepg2ALT 35073 cvmlift2lem1 35289 btwndiff 36015 nn0prpw 36311 bj-animbi 36547 bj-dfbi6 36563 bj-bi3ant 36577 bj-cbv2hv 36785 bj-moeub 36837 bj-ceqsalt0 36872 bj-ceqsalt1 36873 eqab2 38237 sticksstones3 42136 eu6w 42664 or3or 44012 bi33imp12 44481 bi23imp1 44485 bi123imp0 44486 eqsbc2VD 44829 imbi12VD 44862 2uasbanhVD 44900 ssclaxsep 44972 nimnbi 45157 thincciso 49442 |
| Copyright terms: Public domain | W3C validator |