| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > biimp | Structured version Visualization version GIF version | ||
| Description: Property of the biconditional connective. (Contributed by NM, 11-May-1999.) |
| Ref | Expression |
|---|---|
| biimp | ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bi 207 | . . 3 ⊢ ¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) | |
| 2 | simplim 167 | . . 3 ⊢ (¬ (((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) → ¬ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 ↔ 𝜓))) → ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)))) | |
| 3 | 1, 2 | ax-mp 5 | . 2 ⊢ ((𝜑 ↔ 𝜓) → ¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑))) |
| 4 | simplim 167 | . 2 ⊢ (¬ ((𝜑 → 𝜓) → ¬ (𝜓 → 𝜑)) → (𝜑 → 𝜓)) | |
| 5 | 3, 4 | syl 17 | 1 ⊢ ((𝜑 ↔ 𝜓) → (𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 |
| This theorem is referenced by: biimpi 216 bicom1 221 biimpd 229 ibd 269 pm5.74 270 pm5.501 366 bija 380 albi 1818 spsbbi 2073 cbv2w 2338 cbv2 2407 cbv2h 2410 dfmoeu 2535 2eu6 2656 ax9ALT 2730 ralbi 3092 rexbi 3093 ceqsalt 3494 spcgft 3528 vtoclgft 3531 elabgt 3651 elabgtOLD 3652 reu6 3709 reu3 3710 sbciegftOLD 3803 axpr 5397 axprlem4OLD 5399 fv3 6894 expeq0 14110 t1t0 23286 kqfvima 23668 ufileu 23857 axsepg2ALT 35114 cvmlift2lem1 35324 btwndiff 36045 nn0prpw 36341 bj-animbi 36577 bj-dfbi6 36593 bj-bi3ant 36607 bj-cbv2hv 36815 bj-moeub 36867 bj-ceqsalt0 36902 bj-ceqsalt1 36903 sticksstones3 42161 eu6w 42699 or3or 44047 bi33imp12 44516 bi23imp1 44520 bi123imp0 44521 eqsbc2VD 44864 imbi12VD 44897 2uasbanhVD 44935 ssclaxsep 45007 nimnbi 45187 thincciso 49339 |
| Copyright terms: Public domain | W3C validator |