Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version |
Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
Ref | Expression |
---|---|
biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-bi 206 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 |
This theorem is referenced by: biimpi 215 bicom1 220 biimpd 228 ibd 268 pm5.74 269 pm5.501 367 bija 382 albi 1821 spsbbi 2076 cbv2w 2334 cbv2 2403 cbv2h 2406 dfmoeu 2536 2eu6 2658 ax9ALT 2733 ralbi 3089 rexbi 3173 ceqsalt 3462 vtoclgft 3492 spcgft 3527 pm13.183 3597 elabgt 3603 reu6 3661 reu3 3662 sbciegft 3754 axprlem4 5349 fv3 6792 expeq0 13813 t1t0 22499 kqfvima 22881 ufileu 23070 cvmlift2lem1 33264 btwndiff 34329 nn0prpw 34512 bj-animbi 34739 bj-dfbi6 34756 bj-bi3ant 34771 bj-cbv2hv 34979 bj-moeub 35033 bj-ceqsalt0 35069 bj-ceqsalt1 35070 sticksstones3 40104 or3or 41631 bi33imp12 42110 bi23imp1 42115 bi123imp0 42116 eqsbc2VD 42460 imbi12VD 42493 2uasbanhVD 42531 thincciso 46330 |
Copyright terms: Public domain | W3C validator |